
Control Conditions for Transformation Units –

Parallelism, As-long-as-possible, and

Stepwise Control

von Melanie Luderer

Dissertation

zur Erlangung des Grades eines Doktors der

Ingenieurwissenschaften
- Dr.Ing. -

vorgelegt im Fachbereich 3 (Mathematik und Informatik) der
Universität Bremen

Dezember 2015

Gutachter: Prof. Dr. Hans-Jörg Kreowski
Prof. Dr. Julia Padberg

Danksagung

Von ganzem Herzen möchte ich Hans-Jörg Kreowski und der Arbeitsgruppe
Theoretische Informatik (Larbi Abdenebaoui, Marcus Ermler, Sabine Kuske
und Caroline von Totth) danken. Durch sowohl fachliche als auch persönliche
Gespräche habe ich großartige Unterstützung erhalten. Nicht minder gilt
mein Dank meiner Mutter, die mich tatkräftig unterstützt und bestärkt hat.
Zuguterletzt möchte ich mich bei International Graduate School for Dynam-
ics in Logistics (IGS) bedanken, die mich zum einen durch ein Stipendium
finanziell unterstützt hat und zum anderen mit zahlreichen Angeboten die
Ausarbeitung des Themas und die Anfertigung der Dissertation begleitet hat.

i

Abstract

The concept of graph transformation units is a formal and as well intuitive
means to model processes on graphs. Thereby the control condition of a
transformation unit plays an important role. It provides so to say the intel-
ligence of the unit by describing its desired behaviour. The thesis regards
control conditions focusing on two aspects: expressivity and practicability.
Considering expressivity it implements two kinds of control conditions, as-
long-as-possible and parallel expressions. As their names imply these control
conditions are able to express the as-long-as-possible iteration respectively
parallel composition of already described behaviour. Focusing on practical
executability the thesis introduces the concept of stepwise control condi-
tions. Whereas conventional control conditions in principle describe desired
behaviour their computation may take a long time, since first all possible
derivations have to be computed and then are checked against the control
condition. Stepwise control conditions allow to directly guide the derivation
process and so may save computation time.

ii

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Formal Languages . 5

2.1.1 Regular Expressions and Regular Languages 7
2.2 Finite State Automata . 8

2.2.1 Composition of Automata 10
2.2.2 Transform Regular Expressions to Finite State Automata 11

2.3 Graphs and Rule-based Graph Transformation 12
2.3.1 Graphs and Operations Regarding Graphs 12
2.3.2 Rule-based Graph Transformation 14
2.3.3 Graph Transformation Units 17
2.3.4 Parallel Graph Transformation Rules 20

2.4 Petri Nets . 20

3 Parallel Control Conditions 24
3.1 Parallelism and Graph Transformation 25
3.2 Parallel Expressions . 27

3.2.1 Language of Weak Parallel and Synchronous Expres-
sions . 28

3.2.2 Properties of Weak and Synchronous Composition . . . 32
3.2.3 Algebraic Laws for Weak and Synchronous Expressions 39
3.2.4 Weak and Synchronous Expressions as Control Condi-

tions . 44

4 Languages of Parallel Expressions are Regular 57
4.1 Parallel Expressions to Automata 57
4.2 Automata Recognise Parallel Languages 62

5 As-long-as-possible Control Condition 73
5.1 As-long-as-possible Expressions 73

iii

5.2 Syntax and Semantics . 74
5.3 Further Notions and Definitions 76

6 Sufficient Conditions for Termination of As-long-as-possible
Expressions 78
6.1 Termination in Literature . 79
6.2 Termination Regarding Alap-expressions 80

6.2.1 Strong Termination . 81
6.2.2 Structural Termination 83
6.2.3 Assured Termination 86

6.3 An Algorithm to Check Assured Termination 94
6.3.1 Example . 94

7 Stepwise Controls 97
7.1 Basic Stepwise Controls . 98

7.1.1 Definition and Construction 98
7.1.2 Execution of Stepwise Controls 101
7.1.3 Semantics of Stepwise Controls 102

7.2 Transform Given Control Conditions to Stepwise Controls . . 103
7.2.1 Weak and Synchronous Stepwise Controls 103
7.2.2 Parallel Stepwise Controls 106
7.2.3 As-long-as-possible Stepwise Controls 113

7.3 Transformation Units and Stepwise Controls 118
7.3.1 Stepwise Controls for Transformation Units 118
7.3.2 Transformation Unit as Stepwise Control 120

8 Conclusion 122

iv

Chapter 1

Introduction

In computer science modelling plays an important role. Think of, e.g., UML
diagrams, Petri nets, event driven process chains, and last but not least the
von Neumann model of the first computer. In general, models are designed
to represent aspects of the real world or ideas. They abstract from irrele-
vant details and help to grasp and understand the modelled system and its
behaviour. One major application using models is to simulate, respectively
analyse, the behaviour of the modelled system in order to gain information.
Simulation could be employed to validate hypotheses about the modelled
system or to forecast its behaviour, e.g. weather forecast. Another field of
application regarding simulation is problem solving. Thereby the problem
domain and potential ways to the solution of the problem are modelled, then
the model is run in order to gain possible solutions.

Graph transformation units as a modelling framework

Models are implemented in the language of a modelling framework. This
framework could be formal or informal. An advantage of formal frameworks
is that they provide means to exactly analyse the modelled system and pro-
cesses, validate hypotheses, and prove properties. Also the verification of
the model is, if at all, rather possible in formal than in informal frame-
works. On the other hand formal frameworks often lack intuitive usability.
To recognise the world in a pure mathematical model is rather difficult for
most non-mathematicians. The concept of graph transformation units, as
studied in [Kus00] is a formal modelling framework, which combines the
just mentioned advantages of formality with the ability to intuitively and
clearly model rather complex processes and systems. Transformation units
encapsulate graph transformation rules, a control condition to regulate the
application of these rules, and graph class expressions specifying permitted

1

initial and terminal graphs. Hence, transformation units can be seen as enti-
ties performing specific tasks in an environment modelled by a graph. Once
implemented they are (re)usable to accomplish their tasks without the need
to know how exactly this is done. The structuring principle of import enables
a unit to employ other units. This principle helps to structure the model and
keeps it handable.

Control conditions

The thesis focuses on control conditions as a core element providing the
”intelligence” of transformation units. The control condition regulates the
application of the unit rules. Examples for control conditions for transforma-
tion units can be found in, e.g., [Kus98, KK99]. Without a control condition
a transformation unit could only non deterministically choose rules to apply
from its given rule set. From the unit’s point of view this behaviour could
be characterised as blind search. It arbitrarily tries rule combinations and
after each application checks if coincidentally a desired state is reached. If
some kind of regulation is wanted it has to be encoded in the rules, which can
make them quite incomprehensible. Control conditions equip the transforma-
tion unit with the ability to follow strategies and thus behave in a problem-
specific way. The thesis considers control conditions regarding two aspects:
expressivity and practicability. The expressivity of a control condition deter-
mines the potential the modeller has to describe a specific behaviour. The
more means of expression control conditions have the more ”intelligent” and
problem-specific behaviour they can describe. The practicability of a control
condition regards the time it takes to actually compute the behaviour of the
respective unit.
Regarding the expressivity the thesis introduces two kinds of control con-
ditions, parallel expressions and as-long-as-possible expressions. Both are
constructed by enhancing regular expressions by additional operators.

Parallel expressions
The ability to model parallelism is crucial since parallelism is an inherent
property of the real world. Parallelism in graph transformation is, e.g., fo-
cused in [Kre78, Roz97]. In addition parallel execution saves time. For
example consider the Travelling Salesperson Problem. The computation of
the shortest route takes less time when different possibilities can be explored
simultaneously. For instance, in [KK11] it was shown that for graph mul-
tiset transformation, that is graph transformation running not only on a
single input graph, but on a multiset of graphs, “NP-problems with graph-
transformational solutions can be solved [...] in a polynomial number of steps

2

with arbitrarily high probability”. Hence parallel execution of steps can re-
duce the time complexity from exponential to polynomial. The ability to
express parallelism with graph transformation on rule level is given by par-
allel graph productions, also called parallel rules. A parallel rule composes
two given rules to a new one. In e.g. [KK07] parallel rules where used to
model the simultaneous activity of the members of a community of trans-
formation units. However, the units themselves are not able to directly use
parallelism in their control conditions. In order to equip control conditions
with the ability to express parallelism, we do not only have to consider the
parallel composition of rules, but also of rule sequences. On the level of rule
sequences though, parallel composition is ambiguous. Therefore in the thesis
we distinguish three different forms of parallel composition: weak, proactive,
and synchronous composition. Regarding these different forms the thesis
introduces weak parallel, proactive, and synchronous expressions, which pro-
vide the ability to compose entire expressions in the respective parallel form.
All three expressions are implemented by enhancing regular expressions by a
respective additional parallel composition operator. As an interesting result
it turns out that the languages of weak and synchronous expressions are still
regular.

As-long-as-possible expressions
When modelling problem solving strategies the ability to do something as
long as possible is very convenient. For instance, consider the subtask to
delete all x-labelled edges in a graph. Without the ability to express the
execution the x-label-deleting rule as long as possible one would have to e.g.
encapsulate the desired behaviour in a transformation unit. Thereby the
encapsulating unit iterates the deleting rule arbitrarily often and its termi-
nal graph class expression allows only those graphs where no more deletion is
possible. On the one hand such a proceeding only is possible when employing
structured transformation units. On the other hand to be forced to model
such a subtask by a separate transformation unit could complicate the struc-
turing desired by employing units with import. As-long-as-possible control
conditions where addressed in, e.g., [Kus00, Kus98, KKS97, BHPT05]. The
first two implement as-long-as-possible control conditions on a single rule
respectively on a set of rules iterating the rule (respectively rules) as long as
no more application is possible. The third models as-long-as-possible on ar-
bitrary, not specified control conditions, providing a binary semantic relation
on graphs. The latter provides as-long-as-possible for expressions containing
in addition sequential and choice compositions. The thesis studies so called
as-long-as-possible expressions, which enhance regular expressions by a bi-
nary as-long-as-possible operator, denoted by !. The operator ! then provides

3

the iterative application of its argument as long as it is applicable. As shown
in [HKK06], as-long-as-possible control conditions in general are not decid-
able (not even semi-decidable), hence also termination of as-long-as-possible
expressions is not decidable. Considering this situation the thesis makes
use of the formality of graph transformation and introduces an approach to
analyse as-long-as-possible expressions regarding sufficient conditions for ter-
mination.

Regarding practicability one finds that several formal frameworks lack atten-
tion on practicability. Also the definition of the semantics of transformation
units given in the preliminaries is not very practicable. It is defined by build-
ing arbitrarily derivations and then check them against the control condition.
This proceeding is not very efficient since many derivations are build which
never have a chance to be permitted by the control condition.

Stepwise control
In order to increase the practicability of control conditions we introduce step-
wise control conditions. Stepwise controls are similar to finite state automata,
but enhanced with components which allow more control over the derivation
process and to take into account the current graph. In contrast to many
control conditions, which are used to check already computed derivations,
stepwise controls directly build only those derivations which may end up to
be permitted. Thus stepwise controls reduce the time it takes to execute
a transformation unit. Being able to take into account the current graph
stepwise controls are also well suited to model proactive parallelism.

Structure of the thesis

The next chapter contains preliminary definitions and notations used through-
out the thesis. Chapter 3 introduces parallel expressions and in particular
weak parallel and synchronous expressions. Chapter 4 then states and proves
regularity of languages provided by weak parallel and synchronous expres-
sions. In Chapter 5 as-long-as-possible expressions are introduced followed
by Chapter 6 introducing sufficient conditions for termination of as-long-as-
possible expressions. Chapter 7 then introduces stepwise controls. The thesis
concludes with a summary of the presented work and some suggestions for
future work.

4

Chapter 2

Preliminaries

The Preliminaries contain basic definitions and notations used throughout
the thesis. The chapter comprises four sections regarding formal languages,
automata theory, basics of graph transformation, and Petri nets. These
sections do not give an overview over the respective area, but recall the
concepts and notations as we use them in the thesis. For the reader interested
in further information, each section gives references to books or articles where
more detailed information can be found.

2.1 Formal Languages

In theoretical computer science a language is a set of words, which themselves
again are sequences of symbols. A collection of symbols is called alphabet.
The following definitions express this formally and also provide some opera-
tions on words and languages. The definitions base on [KK14].

Definition 1. Alphabets and words

1. An alphabet is a set of symbols.
E.g., {0, 1} or {a, b, . . . , z}.

2. A word over an alphabet Σ is a finite sequence of symbols from Σ.
E.g., 1011 or ab.

3. The empty word, i.e. the word which contains no symbols, is denoted
by λ.

4. A word over an alphabet Σ is recursively defined by:
(i) λ is a word,
(ii) given x ∈ Σ and a word v then also xv is a word.

5

The last construction step (4.(ii)) is also called left addition.

Given two words one can compose a new one by their juxtaposition. This
operation is called concatenation.

Definition 2. Concatenation of words
Let v and w be two words over an alphabet Σ. The concatenation of v and
w, v ◦ w, is recursively defined by:

(i) given v = λ it holds λ ◦ w = w,

(ii) given v = xu with x ∈ Σ it hold (xu) ◦ w = x(u ◦ w).

Often the operator ◦ is omitted, i.e. one can write vw instead of v ◦ w.

A language is a set of words. Formally it is defined as a subset of the set of
all (possible) words over a given alphabet.

Definition 3. Σ∗ and language
Let Σ be an alphabet. The set of all words over Σ is denoted by Σ∗ and
recursively defined by
Σ∗ =

⋃
k∈N

Σk with

(i) Σ0 = {λ},

(ii) Σi+1 = {x ◦ u | x ∈ Σ, u ∈ Σi}, i ∈ N.

A language is a subset of Σ∗, e.g., {i, am, a, language} ⊆ {a, b, ...z}∗.

Analogously to words one can also concatenate two languages L1 and L2.
The resulting language then consists of words the first part of which comes
from L1 and the second part from L2.

Definition 4. Concatenation of two languages
Let L1 and L2 be two languages. Then
L1 ◦ L2 = {x1 ◦ x2 | x1 ∈ L1, x2 ∈ L2}.

Also the operator ◦ for languages often is omitted writing L1L2 instead of
L1 ◦ L2.

A further analogous operator on language level is the iteration of a language.
Given a language L the iteration L∗ builds the set of all words constructed
by concatenation of arbitrary many words from L.

6

Definition 5. Iteration of a language
Let L be a language. Then
L∗ =

⋃
n∈N

Ln with

L0 = {λ},
L1 = L,
Ln = L ◦ Ln−1, n > 1.

Since languages are sets all operations available for sets can also be applied
to languages.

2.1.1 Regular Expressions and Regular Languages

Regular expressions describe specific languages, called regular languages. The
following definitions address regular expressions and how a regular expression
describes a language. The definitions are taken from [Sch92].

Definition 6. Regular expressions
Let Σ be an alphabet. Regular expressions over Σ are recursively defined by:

• ∅ and λ are regular expressions,

• σ ∈ Σ is a regular expression,

• (e1; e2), (e1|e2) are regular expressions if e1 and e2 are regular expres-
sions, and

• e∗ is a regular expression if e is a regular expression.

The binding strength of the operators is given by ∗ >;> |.

Every regular expression e over an alphabet Σ describes a language L(e) ⊆
Σ∗.

Definition 7. Regular language
Let Σ be an alphabet. The language of a regular expression over Σ is recur-
sively defined by

• L(∅) = ∅,

• L(λ) = {λ},

• L(σ) = {σ} for σ ∈ Σ,

• L(e1; e2) = L(e1) ◦ L(e2) for regular expressions e1 and e2,

7

• L(e1|e2) = L(e1) ∪ L(e2) for regular expressions e1 and e2,

• L(e∗) = L(e)∗ for a regular expression e.

Regular languages are recognised by finite state automata.

2.2 Finite State Automata

A finite state automaton is a computational model that recognises regu-
lar languages. It comprises a finite set of states, an input alphabet, and
transitions between its states depending on symbols of its input alphabet.
Moreover, a finite state automaton designates two special kinds of states:
a start state where it begins its execution, and a set of final states which
indicate the proper end of an execution. The following definitions are taken
from [HMU06] and adapted when necessary, to the use in this thesis.

Definition 8. Finite state automaton
A finite state automata is a system A = (S, I, d, s0, F) where

• S is a finite set of states,

• I is a finite set of input symbols,

• d is a state transition relation, d ⊆ S × I × S,

• s0 ∈ S is the start state, and

• F ⊆ S is a set of final (or accepting) states.

Finite state automata are often represented by transition diagrams. Thereby,
a state is depicted by a node and a transition between two states is de-
picted by an arc labelled with the respective symbol. To distinguish the
start state it is equipped with an incoming arrow, which is not originated
in another node. Analogously the final states are equipped with outgoing
arrows. In the following a transition diagram for the finite state automa-
ton A = ({s0, s1, s2, s3}, {0, 7}, {(s0, 0, s1), (s1, 0, s2), (s2, 7, s3)}, s0, {s3}) is
depicted.

s0 s1 s2 s30 0 7

8

Execution and language recognition

Given an input word, the automaton processes it symbol by symbol from left
to right. Beginning from its start state it makes a transition for each symbol
from its current state to a follower state. These transitions continue until
the entire input word is processed or the automaton gets stuck, i.e. there is
no transition from the current state labelled with the current symbol. When
the entire input word is processed and the automaton has reached one of its
final states, the word is considered to be recognised by the automaton.

The set of all words a given automaton recognises is the language of the
automaton. In order to define the language formally, the following definition
extends the state transition relation d, processing symbols, to a relation d∗,
processing entire words.

Definition 9. Extended state transition d∗

The extended state transition d∗ is recursively defined by

(i) d∗(s, λ) = {s},

(ii) d∗(s, wx) =
⋃

d(s̄,
s̄∈d∗(s,w)

x) .

Definition 10. Language of a finite state automaton
The language recognised by a finite state automaton A = (S, I, d, s0, F) is
given by
L(A) = {w ∈ I∗ | d∗(s0, w) ∩ F �= ∅}.

The language of a finite state automaton is regular

Finite state automata recognise regular languages and, conversely, regular
languages are recognised by finite state automata. For a proof see, e.g.,
[Ric08].

Deterministic finite state automata

The finite state automata considered so far are non deterministic, i.e., for
every state and every input symbol x they may provide a choice of possible
transitions to follower states, including that no transition is provided. Deter-
ministic finite state automata provide for each state and each symbol exactly
one transition. Formally, deterministic automata are defined as in Definition
8, except for the state transition relation. This now can be regarded as a
function d : S × I → S.

9

2.2.1 Composition of Automata

Finite state automata can be composed sequentially, in choice, and itera-
tively like regular expressions. The following section defines this composi-
tions formally as given in [KK14]. Also a further composition is recalled,
the product automaton, which composes two automata in parallel, such that
the resulting automaton executes both input automata simultaneously. For
the following definitions let A1 = (S1, I1, d1, s01 , F1), A2 = (S2, I2, d2, s02 , F2),
and A = (S, I, d, s0, F) be finite state automata with disjoint state sets.

The sequential composition of two automata A1 and A2 combines them in
such a way that A1 is executed first and subsequently A2.

Definition 11. Sequential composition
A1 ◦ A2 = (S, I, d, s01, F) with

• S = S1 ∪ S2,

• I = I1 ∪ I2 (please note that for deterministic automata I1 and I2 have
to be the same),

• d = d1 ∪ d2 ∪ {(s, x, s
′) | (s02, x, s

′) ∈ d2, s ∈ F1},

• F =

{
F1 ∪ F2 if s02 ∈ F2

F2 otherwise.

A1 ◦ A2 recognises L(A1) ◦ L(A2).

The choice composition of two automata A1 and A2 results in an automaton
which executes either A1 or A2.

Definition 12. Choice composition
A1 ∪ A2 = (S, I, d, s0, F) with

• S = (S1 ∪ S2) ∪ {s0} with s0 /∈ S1 ∪ S2,

• I = I1 ∪ I2 (please note that for deterministic automata I1 and I2 have
to be the same),

• d = d1∪d2∪{(s0, x, s
′) | (s01 , x, s

′) ∈ d1}∪{(s0, x, s
′) | (s02 , x, s

′) ∈ d2},

• F =

{
F1 ∪ F2 ∪ {s0} if s0i ∈ Fi, i ∈ {1, 2}

F1 ∪ F2 otherwise.

10

A1 ∪ A2 recognises L(A1) ∪ L(A2).

The iteration of an automaton A results in an automaton, which is able
to execute the input automaton arbitrarily often.

Definition 13. Iteration
A∗ = (S∗, I, d∗, s0∗ , F∗) with

• S∗ = S ∪ {s0∗} with s0∗ /∈ S,

• d∗ = d ∪ {(s, x, s′) | (s0, x, s
′) ∈ d, s ∈ F ∪ {s0∗}},

• F = FA ∪ {s0∗}.

A∗ recognises L(A∗).

The product automaton is a composition of two deterministic automata,
executing both input automata simultaneously.

Definition 14. Product automaton
A1 × A2 = (S1 × S2, I, d, (s01, s02), F1 × F2) with
d((s1, s2), x) = (d1(s1, x), d2(s2, x)) for all (s1, s2) ∈ S1 × S2 and x ∈ I.

A1 × A2 recognises L(A1) ∩ L(A2).

2.2.2 Transform Regular Expressions to Finite State
Automata

As said above, regular expressions and finite state automata are equivalent,
i.e. languages accepted by finite state automata are exactly those, which
can be specified by regular expressions. So every regular expression can be
transformed to a finite state automaton. Although there are many ways to
translate regular expressions to finite state automata we prefer a special kind,
since we need automata without λ transitions. Also we presuppose that the
automata may not be deterministic. The following definitions are taken from
[KK14], except for item 1.. There we added a final state, in order to ensure
that the compositions we define in the course of the thesis do not get stuck.

Definition 15. Regular expressions to finite state automata
Let Σ be an alphabet and σ ∈ Σ. Moreover, let C1, C2, and C be regu-
lar expressions over Σ. Finite state automata from regular expressions are
recursively defined by

11

• A(∅) = ({s0, s1}, ∅, ∅, s0, {s1}),

s0 s1

• A(λ) = ({s0}, ∅, ∅, s0, {s0}),

s0

• A(σ) = ({s0, s1}, {σ}, {(s0, σ, s1)}, s0, {s1}),

s0 s1σ

• A(C1;C2) = A(C1) ◦ A(C2),

• A(C1|C2) = A(C1) ∪ A(C2),

• A(C∗) = A(C)∗.

2.3 Graphs and Rule-based Graph Transfor-

mation

This section introduces the main concepts of rule based graph transforma-
tion as we use them in this thesis. We employ the double-push out graph
transformation approach as addressed in, e.g., [EPS73, Ehr79, CMR+96].
For further information about graphs and different graph types see [Roz97].

2.3.1 Graphs and Operations Regarding Graphs

Basically graphs consists of nodes and edges between these nodes. One may
interpret the nodes as objects and the edges as relations between these ob-
jects. Edges can be directed and undirected. Usually one edge connects
two nodes. But there are also graphs with edges connecting more than two
nodes, called hypergraphs with hyperedges. Nodes and edges can be labelled
in order to associate them with further information. There is a variety of
graphs in literature with different ways to model the components, each vari-
ant suited for particular applications. We use directed, edge-labelled, and

12

multiple graphs with binary edges, i.e., graphs with directed edges, where ev-
ery edge connects two nodes and nodes can be connected by multiple edges.
Using directed edges one can also model undirected edges by putting two op-
posed edges between the respective nodes.The following definitions are taken
from [KKR08] and [KKK06].

Definition 16. Graph
Let Σ be a set of labels. A graph over Σ is a system G = (V,E, s, t, l) where
V is a finite set of nodes, E is a finite set of edges, s, t : E → V are mappings
assigning a source s(e) and a target t(e) to every edge in E, and l : E → Σ is
a mapping assigning a label to every edge in E. An edge e with s(e) = t(e)
is also called a loop.

The components V , E, s, t, and l of G are also denoted by VG, EG, sG, tG,
and lG, respectively. The set of all graphs over Σ is denoted by GΣ. We
reserve a specific label ∗ which is omitted in drawings of graphs. In this way,
graphs where all edges are labelled with ∗ may be seen as unlabelled graphs.

A subgraph is a part of a given graph, which is a graph by itself.

Definition 17. Subgraph
A graph G ∈ GΣ is a subgraph of a graph H ∈ GΣ, denoted by G ⊆ H , if
VG ⊆ VH , EG ⊆ EH , sG(e) = sH(e), tG(e) = tH(e), and lG(e) = lH(e) for all
e ∈ EG.

Alter a graph by removing and adding elements

A given graph can be modified by adding or removing some nodes or edges.
Regarding the deletion of elements from a graph some conditions have to be
taken into account in order to ensure that the resulting structure again is a
graph. Formally, let G = (V,E, s, t, l) be a graph andX = (VX , EX) ⊆ (V,E)
be a pair of sets of nodes and edges. Then G−X = (V −VX , E−EX , s

′, t′, l′)
with s′(e) = s(e), t′(e) = t(e), and l′(e) = l(e) for all e ∈ E − EX is a sub-
graph of G if and only if there is no e ∈ E−EX with s(e) ∈ VX or t(e) ∈ VX .
This condition is called contact condition of X in G.

Instead of removing nodes and edges, one may add some nodes and edges to
extend a graph such that the given graph is a subgraph of the extension. The
addition of nodes needs no further activities, whereas the addition of edges
requires the specification of their labels, sources, and targets, where the lat-
ter two may be given in the considered graph or as new nodes. Formally, let
G = (V,E, s, t, l) be a graph and (V ′, E ′, s′, t′, l′) be a structure consisting of

13

two sets V ′ and E ′ and three mappings s′ : E ′ → V
⊎

V ′, t′ : E ′ → V
⊎
V ′,

and l′ : E ′ → Σ (where
⊎

denotes the disjoint union of sets). Then
H = G+(V ′, E ′, s′, t′, l′) = (V

⊎
V ′, E

⊎
E ′, s′′, t′′, l′′) is a graph with G ⊆ H

(which establishes the definition of the three mappings s′′, t′′, l′′ on E) and
s′′(e′) = s′(e′), t′′(e′) = t′(e′), and l′′(e′) = l′(e′) for all e′ ∈ E ′.

Disjoint union of graphs

If G is extended by a full graph G′ = (V ′, E ′, s′, t′, l′) the graph G+G′ is the
disjoint union ofG andG′. Note that in this case s′ and t′ map E ′ to V ′ rather
than V

⊎
V ′, but V ′ is included in V

⊎
V ′ such that the extension works. The

disjoint union of graphs puts graphs together without any interconnection.
If graphs are disjoint, their disjoint union is just the union. If they are not
disjoint, the shared nodes and edges must be made different from each other.
Because this part of the construction is not made explicit, the disjoint union
is only unique up to isomorphism, i.e. up to naming.

Graph morphisms

Graph morphisms are mappings between graphs which are structure preserv-
ing, i.e. source and target of an edge are always mapped onto the source and
the target of the image of the edge.

Definition 18. Graph morphism and match
For graphs G,H ∈ GΣ, a graph morphism g : G → H is a pair of map-
pings gV : VG → VH and gE : EG → EH that are structure-preserving, i.e.,
gV (sG(e)) = sH(gE(e)), gV (tG(e)) = tH(gE(e)), and lH(gE(e)) = lG(e) for all
e ∈ EG. A graph morphism g is injective if gV and gE are injective.

For a graph morphism g : G→ H , the image of G in H is called a match of
G in H , i.e., the match of G with respect to the morphism g is the subgraph
g(G) ⊆ H . If g is injective, the match g(G) is also called injective.

2.3.2 Rule-based Graph Transformation

Graphs can be transformed by rules. Very roughly speaking a rule partially
consists of two graphs called left-hand side and right-hand side. When ap-
plying a rule to a graph G a match of its left-hand side in G is found and
replaced by the right-hand side. Transforming graphs with rules one is able
to model processes on graphs.

14

A rule changes a graph by deleting respectively adding some elements. In
order to ensure that the result of a rule application again is a graph, i.e.
there are no dangling edges after the rule application, a rule also consists of
a gluing graph. The gluing graph is a subgraph of the left- as well as of the
right-hand side of the rule and it is preserved when applying the rule. In
order to avoid dangling edges a rule only can be applied if all the nodes of
the match of the left-hand side adjacent to edges of the surrounding graph
are also part the gluing graph.

Definition 19. Graph transformation rule
A rule r = (L ⊇ K ⊆ R) consists of three graphs L,K,R ∈ GΣ such that
K is a subgraph of L and R. The components L, K, and R of r are called
left-hand side, gluing graph, and right-hand side, respectively.
The class of all rules is denoted by R.

The following picture shows a rule which deletes an edge between two nodes
and adds an edge labelled with x.

r: ⊇ ⊆ x

Application of a graph transformation rule

The application of a graph transformation rule to a graph G consists of
replacing an injective match of the left-hand side in G by the right-hand
side in such a way that the match of the gluing graph is kept. Hence, the
application of r = (L ⊇ K ⊆ R) to a graph G = (V,E, s, t, l) consists of the
following three steps.

1. A graph morphism g : L→ G is chosen to establish a match of l in G
subject to the following two application conditions:

a) Contact condition of g(L)−g(K) = (g(VL)−g(VK), g(EL), g(EK))
in G; and

b) Identification condition. If two nodes or edges in L are identified
in the match of L they must be in K.

2. Now the match of L up to g(K) is removed from G, resulting in a new
intermediate graph Z = G− (g(L)− g(K)).

3. Afterwards the right-hand side R is added to Z by gluing Z with R
in g(K) yielding the graph H = Z + (R − K, g) where (R − K, g) =
(VR − VK , ER −EK , s

′, t′, l′) with

15

s′(e′) = sR(e
′) if sR(e

′) ∈ VR − VK and
s′(e′) = g(sR(e

′)) otherwise,
t′(e′) = tR(e

′) if tR(e
′) ∈ VR − VK and

t′(e′) = g(tR(e
′)) otherwise, and

l′(e′) = lR(e
′) for all e′ ∈ ER − EK .

The application of a rule r to a graph G is denoted by G⇒
r
H , where H is

the graph resulting from the application of r to G. The subscript r may be
omitted if it is clear from the context. An arbitrary rule application from a
ruleset P is denoted by G⇒

P
H .

Derivation and application sequence

A rule application is called a direct derivation. The semantics of a rule then
can be defined by the set of all direct derivations.

Definition 20. Semantics of a rule
Let r ∈ R be a rule. The semantics of r is defined by
SEM(r) = {G⇒

r
H | G,H ∈ G}.

Alternatively one may use only the graph pairs as semantics
SEM(r) = {(G,H) | G⇒

r
H,G,H ∈ G}.

The sequential application of rules is called derivation and formally defined
as sequential composition of direct derivations.

Definition 21. Derivation
Let P ⊆ R be a set of rules. The sequential composition of direct derivations
is given by d = G0⇒

r1
G1⇒

r2
· · ·⇒

rn
Gn with n ∈ N, ri ∈ P and called derivation

fromG0 toGn. The derivation fromG0 toGn can also be denoted byG0
n
⇒
P
Gn

where {r1, . . . , rn} ⊆ P , or by G0
∗
⇒
P
Gn if the length n is negligible, or just

by G0
∗
⇒ Gn if P is clear from the context.

The string r1 · · · rn is called application sequence of the derivation d.
The set of all derivation over a given ruleset P is denoted by der(P) and
defined as follows.

Definition 22. Set of all derivations over a ruleset
Let P ⊆ R be a set of rules. Then the set of all finite and infinite derivations
over P is defined by
der(P) = {G0 ⇒

r1
G1 ⇒

r2
. . . ⇒

rn
Gn | ri ∈ P,Gi ∈ G, i ∈ [n], n ∈ N} ∪ {G0 ⇒

r1

G1 ⇒
r2
· · · | ri ∈ P,Gi ∈ G, i ∈ N}.

16

2.3.3 Graph Transformation Units

Graph transformation units allow to transform graphs in a directed way. A
graph transformation unit can be seen as an entity which is able to perform a
specific task. Once created it can be invoked whenever it is needed. Further-
more, structured transformation units could be used to modularise a task.
For every subtask a unit is constructed. These units then are imported and
invoked by a superior unit which models the whole task accomplishment.
Such a superior unit is called structured transformation unit. Structured
units make the understanding and usage more intuitive and easy.

Formally, tranformation units base on an arbitrary graph transformation
approach. Since we use the double pushout approach we refrain from defin-
ing its general components and instead directly introduce the components as
we use them in the thesis. A simple transformation unit comprises two graph
class expressions specifying permitted initial graphs, i.e., where to start the
transformation process, and analogously describing desired terminal graphs.
In order to transform graphs a simple transformation unit provides a set of
rules and a control condition helping to reduce the nondeterminism of rule ap-
plication. Graphs, rules, and rule application where already adressed above.
In the following we consider graph class expressions and control conditions
in more detail. The following definitions are taken from [Kus00, KKR08].

Graph class expressions

A graph class expression may be any syntactic entity X that specifies a
class of graphs SEM(X) ⊆ GΣ. A typical example is the subset Δ ⊆ Σ
with SEM(Δ) = GΔ ⊆ GΣ, i.e. SEM(Δ) comprises all graphs, labeled with
symbols of Δ. Forbidden structures are also frequently used. Let F be a
graph, then SEM(forbidden(F)) contains all graphs G such that there is no
graph morphism f : F → G. The class of possible graph class expressions
for transformation units, as we use them in the thesis, is denoted by X .

Control conditions

A control condition may be any syntactic expression which reduces the non-
determinism of possible rule applications. A control condition may give
some sort of preferences up to explicitly describe permitted rule applica-
tion sequences. Often, the semantics of a control condition is given by a
pair of graphs, i.e. given a control condition C, C specifies binary rela-
tion SEM(C) ⊆ G × G. It is also possible, as done in this thesis, to spec-
ify the semantics of a control condition as set of permittet derivations, i.e.

17

SEM(C) ⊆ der(P) (respectively der(P) rescricted to finite derivations). A
variety of expressions can be applied as control conditions. In the following
some examples are presented. For all examples let P ⊆ R be a set of rules.

Priorities on Rules A priority control condition is a irreflexive partial
order on a set of rules. The intuitive meaning is that rules of a lower priority
only can be applied when no rules of higher priorities are applicable. Formally
given a set of rules P , a priority is a pair C = (P,<) where < is an irreflexive
partial order on P . For r ∈ P , let HPC(r) = {r′ ∈ P | r < r′} denote the
set of rules with higher priority in C. Then (G,H) ∈ SEM(C) if there are
G0, . . . , Gn ∈ G such that

• G0 = G and Gn = H ,

• for i = 1, . . . , n, (Gi−1, Gi) ∈ SEM(ri) for some ri ∈ P , and for all
r ∈ HPC(ri) there is no G ∈ G with (Gi−1, G) ∈ SEM(r).

Regular Expressions Regular expressions over rules are often used as
control conditions. They describe permitted rule application sequences.
SEM(e) = {(G,H) | G

∗
⇒ H ∈ der(P) and the language of e, L(e), is

application sequence of G
∗
⇒ H}

As-Long-As-Possible Given a set of rules P the control condition as-long-
as-possible requires that all the rules must be applied as long as possible, i.e.
it allows all derivations G⇒

P
H such that no rule of P is applicable to H .

SEM(as-long-as-possible) = {(G,H) | G
∗
⇒H ∈ der(P), �H⇒

r
H ′, ∀r∈P}

The class of possible control conditions for transformation units, as we use
them in the thesis, is denoted by C. Other control conditions for transforma-
tion units may be found in [Kus98].

Formally, a simple transformation unit is defined by

Definition 23. Simple graph transformation unit
A simple graph transformation unit is a system tu = (I, P, C, T), where

• I ∈ X and T ∈ X are graph class expressions to specify the initial and
the terminal graphs respectively,

• P ⊆ R is a set of rules, and

• C ∈ C is a control condition.

18

The semantics of a simple transformation unit is given by a set of graph
pairs, each containing the initial and the terminal graph of a transformation
process permitted by the control condition.

Definition 24. Semantics of a simple transformation unit
Let tu = (I, P, C, T) be a simple transformation unit. The semantic relation
is given by
SEM(tu) = {(G,H) | G

∗
⇒
P
H,G ∈ SEM(I), H ∈ SEM(T), (G,H)∈SEM(C)}.

For complex tasks the rule set of a transformation unit can be very large,
also it is very convenient to be able to reuse transformation units for already
solved problems. For this reasons modularisation is worthwhile. With modu-
larisation large rule sets can be structured, so the interaction of the different
rules is better understandable. Solutions of old problems can be reused for
solving new ones. In order to obtain modularisation, simple transformations
units can, besides rules, be equipped with other transformations units, called
imported units. Since transformation units provide a binary relation as se-
mantics, imported units can be used like rules. The resulting unit than is
called structured transformation unit or transformation unit with import.

Definition 25. Transformation unit with import
A transformation unit with import is a system tu = (I, P, U, C, T), where
(I, P, C, T) is a simple transformation unit, and the component U is a set of
imported transformation units.

In order to avoid that a transformation unit is allowed to directly or indi-
rectly import itself, we assume an acyclic imported structure. To achieve
this transformation units are assigned with an import level, where level 0
stands for ’no units are imported’ (U = ∅), and each unit can only import
units from a lower level.

The semantics of a structured transformation unit not only has to consider
the rules but also the imported units. Rule applications alternate with calls
of imported units. Since, like rules, the semantics of a unit is a binary rela-
tion on graphs an imported transformation unit can be handled like a rule.
This leads to a so called interleaving semantics.

Definition 26. Interleaving semantics
Let tu = (I, P, U, C, T) be a structured transformation unit. Its interleaving
semantic relation is defined by
INTERSEM (tu) = {(G,G′) | G ∈ SEM(I), G′ ∈ SEM(T), and there is a

19

sequence G0, . . . , Gn with G = G0, Gn = G′, and, for i = 1, . . . , n, Gi−1⇒
r
Gi

for some r ∈ P or (Gi−1, Gi) ∈ SEM(u) for some u ∈ U. Moreover, (G,G′)
must be accepted by the control condition C}.

2.3.4 Parallel Graph Transformation Rules

Until now the provided rules of a transformation unit have been applied
sequentially. With parallel rules as, e.g., discussed in [Kre78, Roz97] one is
able to apply two (or more) rules to a graph simultaneously. The following
definition presents parallel rules as they are defined in [KK07].

Definition 27. Parallel rule
Let r1 = (L1 ⊇ K1 ⊆ R1) and r2 = (L2 ⊇ K2 ⊆ R2) be two rules. Then
r1+ r2 = (L1+L2 ⊇ K1+K2 ⊆ R1+R2) is called the parallel rule of r1 and
r2.

In order to denote the set of all parallel rules over a given rule set, we employ
the definition given in [Hab04], but with modified notation.

Definition 28. Set of all parallel rules e over a set of rules
For a rule set R the set of all parallel rules, R∗, is inductively defined by:

1. R ⊆ R∗ and

2. for r1, r2 ∈ R∗ also r1 + r2 ∈ R∗

For more information about parallelism in graph transformation see e.g.
[EEPT06, EKMR99].

2.4 Petri Nets

In this section Petri nets and some of their properties used in the thesis
are introduced. The definitions are taken from [Mur89] and [Bau96]. We
have adapted some definitions to meet our requirements. For example we
do not need the distinction between a Petri net graph (Petri net without
initial marking) and a Petri net, so we have modified the original definitions
regarding Petri net graphs to definitions for Petri nets.

Petri nets are a means to model dynamic and concurrent systems. In the
thesis we employ them to represent the deletion and addition of graph el-
ements described by a control condition. Petri nets are graphs which have

20

two types of nodes, places and transitions. Roughly speaking, places model
states and transitions model events altering states. Places and transitions are
linked by weighted arcs. Every place holds a number of tokens represented
by a natural number. The number of tokens on places linked to a transition
determines if the transition can happen, respectively fire in the notation of
Petri nets. The initial assignment of the places with tokens is called initial
marking of the Petri net.

Basic Definitions

Definition 29. Petri net
A Petri net is a 5-tuple, PN = (P, T, F,W,M0) where

• P is a finite set of places,

• T is a finite set of transitions,

• F ⊆ (P × T) ∪ (T × P) is a set of arcs called flow relation,

• W : F → N+ is a weight function, and

• M0 : P → N is the initial marking.

Moreover, it holds that P ∩ T = ∅ and P ∪ T �= ∅.

The dynamics of a Petri net is modelled by firing its transitions. In order to
define the firing of a transition formally, two notions are stated: the set of all
input places regarding a transition t, •t = {p | (p, t) ∈ F}, and analogously
the set of all output places regarding a transition t, t• = {p | (t, p) ∈ F}.
A transition is able to fire if the number of tokens on its input places is at
least as large as the weight of the respective arc. If a transition fires two
things happen: the number of tokens on the input places of the transition is
decreased by the weight of the respective arcs, and the number of tokens on
the output places is increased by the weight of the respective arcs. In case
the Petri net is bounded, i.e. the amount of tokens a place can hold is limited,
it is also necessary that the increased number of tokens does not exceed the
limitations for the respective places.

Definition 30. Marking, fire, and firing sequence
Let PN = (P, T, F,W,M0) be a Petri net.

1. Any mapping M : P → N is called a marking of PN .

2. A transition t ∈ T is enabled at marking M , denoted by M [t >, if
W (p, t) ≤M(p)∀p ∈ •t.

21

3. Then t may fire reaching a marking M ′ defined by

M ′(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
M(P)−W (p, t) if p ∈ •t \ t•,

M(p) +W (t, p) if p ∈ t • \ • t,

M(P)−W (p, t) +W (t, p) if p ∈ t • ∩ • t,

M(p) otherwise.

The firing of a transition t from marking M reaching marking M ′ is
denoted by M [t>M ′.

4. A transition sequence t1 · · · tn ∈ T ∗ is a firing sequence starting from
marking M , denoted by M [t1 · · · tn>M ′, if there are markings
M0,M1, . . . ,Mn such that M = M0, Mi−1 [ti>Mi for all i ∈ [n], and
Mn = M ′.

Every firing sequence could be mapped to a vector called Parikh-vector which
states for every transition the frequency of its occurrence in the firing se-
quence.

Definition 31. Parikh-vector
Let PN = (P, T, F,W,M0) be a Petri net and w be a firing sequence. The

vector w =

⎛
⎜⎝
#(t1, w)

...
#(tn, w)

⎞
⎟⎠ with t1, . . . tn ∈ T, n = #T, and #(t, w) denotes

the occurrence of t in the firing sequence w, is called Parikh-vector.

The Parikh-vector abstracts from the actual sequential order of the transi-
tions, so one Parikh-vector represents a whole set of firing sequences.

Another means of description, regarding the behaviour of a Petri net, is
the incidence matrix. The incidence matrix of a Petri net represents for ev-
ery transition (columns) the modification at the places (rows) after firing the
respective transition.

Definition 32. Incidence matrix
Let PN = (P, T, F,W,M0) be a Petri net. The incidence matrix A of the
Petri net is defined by

Aij :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
W (tj, si) if (tj , si) ∈ F\F−1,

−W (si, tj) if (si, tj) ∈ F\F−1,

W (tj, si)−W (si, tj) if (tj , si) ∈ F ∩ F−1,

0 otherwise,

for the indexes i ∈ [#P], j ∈ [#T].

22

A Petri net is pure if it has no self-loops, i.e. there is no place ∈ P which
has in- and outgoing arcs from and to the same transition. If a Petri net is
pure the underlying graph of the Petri net is uniquely given, up to naming,
by the incidence matrix.

Properties

Definition 33. Partial repetitiveness
A Petri net is partially repetitive if there exists an infinite firing sequence
w = (ti)i∈N starting from the initial marking M0.

Partial repetitivity can be characterised with the help of the incidence matrix.

Theorem 34. Let PN = (P, T, F,W,M0) be a Petri net and A its incidence
matrix. PN is partially repetitive if and only if there exists a |T |-vector
x : T → N such that A · x ≥ 0 and x �= 0.

23

Chapter 3

Parallel Control Conditions

Modelling processes with graph transformation, the ability to express par-
allelism is highly beneficial for mainly two reasons. Firstly, parallelism is
an inherent property of the real world and the adequate modelling of real
world processes needs to express parallelism. Secondly, parallel execution of
processes saves time. This chapter introduces parallel expressions, which are
able to directly describe parallel graph transformation processes. Parallel
expressions implement three kinds of parallelism by augmenting regular ex-
pressions by respectively one parallel composition operator.

Since the notion of parallelism is very general and highly related to the
field of application we first have to specify the terms we use throughout the
thesis regarding parallelism in graph transformation. Thereby we distinguish
three forms of parallelism, namely weak, proactive, and synchronous paral-
lelism. These forms of parallelism are then implemented by three kinds of
parallel expressions (weak, proactive, and synchronous expressions) provid-
ing respective parallel composition operators. This chapter focuses on weak
and synchronous expressions. Proactive expressions are addressed in chapter
7, when considering stepwise controls. Paying attention to weak and syn-
chronous expressions the chapter examines their composition operators on
the syntactic level and states some algebraic laws. In order to employ par-
allel expressions as control condition, providing permitted derivations, two
approaches are presented. The first approach is based on the language of
weak and synchronous expressions. The second approach employs a canoni-
cal form for synchronous and weak parallel expressions in order to gradually
identify which rules have to be applied simultaneously in each derivation
step. The chapter concludes with two examples presenting transformation
units with synchronous expressions as control conditions.

24

3.1 Parallelism and Graph Transformation

Speaking about parallelism in general often the notions of events and pro-
cesses are used. Regarding graph transformation we associate these notions
to rules and rule sequences. Thus we have to consider parallel application
respectively composition of rules and rule sequences.

Parallel composition of rules

Graph transformation provides the parallel composition of rules, i.e. the si-
multaneous application of two rules in one derivation step. As a reminder,
the parallel composition of rules takes two rules and combines them to
one single rule, called parallel rule. Formally, the parallel composition of
two rules r1 = (L1, K1, R1) and r2 = (L2, K2, R2) is given by r1 r2 =
(L1 + L2, K1 + K2, R1 + R1) where + denotes the disjoint union of graphs.
A rule application in graph transformation is considered to be atomic, i.e. it
can not be interrupted by other rule applications. Provided injective matches
the applicability of a parallel rule implies that there are no conflicts between
the original rules regarding the current graph.

In [KK07] parallel rules are employed to model several transformation units
in a community acting in parallel. Regarding one unit, possible actions of
the other units are modelled by so called meta-rules, a set of parallel rules
representing what may happen outside the unit. Through meta-rules each
unit is enabled to relate its own activities to potential activities of the other
units, i.e. the semantics of the control condition of each unit is comprised
of applying its own rules composed in parallel to meta-rules. The parallel
semantics of the community then consists of all processes fitting to the se-
mantics of all units. Nevertheless in this approach the units themselves are
not able to employ parallelism directly in their control conditions. In order
to enable a unit to use parallelism its control condition has to be equipped
with parallel operators, which is the task of this chapter. More details about
parallel rules and further information can be found, e.g., in [Roz97] pages
174 ff..

Different forms of parallel composition of rule sequences

In order to compose rule sequences in parallel we need to characterise pre-
cisely what we intent since there are several possibilities to compose rule
sequences, such that rules of the sequences are applied in parallel. In the
following we discuss three different forms of parallel composition: weak par-

25

allel, proactive, and synchronous composition.

Weak parallel composition is the weakest form of parallel composition. The
rules of the involved sequences can be applied in an arbitrary way. Every
possible temporal relation is allowed, as long as the sequential order of rules
of the individual sequences is preserved. Weak parallel composition is non-
deterministic. There are many possibilities to proceed when composing rule
sequences weakly parallel.

Proactive composition of sequences is a stronger form of parallel composition.
The rules of proactively composed sequences have to be applied simultane-
ously as soon as possible, i.e. rules of different sequences that can be applied
simultaneously have to be applied simultaneously, rules which cannot, can be
applied sequentially. So far proactive parallel composition is ambiguous. For
illustration, consider the set of all first rules of given sequences. In case these
rules could not be applied simultaneously altogether, there may be different
partitions into sets of rules which can be applied simultaneously. Regarding
these partitions as different equitable possibilities which all may be pursued
leads to a non-deterministic proactive composition. Another possibility is to
specify which combination to prefer when implementing the proactive com-
position operator. Proactive composition needs to know the actual graph
to which the rule sequences have to be applied to. Without knowing the
input graph it is not possible to provide potential rule application sequences
resulting from proactively composed rule sequences.

Synchronous composition is the strongest form of parallel composition. The
respective rules of synchronously composed sequences must be applied si-
multaneously otherwise the synchronisation fails, i.e. in every derivation
step every current rule of each involved sequence has to be applied simulta-
neously with the others. A rule is not allowed to wait until it is applicable.
This description is unambiguous if the involved sequences have the same
length. The sequences start and end at the same time and in between all
involved rules are applied simultaneously according to the order of their re-
spective sequences. Though if the sequences differ in length there are dif-
ferent possibilities to start the sequences and let them end. One possibility
is to force synchronously composed sequences to be of the same length by
letting the synchronisation start at the same time and fail if one sequence
ends and another not (strong synchronisation). Another possibility is to let
the sequences start their synchronous application at the same time but allow
them to end differently, i.e. if one sequence ends the others proceed fur-
ther alone (called begin-synchronisation). For some applications it may also

26

be useful to let the sequences start differently but require them to end at
the same time (end-synchronisation). The last option on this discrimination
level is to let them start and end differently as long as they run synchronously
once they started (free-synchronisation). This case carries further options of
discrimination, which we do not proceed further. The strong-, begin-, and
end-synchronous compositions of rule sequences are deterministic. In the
course of the thesis we focus on begin-synchronisation and refer to it as syn-
chronisation.

The following definition defines a parallel composition of rule sets which
we need later, the product composition of two rule sets. Given two rule
sets the product composition comprises all parallel rules build by composing
respectively one rule of each set in parallel.

Definition 35. Parallel product composition of two rule sets
Let P1, P2 ∈ R be two sets of rules. The parallel product composition of P1

and P2 is defined by P1|×|P2 = {r1 + r2 | r1 ∈ P1, r2 ∈ P2}.

3.2 Parallel Expressions

In order to provide control conditions which allow to describe weak parallel,
proactive and synchronous composition we introduce weak parallel, proac-
tive, and synchronous expressions subsumed under the notion of parallel ex-
pressions. Parallel expressions are a generalisation of regular expressions over
a rule set X to expressions over X∗ (the set of all parallel rules over X). In
order to express parallel composition regular expressions are equipped with
respectively one of three additional binary operators, weak parallel compo-
sition (�� ��), proactive parallel composition (P), or synchronous composition
($).

Definition 36. Weak parallel expression
Let X be a rule set. Weak parallel expressions over X∗ are recursively defined
by

• ∅, λ, r ∈ X∗ are weak parallel expressions.

• C1;C2, C1|C2, C
∗, and C1 �� ��C2 are weak parallel expressions if C,C1,

and C2 are weak parallel expressions.

Definition 37. Proactive expression
Let X be a rule set. Proactive expressions over X∗ are recursively defined by

27

• ∅, λ, r ∈ X∗ are proactive expressions.

• C1;C2, C1|C2, C
∗, and C1PC2 are proactive expressions if C,C1, and

C2 are proactive expressions.

Definition 38. Synchronous expression
Let X be a rule set. Synchronous expressions over X∗ are recursively defined
by

• ∅, λ, r ∈ X∗ are synchronous expressions.

• C1;C2, C1|C2, C
∗, and C1$C2 are synchronous expressions if C,C1, and

C2 are synchronous expressions.

To avoid brackets we assume that ∗ binds stronger than $, �� �� ,P which bind
stronger than ; which binds stronger than |.

In the following we pay attention to weak parallel and synchronous expres-
sions, since they differ from proactive expressions and themselves have much
in common. Especially, they describe regular languages, as we present in
the next chapter. We take up proactive expressions later in 7.2.2 where we
address parallel stepwise controls. In the following we introduce the language
of weak parallel and synchronous expressions.

3.2.1 Language of Weak Parallel and Synchronous Ex-
pressions

The language of a weak or synchronous expression is given by the set of rule
sequences described by the expression. In order to define the language we
first have to define the weak parallel and synchronous composition of words
and languages. Afterwards the languages of weak and synchronous expres-
sions are defined and some properties of the weak parallel and synchronous
composition of words and languages are introduced.

To keep the following text readable we stick to the notion of parallel ex-
pression (respectively composition) although we only refer to the weak and
synchronous case for now.

Weak and synchronous composition of words and languages

The parallel composition of words reflects the respective composition of rule
sequences described in Section 3.1. I.e. the synchronous composition of
two words successively composes one symbol from each word in parallel. If

28

one word comes to an end the remaining part of the other is sequentially
composed to the so far constructed parallel composition. The weak parallel
composition of words yields all possible compositions of the symbols of the
input words, sequentially or in parallel, as long as the sequential order of
each input word is preserved.

In the following we define the parallel composition of words. Then on the
basis of these definitions we define the parallel composition of languages.

Definition 39. Weak and synchronous composition of words
Let X be an alphabet and w,w1, w2 ∈ X∗

∗ be words over X∗. Moreover, let
r1, r2 ∈ X∗.

a) The weak parallel composition of two words is recursively defined by:

(i) λ �� ��w = {w} = w �� ��λ,

(ii) r1w1 �� ��r2w2 = {r1 r2}(w1 �� ��w2)∪{r1}(w1 �� ��(r2w2))∪{r2}((r1w1) �� ��w2).

b) The synchronous composition of two words is recursively defined by:

(i) λ$w = w = w$λ,

(ii) (r1w1)$(r2w2) = (r1 r2)(w1$w2).

In order to emphasise the behaviour of the parallel composition each of the
following examples demonstrate the evaluation of the parallel composition
of two symbols. For each example let X be the underlying alphabet and
r1, r2 ∈ X∗.

Example 1. Weak parallel composition of two symbols
Using definition 39 a), one gets
r1 �� ��r2 = (r1λ) �� ��(r2λ)

= {r1 r2}(λ �� ��λ) ∪ {r1}(λ �� ��(r2λ)) ∪ {r2}((r1λ) �� ��λ)
= {r1 r2}{λ} ∪ {r1}{r2λ} ∪ {r2}{r1λ}
= {r1 r2} ∪ {r1r2λ} ∪ {r2r1λ}
= {r1 r2} ∪ {r1r2} ∪ {r2r1}
= {r1 r2, r1r2, r2r1}.

Example 2. Synchronous composition of two symbols
Using definition 39 b), one gets
r1$r2 = (r1λ)$(r2λ) = (r1 r2)(λ$λ) = (r1 r2)λ = r1 r2.

29

Now we are able to define the parallel composition of two languages, which
is given by the parallel composition of the words of the languages.

Definition 40. Weak and synchronous composition of languages
Let L1 and L2 be two languages over X∗.

a) The weak parallel composition of L1 and L2 is defined by:

L1 �� ��L2 =
⋃

(w1 �� ��w2).
w1∈L1,w2∈L2HHH

b) The synchronous composition of L1 and L2 is defined by:

L1$L2 = {w1$w2 | w1 ∈ L1, w2 ∈ L2}.

The language of parallel expressions is analogously defined to the language of
regular expressions. The languages for sequentially, alternatively, and itera-
tively composed expressions are defined as for regular expressions. Addition-
ally, the definition introduces the languages for weakly and synchronously
composed expressions. Moreover, the basic alphabet is not X , but X∗.

Definition 41. Language of weak and synchronous expressions
Let C1, C2, C be weak resp. synchronous expressions over X∗ and r ∈ X∗.
The language is recursively defined by:

1. L(∅) = ∅,

2. L(λ) = {λ},

3. L(r) = {r},

4. L(C1;C2) = L(C1)L(C2),

5. L(C1|C2) = L(C1) ∪ L(C2),

6. L(C∗) = L(C)∗,

7. a) L(C1 �� ��C2) = L(C1) �� ��L(C2),
b) L(C1$C2) = L(C1)$L(C2).

The following examples demonstrate the construction of the language of a
weak parallel and a synchronous expression.

30

Example 3. Language of a weak parallel expression
Consider the parallel expression (r1; r2) �� ��r

′
1. Its language, L((r1; r2) �� ��r

′
1), is

obtained as follows using definitions 41 and 39 a):
L((r1; r2) �� ��r

′
1)

= L((r1; r2) �� ��L(r
′
1)

= (L(r1)L(r2)) �� ��L(r
′
1)

= ({r1}{r2}) �� ��{r
′
1}

= {r1r2} �� ��{r
′
1}

= {r1 r′1}(r2 �� ��λ) ∪ {r1}(r2 �� ��r
′
1) ∪ {r

′
1}((r1r2) �� ��λ)

= {r1 r′1}{r2} ∪ {r1}(r2 �� ��r
′
1) ∪ {r

′
1}{r1r2}

= {r1 r′1}{r2}∪ {r1}({r2 r′1}(λ �� ��λ)∪{r2}(λ �� ��r
′
1)∪{r

′
1}(r2 �� ��λ))∪{r

′
1}{r1r2}

= {r1 r′1}{r2}∪ {r1}({r2 r′1}{λ} ∪ {r2}{r
′
1} ∪ {r

′
1}{r2}) ∪ {r

′
1}{r1r2}

= {(r1 r′1)r2} ∪ {r1}({r2 r′1} ∪ {r2r
′
1} ∪ {r

′
1r2}) ∪ {r

′
1r1r2}

= {(r1 r′1)r2} ∪ {r1(r2 r′1)} ∪ {r1r2r
′
1} ∪ {r1r

′
1r2} ∪ {r

′
1r1r2}

= {(r1 r′1)r2, r1(r2 r′1), r1r2r
′
1, r1r

′
1r2, r

′
1r1r2}

Example 4. Language of a synchronous expression
Consider the parallel expression (((r1; r2; r3)$(r4; r5$r11)); r6)$(r7; r8; r9). Its
language is obtained as follows:
L((((r1; r2; r3)$(r4; r5$r11)); r6)$(r7; r8; r9; r10))
= L(((r1; r2; r3)$(r4; r5$r11)); r6)$L(r7; r8; r9) [def. 41 (7b)]
= (L((r1; r2; r3)$(r4; r5$r11))L(r6))$L(r7; r8; r9) [def. 41 (4)]
= ((L(r1; r2; r3)$L(r4; r5$r11))L(r6))$L(r7; r8; r9) [def. 41 (7b)]
= ((L(r1; r2; r3)$(L(r4)L(r5$r11)))L(r6))$L(r7; r8; r9) [def. 41 (4)]
= ((L(r1; r2; r3)$(L(r4)(L(r5)$L(r11))))L(r6))$L(r7; r8; r9) [def. 41 (7b)]
= (({r1r2r3}$({r4}({r5}${r11}))){r6})${r7r8r9} [def. 41 (4,3)]
= (({r1r2r3}$({r4}({r5$r11}))){r6})${r7r8r9} [def. 40 (b)]
= (({r1r2r3}$({r4}({r5 r11}))){r6})${r7r8r9} [def. 39 (b (i),(ii))]
= (({r1r2r3}${r4r5 r11}){r6})${r7r8r9}
= ({(r1r2r3)$(r4r5 r11)}{r6})${r7r8r9} [def. 40 (b)]
= ({(r1 r4)((r2r3)$(r5 r11))}{r6})${r7r8r9} [def. 39 (b (ii))]
= ({(r1 r4)(r2 r5 r11)(r3$λ)}{r6})${r7r8r9} [def. 39 (b (ii))]
= ({(r1 r4)(r2 r5 r11)(r3)}{r6})${r7r8r9} [def. 39 (b (i)]
= {r1 r4 r2 r5 r11 r3 r6}${r7 r8 r9}
= {(r1 r4 r2 r5 r11 r3 r6)$(r7 r8 r9)} [def. 40 (b)]
= {(r1 r4 r7) ((r2 r5 r11 r3 r6)$(r8 r9)) [def. 39 (b (ii))]
= {(r1 r4 r7) (r2 r5 r11 r8) ((r3 r6)$r9)} [def. 39 (b (ii))]
= {(r1 r4 r7) (r2 r5 r11 r8) (r3 r9) (r6$λ)} [def. 39 (b (ii))]
= {(r1 r4 r7) (r2 r5 r11 r8) (r3 r9) (r6)} [def. 39 (b (i))]

31

3.2.2 Properties of Weak and Synchronous Composi-
tion

Like other operators on words and languages also the parallel composition
operators have some properties. They are commutative, associative, and
distributive over ∪. Moreover it holds, that ∅ serves as annihilator and λ as
identity. In the following these properties are formulated and proved.

Proposition 42. Properties of �� �� and $ for words.
Let w1, w2, w3 ∈ X∗

∗ . The following properties for �� �� and $ hold:

1. Commutativity
a) w1 �� ��w2 = w2 �� ��w1,
b) w1$w2 = w2$w1.

2. Associativity
a) (w1 �� ��w2) �� ��w3 = w1 �� ��(w2 �� ��w3),
b) (w1$w2)$w3 = w1$(w2$w3).

Proposition 43. Properties of �� �� and $ for languages
Let L1, L2, L3, L ⊆ (X∗)

∗. The following properties for �� �� and $ hold:

1. Commutativity
a) L1 �� ��L2 = L2 �� ��L1,
b) L1$L2 = L2$L1.

2. Associativity
a) (L1 �� ��L2) �� ��L3 = L1 �� ��(L2 �� ��L3),
b) (L1$L2)$L3 = L1$(L2$L3).

3. Right distributivity over ∪
a) (L1 ∪ L2) �� ��L3 = (L1 �� ��L3) ∪ (L2 �� ��L3),
b) (L1 ∪ L2)$L3 = (L1$L3) ∪ (L2$L3).

4. Left distributivity over ∪
a) L1 �� ��(L2 ∪ L3) = (L1 �� ��L2) ∪ (L1 �� ��L3),
b) L1$(L2 ∪ L3) = (L1$L2) ∪ (L1$L3).

5. ∅ is annihilator for �� ��and $
a) L �� ��∅ = ∅,
b) L$∅ = ∅.

6. {λ} is identity for �� ��and $
a) L �� ��{λ} = L,
b) L${λ} = L.

32

In order to prove Proposition 42 we need the distributivity of �� �� over ∪ for
languages stated in Proposition 43. Since the proof for the distributivity of

�� �� over ∪ for languages needs none of the properties regarding the parallel
operators for words we use the needed distributivity already in the following
proof but will prove it afterwards. Moreover, we need two additional as-
sertions, since the weak parallel composition of words results in a language.
Consider the weak parallel composition of three words (w1 �� ��w2) �� ��w3. The
result of (w1 �� ��w2) is a language which is weakly parallel composed to a word,
i.e. we have to define the weak parallel composition of a language and a word.
For the same reason we also need the definition of the weak parallel compo-
sition of words (Definition 39) on the level of languages, which is obtained
by a new lemma.

Definition 44. Weakly parallel composition of a languages with a
word
Let w ∈ (X∗)

∗ and L ⊆ (X∗)
∗. The weak parallel composition of a language

with a word is given by
L �� ��w = L �� ��{w} and w �� ��L = {w} �� ��L.

Lemma 45 transfers the definition of the weak parallel composition of two
words (Definition 39) to the level of languages.

Lemma 45. Let L, L1, and L2 be languages over (X∗)
∗ and x, y ∈ X∗. Then

it holds

(i) L �� ��{λ} = L,

(ii) ({x}L1) �� ��({y}L2) = {x y}(L1 �� ��L2)∪{x}(L1 �� ��({y}L2))∪{y}(({x}L1) �� ��L2).

Proof. .
(i) L �� ��{λ} =

⋃
(w1 �� ��λ

w1∈L,λ∈{λ}

) [def. 40]

=
⋃
{w1}

w1∈L,λ∈{λ}

[def. 39 (i)]

= L.

(ii) ({x}L1) �� ��({y}L2) =
⋃
(xw1 �� ��yw2)

xw1∈{x}L1,yw2∈{y}L2

[def. 40]

=
⋃
(xw1 �� ��

w1∈L1,w2∈L2

yw2)

=
⋃
({x y}

w1∈L1,w2∈L2

(w1 �� ��w2) ∪ {x}(w1 �� ��(yw2)) ∪ {y}((xw1) �� ��w2)) [def. 39 (ii)]

=
⋃
({x y}

w1∈L1,w2∈L2

(w1 �� ��w2) ∪
⋃
{x}(w1 �� ��

w1∈L1,w2∈L2

(yw2)) ∪
⋃
{y}((xw1)

w1∈L1,w2∈L2

�� ��w2))

33

= {x y}
⋃
(w1 �� ��w2

w1∈L1,w2∈L2

) ∪ {x}
⋃
(w1 �� ��(yw2))

w1∈L1,yw2∈{y}L2

∪ {y}
⋃
((xw1) �� ��w2

xw1∈{x}L1,w2∈L2

))

= {x y}(L1 �� ��L2) ∪ {x}(L1 �� ��({y}L2)) ∪ {y}(({x}L1) �� ��L2). [def. 40]

Now we have all preconditions to prove Proposition 42.

Proof. ...
1. Commutativity
a) w1 �� ��w2 = w2 �� ��w1 is proved by induction over |w1 + w2|.

Basis : |w1|+ |w2| = 0:
|w1|+ |w2| = 0⇔ w1 = λ and w2 = λ.

Hence, we obtain: w1 �� ��w2 = λ �� ��λ
39(i)
= {λ}

39(i)
= λ �� ��λ = w2 �� ��w1.

Hypothesis : w1 �� ��w2 = w2 �� ��w1 for all w1, w2 with |w1|+ |w2| < n, n ∈ N.

Step: Proof for |w′
1|+ |w

′
2| = n, n ≥ 1.

1. w′
1 = λ:

λ �� ��w
′
2

39(i)
= {w′

2}
39(i)
= w′

2 �� ��λ.

2. w′
2 = λ:

analogously.

3. w′
1 = x1w1, w2 = x2w2:

(x1w1) �� �� (x2w2)
= {x1 x2}(w1 �� ��w2) ∪ {x1}(w1 �� ��(x2w2)) ∪ {x2}((x1w1) �� ��w2) [def. 39 (ii)]
= {x1 x2}(w2 �� ��w1) ∪ {x1}((x2w2) �� ��(w1)) ∪ {x2}(w2 �� ��(x1w1)) [i.h.]
= {x2 x1}(w2 �� ��w1) ∪ {x1}((x2w2) �� ��(w1)) ∪ {x2}(w2 �� ��(x1w1)) [comm.]
= ((x2w2) �� ��(x1w1)). [def. 39 (ii)]

b) w1$w2 = w2$w1 is proved by induction over the structure of w1.

Basis : w1 = λ:

λ$w2
39(i)
= w2

39(i)
= w2$λ.

Hypothesis : w1$w2 = w2$w1 for w1 arbitrary but fixed and for all w2.

Step: Proof for xw1 for all x ∈ X∗.

34

1. w2 = λ:

(xw1)$λ
39(i)
= xw1

39(i)
= λ$(xw1).

2. w2 = yw′
2:

(xw1)$(yw
′
2) = (x y)(w1$w

′
2) [def. 39 (ii)]

= (x y)(w′
2$w1) [i.h.]

= (y x)(w′
2$w1) [comm.]

= (yw′
2)$(xw1). [def. 39 (ii)]

2. Associativity
a) (w1 �� ��w2) �� ��w3 = w1 �� ��(w2 �� ��w3) is proved by induction over |w1|+ |w2|+
|w3|.

Basis : |w1|+ |w2|+ |w3| = 0 :

|w1|+ |w2|+ |w3| = 0⇔ w1 = λ, w2 = λ, w3 = λ, and hence

(λ �� ��λ) �� ��λ
39(i)
= {λ} �� ��λ

44
= {λ} �� ��{λ}

44
= λ �� ��{λ}

39(i)
= λ �� ��(λ �� ��λ).

Hypothesis : (w1 �� ��w2) �� ��w3 = w1 �� ��(w2 �� ��w3) for all w1, w2, w3 with |w1| +
|w2|+ |w3| < n, n ∈ N.

Step: Proof for |w′
1|+ |w

′
2|+ |w

′
3| = n, n ≥ 1.

1. w′
1 = λ:

(λ �� ��w
′
2) �� ��w

′
3

39(i)
= (w′

2) �� ��w
′
3

39(i)
= (w′

2) �� ��(w
′
3 �� ��λ).

2. w′
2 = λ:

analogously to 1.

3. w′
3 = λ:

analogously to 1.

4. w′
1 = xw̄1, w

′
2 = yw̄2, w

′
3 = zw̄3 with x, y, z ∈ X∗:

(We use different colours for xw̄1, yw̄2, and zw̄3 in order to reenact how they
are de- and recomposed during the proof. Moreover, we label expressions by
numbers [1], [2], etc. in order to keep the proof readable. To indicate by
which number an expression is represented by, we write [1], [2], etc. next to
the respective expression. The use of the label instead of the whole expres-
sion is indicated by [1], [2], etc..)(
(xw̄1) �� ��(yw̄2)

)
�� ��(zw̄3)

=
(
{x y}(w̄1 �� ��w̄2) ∪ {x}(w̄1 �� ��(yw̄2)) ∪ {y}((xw̄1) �� ��w̄2)

)
�� ��(zw̄3) [def. 39]

35

=
(
{x y}(w̄1 �� ��w̄2) ∪ {x}(w̄1 �� ��(yw̄2)) ∪ {y}((xw̄1) �� ��w̄2)

)
�� ��{zw̄3} [def. 44]

= ({x y}(w̄1 �� �� w̄2)) �� ��{zw̄3}∪ [prop. 43 (3.a)]
({x}(w̄1 �� ��(yw̄2))) �� ��{zw̄3} ∪
({y}((xw̄1) �� ��w̄2)) �� ��{zw̄3}

= ({x y}(w̄1 �� �� w̄2)) �� ��({z}{w̄3}) ∪
({x}(w̄1 �� ��(yw̄2))) �� ��({z}{w̄3}) ∪
({y}((xw̄1) �� ��w̄2)) �� ��({z}{w̄3})

= {(x y) z}((w̄1 �� �� w̄2) �� ��{w̄3})[1] ∪ [lem. 45]
{x y}((w̄1 �� ��w̄2) �� ��({z}{w̄3}))[2] ∪
{z}(({x y}(w̄1 �� �� w̄2)) �� ��{w̄3}) ∪
{x z}((w̄1 �� ��(yw̄2)) �� ��{w̄3})[3] ∪
{x}((w̄1 �� ��(yw̄2)) �� ��({z}{w̄3}))[4] ∪
{z}(({x}(w̄1 �� ��(yw̄2))) �� ��{w̄3}) ∪
{y z}(((xw̄1) �� ��w̄2) �� ��{w̄3})[5] ∪
{y}((((xw̄1) �� ��w̄2) �� ��({z}{w̄3}))[6] ∪
{z}(({y}((xw̄1) �� ��w̄2)) �� ��{w̄3)}

= [1] ∪ [2] ∪ [3] ∪ [4] ∪ [5] ∪ [6]∪ [distr. ◦ over ∪]
{z}

(
({x y}(w̄1 �� �� w̄2)) �� ��{w̄3}∪({x}(w̄1 �� ��(yw̄2))) �� ��{w̄3}∪({y}((xw̄1) �� �� w̄2)) �� ��{w̄3}

)
= [1] ∪ [2] ∪ [3] ∪ [4] ∪ [5] ∪ [6]∪ [distr. �� ��over ∪ (prop. 43 (3)]
{z}

((
{x y}(w̄1 �� ��w̄2) ∪ {x}(w̄1 �� ��(yw̄2)) ∪ {y}((xw̄1) �� ��w̄2)

)
�� ��{w̄3}

)
= [1] ∪ [2] ∪ [3] ∪ [4] ∪ [5] ∪ [6]∪ [def. 39 (ii)]
{z}

((
(xw̄1) �� ��(yw̄2)

)
�� ��{w̄3}

)
= {x (y z)}(w̄1 �� ��(w̄2 �� ��{w̄3}))[1]∪ [i.h., ass.]
{x y}(w̄1 �� ��(w̄2 �� ��({z}{w̄3})))[2] ∪
{x z}(w̄1 �� ��((yw̄2) �� ��{w̄3}))[3] ∪
{x}(w̄1 �� ��((yw̄2) �� ��({z}{w̄3})))[4] ∪
{y z}((xw̄1) �� ��(w̄2 �� ��{w̄3}))[5] ∪
{y}(((xw̄1) �� ��(w̄2 �� ��({z}{w̄3})))[6] ∪
{z}((xw̄1) �� ��((yw̄2) �� ��{w̄3}))[7]

= [1] ∪ [2] ∪ [3] ∪ {x}(w̄1 �� ��((yw̄2) �� ��(zw̄3))) ∪ [5] ∪ [6] ∪ [7] [def. 44]
= [1] ∪ [2] ∪ [3]∪ [def. 39 (ii)]
{x}(w̄1 �� ��({y z}(w̄2 �� ��w̄3) ∪ {y}(w̄2 �� ��(zw̄3)) ∪ {z}((yw̄2) �� �� w̄3)) ∪
[5] ∪ [6] ∪ [7]

= [1] ∪ [2] ∪ [3]∪ [distr. �� ��over ∪]
{x}(w̄1 �� ��({y z}(w̄2 �� ��w̄3))∪w̄1 �� ��({y}(w̄2 �� ��(zw̄3)))∪w̄1 �� ��({z}((yw̄2) �� �� w̄3)))∪

[5] ∪ [6] ∪ [7]
= [1] ∪ [2] ∪ [3]∪ [distr. ◦ over ∪]
{x}(w̄1 �� ��({y z}(w̄2 �� ��w̄3)))[4a] ∪ {x}(w̄1 �� ��({y}(w̄2 �� ��(zw̄3))))[4b] ∪
{x}(w̄1 �� ��({z}((yw̄2) �� ��w̄3)))[4c] ∪
[5] ∪ [6] ∪ [7]

36

= {x (y z)}(w̄1 �� ��(w̄2 �� ��{w̄3}))[1]∪ [ass. ∪]
{x}(w̄1 �� ��({y z}(w̄2 �� ��w̄3)))[4a] ∪
{y z}((xw̄1) �� ��(w̄2 �� ��{w̄3}))[5] ∪
{x y}(w̄1 �� ��(w̄2 �� ��({z}{w̄3})))[2] ∪
{x}(w̄1 �� ��({y}(w̄2 �� ��(zw̄3))))[4b] ∪
{y}(((xw1) �� ��(w̄2 �� ��({z}{w̄3})))[6] ∪
{x z}(w̄1 �� ��((yw̄2) �� ��{w̄3}))[3] ∪
{x}(w̄1 �� ��({z}((yw̄2) �� ��w̄3)))[4c] ∪
{z}((xw̄1) �� ��((yw̄2) �� ��{w̄3}))[7]

= ({x}{w̄1}) �� ��({y z}(w̄2 �� ��w̄3))∪ [lem. 45]
({x}{w̄1}) �� ��({y}(w̄2 �� ��(zw̄3))) ∪
({x}{w̄1}) �� ��({z}((yw̄2) �� �� w̄3))

= ({x}{w̄1}) �� ��({y z}(w̄2 �� ��w̄3) ∪ {y}(w̄2 �� ��(zw̄3)) ∪ {z}((yw̄2) �� ��w̄3))
= {xw̄1} �� ��((yw̄2) �� ��(zw̄3)) [def. 39 (ii)]
= (xw̄1) �� ��((yw̄2) �� ��(zw̄3)). [def. 44]

b) (w1$w2)$w3 = w1$(w2$w3) is proved by induction over |w1|+ |w2|+ |w3|.

Basis : |w1|+ |w2|+ |w3| = 0 :
|w1|+ |w2|+ |w3| = 0⇔ w1 = w2 = w3 = λ.

(λ$λ)$λ
39(i)
= λ$λ

39(i)
= λ$(λ$λ).

Hypothesis : (w1$w2)$w3 = w1$(w2$w3) for all w1, w2, w3 with |w1| + |w2| +
|w3| < n, n ∈ N.

Step: Proof for |w′
1|+ |w

′
2|+ |w

′
3| = n.

1. w′
1 = λ:

(λ$w2)$w3
39(i)
= w2$w3

39(i)
= λ$(w2$w3).

2. w′
2 = λ:

analogously to 1.

3. w′
3 = λ:

analogously to 1.

4. w′
1 = xw̄1, w

′
2 = yw̄2, w

′
3 = zw̄3 with x, y, z ∈ X∗:

((xw̄1)$(yw̄2))$(zw̄3) = ((x y)(w̄1$w̄2))$(zw̄3) [def. 39(i)]
= ((x y) z)((w̄1$w̄2)$w̄3) | def. 39(i)
= (x (y z))(w̄1$(w̄2$w̄3))) [i.h., ass.]

37

= (xw̄1)$((y z)(w̄2$w̄3)) [def. 39(i)]
= (xw̄1)$((yw̄2)$(zw̄3)). [def. 39(i)]

The proof for Proposition 43 (properties of the parallel operators for lan-
guages) is based on the respective properties of the operators for words.

Proof. Properties of �� �� and $ for languages (Proposition 43).

1. Commutativity
a) L1 �� ��L2 =

⋃
w1 �� ��w2

w1∈L1,w2∈L2

[def. 40]

=
⋃

w2 �� ��w1
w1∈L1,w2∈L2

[prop. 42 (1)]

= L2 �� ��L1. [def. 40]

b) L1$L2 = {w1$w2 | w1 ∈ L1, w2 ∈ L2} [def. 40]
= {w2$w1 | w1 ∈ L1, w2 ∈ L2} [prop. 42 (1)]
= L2$L1. [def. 40]

2. Associativity
a) (L1 �� ��L2) �� ��L3 = (

⋃
w1 �� ��w2

w1∈L1,w2∈L2

) �� ��L3 [def. 40]

=
⋃
((w1 �� ��w2) �� ��w3

w1∈L1,w2∈L2,w3∈L3

) [def. 40]

=
⋃
(w1 �� ��(w2 �� ��w3)

w1∈L1,w2∈L2,w3∈L3

) [prop. 42 (2)]

= L1 �� ��(
⋃

w2 �� ��w3
w2∈L2,w3∈L3

) [def. 40]

= L1 �� ��(L2 �� ��L3). [def. 40]

b)(L1$L2)$L3 = {w1$w2 | w1 ∈ L1, w2 ∈ L2}$L3 [def. 40]
= {(w1$w2)$w3 | w1 ∈ L1, w2 ∈ L2, w3 ∈ L3} [def. 40]
= {w1$(w2$w3) | w1 ∈ L1, w2 ∈ L2, w3 ∈ L3} [prop. 42 (2)]
= L1${w2$w3 | w2 ∈ L2, w3 ∈ L3} [def. 40]
= L1$(L2$L3). [def. 40]

3. Right distributivity over ∪
a) (L1 ∪ L2) �� ��L3 =

⋃
w′

1 �� ��w3
w′

1
∈L1∪L2,w3∈L3

[def. 40]

=
⋃

w1 �� ��w3
w1∈L1,w3∈L3

∪
⋃

w2 �� ��w3
w2∈L2,w3∈L3

= (L1 �� ��L3) ∪ (L2 �� ��L3). [def. 40]

b)(L1 ∪ L2)$L3 = {w$w3 | w ∈ L1 ∪ L2, w3 ∈ L3} [def. 40]

38

= {w1$w3 | w1 ∈ L1, w3 ∈ L3} ∪ {w2$w3 | w2 ∈ L2, w3 ∈ L3}
= L2$L3 ∪ L2$L3. [def. 40]

4. Left distributivity over ∪
The proof is analogous to 3.

5. ∅ is annihilator
a) L �� ��∅

40
=

⋃
w1 �� ��w2

w1∈L,w2∈∅

= ∅.

b) L$∅
40
= {w1$w2 | w1 ∈ L,w2 ∈ ∅} = ∅.

6. {λ} is identity

a) L �� ��{λ}
40
=

⋃
w1 �� ��w2

w1∈L,w2∈{λ}

=
⋃

w1 �� ��λ
w1∈L

39(i)
=

⋃
w1

w1∈L

= L.

b) L$λ = {w1$w2 | w1 ∈ L,w2 ∈ {λ}} [def. 40]
= {w1$λ | w1 ∈ L}
= {w1 | w1 ∈ L} [def. 39(i)]
= L.

3.2.3 Algebraic Laws for Weak and Synchronous Ex-

pressions

The last section has introduced weak parallel and synchronous composition
of words and languages and their properties. This justifies to formulate the
properties as algebraic laws on the syntactic level of parallel expressions.

Definition 46. Algebraic laws
Let C,C1, C2 and C3 be weak resp. synchronous expressions and r1, r2 ∈
X∗. For the composition operators �� ��and $, denoted summarising by , the
following algebraic laws hold:

1. ∅ is the annihilator for parallel composition
∅ C = ∅.

2. λ is the identity for parallel composition
λ C = C.

3. Commutative law for parallel composition
C1 C2 = C2 C1.

4. Associative law for parallel composition
(C1 C2) C3 = C1 (C2 C3).

39

5. Rright distributive law of parallel composition over choice
(C1 | C2) C3 = (C1 C3) | (C2 C3).

6. Left distributive law of parallel composition over choice
C1 (C2 | C3) = (C1 C2) | (C1 C3).

7. Dissolving �� �� to
(i)(r1;C1) �� ��(r2;C2) = r1 r2; (C1 �� ��C2)|r1; (C1 �� ��(r2;C2))|r2; ((r1;C1) �� ��C2),
(ii) r1 �� ��(r2;C2) = r1 r2;C2 | r1; r2;C2 | r2; (r1 �� ��C2),
(iii) r1 �� ��r2 = r1 r2 | r1; r2 | r2; r1.

8. Dissolving $ to
(i) (r1;C1)$(r2;C2) = (r1 + r2); (C1$C2),
(ii) r1$(r2;C2) = (r1 + r2);C2,
(iii) r1$r2 = (r1 + r2).

The algebraic laws for regular expressions still apply for parallel expressions.
In order to reference the respective laws when transforming parallel expres-
sions we list the employed laws in the following:

9. ∅;C = ∅ = C; ∅,

10. ∅ | C = C,

11. ∅∗ = λ,

12. λ;C = C = C;λ,

13. λ∗ = λ,

14. (C1|C2);C3 = C1;C3|C2;C3,

15. C1; (C2|C3) = C1;C2|C1;C3,

16. C∗ = (λ | C;C∗) if C is not of the form C ′∗, (λ | C ′), or λ. Otherwise
one of the following laws has to be applied first.
a) (C∗)∗ = C∗,
b) λ∗ = λ,
c) (λ | C)∗ = C∗.

In 16. we restrict the application of the law C∗ = (λ | C;C∗) in order to
avoid repetitions of the original expressions when resolving it. Consider, e.g.,
the expression (λ | r)∗ r′. By applying the algebraic laws (without restric-
tions) we obtain

40

(λ | r)∗ r′ = (λ | (λ | r); (λ | r)∗) r′

= λ r′ | (λ | r); (λ | r)∗) r′

= λ r′ | (λ; (λ | r)∗ | r; (λ | r)∗) r′

= λ r′ | λ; (λ | r)∗ r′ | r; (λ | r)∗ r′

= r′ | (λ | r)∗ r′ | r; (λ | r)∗ r′.

The second of the resulting alternative expressions is the same as the original
one.
With the restrictions we have made we obtain the equations

(λ | r)∗ r′ = r∗ r′

= (λ | r; r∗) r′

= λ r′ | (r; r∗) r′

= r′ | (r; r∗) r′

= r′ | r + r′; r∗,

which contain no repetition of the original expression.

In the following we state and prove that the algebraic laws introduced in
Definition 46 preserve the language of parallel expressions, i.e. if a parallel
expression C is transformed to C ′ by application of some algebraic laws the
language of both expressions is still the same.

Proposition 47. Let C = C ′ be an algebraic law. Then L(C) = L(C ′).

Proof. .
Let C,C1, C2, C3 be parallel expressions.

1. ∅ C = ∅:
a) L(∅ �� ��C)

41
= L(∅) �� ��L(C)

41
= ∅ �� ��L(C)

43−5
= ∅

41
= L(∅).

b) L(∅$C) = L(∅)$L(C) = ∅$L(C) = ∅ = L(∅).

2. λ C = C:
a) L(λ �� ��C) = L(λ) �� ��L(C) [def. 41]

= {λ} �� ��L(C) [def. 41]
=

⋃
w1 �� ��w2

w1∈{λ},w2∈L(C)

[def. 39]

=
⋃
λ �� ��w2

w2∈L(C)

=
⋃

w2
w2∈L(C)

[def. 39]

= L(C).

41

b) L(λ$C) = L(λ)$L(C)
= {λ}$L(C)
= {w1$w2 | w1 ∈ {λ}, w2 ∈ L(C)}
= {λ$w2 | w2 ∈ L(C)}
= {w2 | w2 ∈ L(C)}
= L(C).

3. C1 C2 = C2 C1:

a) L(C1 �� ��C2)
41-7a
= L(C1) �� ��L(C2)

43-1
= L(C2) �� ��L(C1)

41-7a
= L(C2 �� ��C1).

b) L(C1$C2) = L(C1)$L(C2) = L(C2)$L(C1) = L(C2$C1).

4. (C1 C2) C3 = C1 (C2 C3):
a) L((C1 �� ��C2) �� ��C3)) = L(C1 �� ��C2)) �� ��L(C3) [def. 41 (7a)]

= (L(C1) �� ��L(C2)) �� ��L(C3) [def. 41 (7a)]
= L(C1) �� ��(L(C2) �� ��L(C3)) [prop. 43 - 2]
= L(C1) �� ��(L(C2 �� ��C3)) [def. 41 (7a)]
= L(C1 �� ��(C2 �� ��C3)). [def. 41 (7a)]

b) L((C1$C2)$C3)) = L(C1$C2))$L(C3)
= (L(C1)$L(C2))$L(C3)
= L(C1)$(L(C2)$L(C3))
= L(C1)$(L(C2$C3))
= L(C1$(C2$C3)).

5. (C1 | C2) C3 = (C1 C3) | (C2 C3):
a) L(C1 | C2) �� ��C3) = L(C1 | C2) �� ��L(C3) [def. 41 (7a)]

= (L(C1) ∪ L(C2)) �� ��L(C3) [def. 41 (5)]
= (L(C1) �� ��L(C3)) ∪ (L(C2) �� ��L(C3)) [def. 41]
= (L(C1 �� ��C3)) ∪ (L(C2 �� ��C3)) [def. 41]
= L((C1 �� ��C3) | (C2 �� ��C3)).

b) L(C1 | C2)$C3) = L(C1 | C2)$L(C3)
= (L(C1) ∪ L(C2))$L(C3)
= (L(C1)$L(C3)) ∪ (L(C2)$L(C3))
= (L(C1$C3)) ∪ (L(C2$C3))
= L((C1$C3) | (C2$C3)).

6. C1 (C2 | C3) = (C1 C2) | (C1 C3): analogous to 5.

42

7. Dissolving �� �� to :
(i) L((r1;C1) �� ��(r2;C2)) = L(r1;C1) �� ��L(r2;C2) [def. 41 (7a)]

= (L(r1)L(C1)) �� ��(L(r2)L(C2)) [def. 41 (4)]
=

⋃
w1 �� ��w2...................

w1∈L(r1)L(C1),w2∈L(r2)L(C2)

[def. 40]

=
⋃
r1w

′
1 �� ��r2w

′
2

w′
1
∈L(C1),w′

2
∈L(C2)

=
⋃
({r1 r2}(w

′
1 �� ��w

′
2)

w′
1
∈L(C1),w′

2∈L(C2)

∪ [def. 39 (ii)]

{r1}(w
′
1 �� ��(r2w

′
2)) ∪

{r2}((r1w
′
1) �� ��w

′
2))

=
⋃
{r1 r2}(w

′
1 �� ��w

′
2)

w′
1∈L(C1),w′

2∈L(C2)

∪⋃
{r1}(w

′
1 �� ��(r2w

′
2))

w′
1
∈L(C1),w′

2
∈L(C2)

∪⋃
{r2}((r1w

′
1) �� ��w

′
2)

w′
1∈L(C1),w′

2∈L(C2)

=
⋃
{r1 r2}(w

′
1 �� ��w

′
2)

w′
1
∈L(C1),w′

2
∈L(C2)

∪⋃
{r1}(w

′
1 �� ��w

′′
2)

w′
1
∈L(C1),w′′

2
∈L(r2)L(C2)

∪⋃
{r2}(w

′′
1 �� ��w

′
2)

w′′
1
∈L(r1)L(C1),w′

2
∈L(C2)

= {r1 r2}
⋃
(w′

1 �� ��w
′
2)

w′
1∈L(C1),w′

2∈L(C2)

∪

{r1}
⋃
(w′

1 �� ��w
′′
2)

w′
1
∈L(C1),w′′

2
∈L(r2)L(C2)

∪

{r2}
⋃
(w′′

1 �� ��w
′
2)

w′′
1
∈L(r1)L(C1),w′

2
∈L(C2)

= {r1 r2}L(C1) �� ��L(C2) ∪ [def.40]
{r1}L(C1) �� ��(L(r2)L(C2)) ∪
{r2}(L(r1)L(C1)) �� ��L(C2)

= L(r1 r2)L(C1) �� ��L(C2) ∪ [def. 41 (3)]
L(r1)L(C1) �� ��(L(r2)L(C2)) ∪
L(r2)(L(r1)L(C1)) �� ��L(C2)

= L(r1 r2)L(C1 �� ��C2) ∪ [def. 41 (7a,4)]
L(r1)(L(C1) �� ��L(r2;C2)) ∪
L(r2)(L(r1;C1)) �� ��L(C2)

= L((r1 r2); (C1 �� ��C2)) ∪ [def. 41 (4,7a)]
L(r1)L(C1 �� ��(r2;C2)) ∪
L(r2)L(r1;C1) �� ��C2)

= L((r1 r2); (C1 �� ��C2)) ∪ [def.41 (4)]

43

L(r1; (C1 �� ��(r2;C2)) ∪
L(r2; (r1;C1) �� ��C2)

= L((r1 r2); (C1 �� ��C2) |r1; (C1 �� ��(r2;C2)) |r2; (r1;C1) �� ��C2).[def. 41 (5)]

(ii) follows from 7 (i).
(iii) follows from 7 (i).

8. Dissolving $ to :
L((r1;C1)$(r2;C2)) = L(r1;C1)$L(r2;C2) [def. 41]

= (L(r1)L(C1))$(L(r2)L(C2))
= {w1$w1 | w1 ∈ L(r1)L(C1), w2 ∈ L(r2)L(C2)}
= {r1w

′
1$r2w

′
1 | w

′
1 ∈ L(C1), w

′
2 ∈ L(C2)}

= {(r1 r2)(w
′
1$w

′
1) | w

′
1 ∈ L(C1), w

′
2 ∈ L(C2)}

= {r1 r2}L(C1)$L(C2)
= L(r1 r2)L(C1)$L(C2)
= L(r1 r2)L(C1$C2)
= L((r1 r2); (C1$C2)).

(ii) follows from 8. (i).
(iii) follows from 8. (i).

9.-16. Since items 9-16 are laws for regular expressions the respective proofs
already exist (see e.g. [HMU06]).

3.2.4 Weak and Synchronous Expressions as Control
Conditions

We now introduce two approaches how to use parallel expressions as control
condition describing permitted derivations. The first approach, called lan-
guage control, is based on the language of parallel expressions and uses the
members of the language as application sequences for the desired derivations.
The second approach, called normal form control, constructs the derivations
in a stepwise manner employing a canonical form of parallel expressions called
normal form.

Approach 1: Language Control

A parallel expression as control condition is satisfied if the application se-
quence of a derivation is a member of its corresponding language. i.e. the

44

semantics of a parallel expression C used as control condition is given by
SEM1(C) = {G

∗
⇒ G′ | the application sequence w of G

∗
⇒ G′ is in L(C)}.

Approach 2: Normal Form Control

Another possibility to obtain permitted derivations from a parallel expression
is to build them step by step, i.e. for every next upcoming derivation step it
has to be identified which rules to apply (in parallel). Recursive constructions
as used e.g. in Chapter 5 do not apply here since in general we are not able
to compose derivations in parallel without changing the applicability of the
involved rules. In order to determine which rules to apply next, we employ
a canonical form for parallel expressions, called normal form. The normal
form of a parallel expression provides all rules that have to be applied in
parallel in the next derivation step sequentially composed to the remaining
expression. Having applied this rules resulting in one derivation step the
remaining expression again can be transformed to normal form and so on.
The following section introduces the normal form and provides a procedure
how to construct the normal form of a parallel expression. After that the
use of a parallel expression as control condition employing the normal form
is formally introduced.

Normal form of parallel expressions

Every parallel expression (except for the special cases ∅ and λ) can be trans-
formed to a choice of expressions given by a parallel rule sequentially com-
posed to some remaining parallel expression, i.e. the rules of the original
expression that have to be applied in parallel in the first derivation step are
collected to a parallel rule and the remaining expression contains the rest of
the original expression.

Proposition 48. Normal form
Let R be a set of rules. Every parallel expression C over R∗ can be trans-
formed toX1| . . . |Xn for some n ∈ NwithXi ∈ {λ, ri1 . . . rim , ri1 . . . rim ;Ci},
i ∈ [n], m ∈ N \{0}, rij ∈ R∗, j ∈ [m], and Ci is a parallel expression.
X1| . . . |Xn is called normal form of C.

As special cases of the normal form we obtain ∅ (for n = 0), λ (for n =
1 and X1 = λ), and r (for n = 1 and X1 = r). In order to prove Proposition
48 we use the algebraic laws for parallel expressions and regular expressions
given in Definition 46.

Proof. We prove Proposition 48 by induction over the structure of C.
Preliminary remark: Since (C1 C2) C3 = C1 (C2 C3), we show in the re-

45

spective proof steps the proposition only for the structure (C1 C2). If e.g.
C2 again is of the form C ′

2 C ′′
2 the proof step has to be repeated and so

on. Moreover, since C1 C2 = C2 C1 we only show the proposition for one
order. When it comes to the structure of an Xi we have summarised the
cases Xi = ri1 . . . rim and Xi,= ri1 . . . rim;Ci where it makes no differ-
ence in the argumentation which case is chosen. In such a summary the Ci

is coloured green and embraced by [], ri1 . . . rim [;Ci], in order to express
that both cases are meant.

Basis :
C = ∅ � for n = 0,
C = λ � for n = 1 and X1 = λ,
C = r � for n = 1, m = 1 and X1 = r1 = r.

Hypothesis : Proposition holds for parallel expressions C1, C2, and C̄.
Induction step: Proof for C1;C2, C1 | C2, C̄

∗, C1 �� ��C2, and C1$C2.
Let o, p, q, l ∈ N \{0}
1. C = C1;C2

By induction hypothesis we obtain the following cases for the structure of C1

and C2

1.1. C1 = ∅: ∅ ;C2 = ∅. � [def. 46 (9)]
1.2. C2 = ∅: analogous.
1.3. C1 = λ: λ ;C2 = C2. � [def. 46 (12)]
1.4. C2 = λ: analogous.
1.5. C1 = (Y1| . . . |Yo), C2 = (Z1| . . . |Zp):

(Y1| . . . |Yo); (Z1| . . . |Zp) = |(Yj;Zk

j∈[o],k∈[p]

) [def. 46 (14,15)]

The expression |(Yj;Zk

j∈[o],k∈[p]

) is in normal form if each subexpression Yj;Zk

is in normal form.
The following cases for Yj;Zk have to be considered:
1.5.1. Yj = λ, Zk ∈ {λ, r

′
1 + · · ·+ r′l[; C̄

′]}:
λ;Zk = Zk �

1.5.2. Yj = (r1 + · · ·+ rq)[; C̄], Zk ∈ {λ, r
′
1 + · · ·+ r′l[; C̄

′]}:
(r1 + · · ·+ rq)[; C̄];Zk �

2. C = C1 | C2

2.1. C1 = ∅: ∅ | C2 = C2. �due to i.h. [def. 46 (10)]
2.2. C2 = ∅: analogous.
2.3. For all other forms of C1 and C2:

C1 |C2 is already in the required form due to the induction hypothesis.

46

3. C = C̄∗

By induction hypothesis we obtain the following cases for the structure of C̄
3.1. C̄ = ∅: ∅∗ = λ. � [def. 46 (11)]
3.2. C̄ = λ: λ∗ = λ. � [def. 46 (13)]
3.3. C̄ = (Y1| . . . |Yo):

(Y1| . . . |Yo)
∗ = | (Yi)

∗

i∈o,Yi �=λ

[def. 46 (16 c)]

= (Y1′ | . . . |Yo′)
∗

= λ | (Y1′ | . . . |Yo′); (Y1′| . . . |Yo′)
∗ [def. 46 (16)]

= λ | |
i∈o′

(Yi; (Y1′| . . . |Yo′)
∗). � [def. 46 (14)]

4. C = C1$C2

By induction hypothesis we obtain the following cases for the structure of C1

and C2:
4.1. C1 = ∅: ∅$C2 = ∅. � [def. 46 (1)]
4.2. C1 = λ: λ$C2 = C2. � [def. 46 (2)]
4.3. C1 = (Y1| . . . |Yo), C2 = (Z1| . . . |Zp):

(Y1| . . . |Yo)$(Z1| . . . |Zp) = |(Yj$Zk

j∈[o],k∈[p]

) [def. 46 (5,6)]

The expression |(Yj$Zk

j∈[o],k∈[p]

) is in normal form if each subexpression

(Yj$Zk) is in normal form.
4.3.1. Yj = λ, Zk ∈ {λ, r

′
1 + · · ·+ r′l, r

′
1 + · · ·+ r′l; C̄}:

λ$Zk = Zk. � [def. 46 (2)]
4.3.2. Yj = r1 + · · ·+ rq, Zk = r′1 + · · ·+ r′l [;Ck]:

(r1 + · · ·+ rq)$(r
′
1 + · · ·+ r′l [;Ck])

= r1 + · · ·+ rq + r′1 + · · ·+ r′l [;Ck]). � [def. 46 (8)]
4.3.3. Yj = r1 + · · ·+ rq;Cj, Zk = r′1 + · · ·+ r′l [;Ck]:

(r1 + · · ·+ rq;Cj)$(r
′
1 + · · ·+ r′l [;Ck])

= r1 + · · ·+ rq + r′1 + · · ·+ r′l; (Cj [$Ck]). � [def. 46 (8)]

5. C = C1 �� ��C2

By induction hypothesis we obtain the following cases for the structure of C1

and C2:
5.1. C1 = ∅:

∅ �� ��C2 = ∅. � [def. 46 (1)]
5.2. C1 = λ:

λ �� ��C2 = C2. � [def. 46 (2)]
5.3. C1 = (Y1| . . . |Yo), C2 = (Z1| . . . |Zp):

(Y1| . . . |Yo) �� ��(Z1| . . . |Zp) = |(Yj �� ��Zk)
j∈[o],k∈[p]xxxxxx

[def. 46 (5,6)]

47

The expression |(Yj �� ��Zk)
j∈[o],k∈[p]xxxxx

is in normal form if the (Yj �� ��Zk) are in

normal form.
5.3.1. Yj = λ, Zk ∈ {λ, r

′
1 . . . r′l, r

′
1 . . . r′l; C̄}:

λ �� ��Zk = Zk. � [def. 46 (1)]
5.3.2. Yj = r1 . . . rq, Zk = r′1 . . . r′l [;Ck]:

(r1 . . . rq) �� ��(r
′
1 . . . r′l [;Ck])

= r1 . . . rq r′1 . . . r′l [;Ck] | [def. 46 (7)]
r1 . . . rq; (r

′
1 . . . r′l [;Ck]) |

r′1 + · · ·+ r′l; (r1 . . . rq [�� ��Ck]). �
5.3.3. Yj = r1 + · · ·+ rq;Cj, Zk = r′1 + · · ·+ r′l [;Ck]:

(r1 + · · ·+ rq;Cj) �� ��(r
′
1 + · · ·+ r′l [;Ck])

= r1 + · · ·+ rq + r′1 + · · ·+ r′l; (Cj [�� ��Ck]) | [def. 46 (7)]
r1 + · · ·+ rq; (Cj �� ��(r

′
1 + · · ·+ r′l [;Ck])) |

r′1 + · · ·+ r′l; ((r1 + · · ·+ rq;Cj) [�� ��Ck]). �

The proof suggests a recursive procedure to construct the normal form of
a parallel expression. The basic parallel expressions ∅, λ, and x ∈ X∗ are
already in normal form. Considering a compound expression C, the respec-
tive subexpressions are already in normal form, then we employ the same
transformation steps as used in the proof to bring the whole expression C
to normal form, or the subexpressions are not in normal form, then we first
have to transform them to normal form.

Definition 49. Parallel expression to normal form
Let C be a parallel expression over a set of rules R∗ and let x ∈ R∗. The
normal form of C, NF (C), is recursively constructed as follows.
(Again, we depict the summary of to expressions r′1 + · · ·+ r′l and r′1 + · · ·+
r′l ;Ck by r′1+ · · ·+ r′l [;Ck] when both cases can be handled simultaneously.)
Basic cases:
1. C = ∅: NF (∅) = ∅.
2. C = λ: NF (λ) = λ.
3. C = x: NF (x) = x.

Compound cases:
1. C = C1;C2

1.1 C1 already in NF :

1.1.1. C1 = ∅:
NF (∅;C2) = NF (∅) [def. 46 (9)]

= ∅. [basic case 1.]

48

1.1.2. C1 = λ:
NF (λ;C2) = NF (C2). [def. 46 (12)]

1.1.3. C1 = r1 . . . rm[;C
′]:

NF (r1 . . . rm[;C
′];C2) = r1 . . . rm[;C

′];C2.

1.1.4. C1 = X1 | . . . |Xn:
NF ((X1 | . . . |Xn);C2) = NF (X1;C2 | . . . |Xn;C2). [def. 46 (14)]
(We again have to transform X1;C2 | . . . | Xn;C2 to NF since an Xi

could be λ and λ;C2 would be C2, which could be not in NF)

1.2 C1 is not in NF :
NF (C1;C2) = NF (NF (C1);C2).

2. C = C1 | C2

2.1 C1 and C2 already in NF :
NF (C1 | C2) = C1 | C2.

2.2 C1 is in NF and C2 not:
NF (C1 | C2) = C1 |NF (C2).

2.3 C1 is not in NF and C2 is in NF :
NF (C1 | C2) = NF (C1) | C2.

2.4 C1 and C2 are not in NF :
NF (C1 | C2) = NF (C1) |NF (C2).

3. C = C∗

3.1 C in NF :

3.1.1 C = ∅:
NF (∅∗) = NF (λ) [def. 46 (11)]

= λ. [basic case 2.]

3.1.2 C = λ:
NF (λ∗) = λ. [def. 46 (16 b,13)]

3.1.3 C = r1 . . . rm[;C
′]:

NF ((r1 . . . rm[;C
′])∗) = λ | (r1 . . . rm[;C

′]); (r1 . . . rm[;C
′])∗.

[def. 46 (16)]

3.1.4 C = X1 | . . . |Xn:
NF ((X1 | . . . |Xn)

∗) = NF ((X ′
1 | . . . |X

′
m)

∗) with X ′
i �= λ, i ∈ [m]

[def. 46 (16 c)]
= NF (λ | (X ′

1 | . . . |X
′
m); (X

′
1 | . . . |X

′
m)

∗) [def. 46 (16)]

49

= NF (λ | |
i∈[m]

(X ′
i; (X

′
1 | . . . |X

′
m)

∗)) [def. 46 (14)]

= λ | |
i∈[m]

(X ′
i; (X

′
1 | . . . |X

′
m)

∗).

3.2 C not in NF :

3.2.1 C = C ′∗:
NF ((C ′∗)∗) = NF (C ′∗). [def.46 (16 a)]

3.2.2 C = (λ | C ′):
NF ((λ | C ′)∗) = NF (C ′∗). [def. 46 (16 c)]

3.2.3 C = (C ′ | λ):
analogous to 3.2.2.

3.2.4 any other cases for the structure of C:
NF (C∗) = NF (NF (C)∗).

4. C = (C1 �� ��C2)

4.1 C1 and C2 are in NF :

4.1.1 C1 = ∅: NF (∅ �� ��C2) = ∅.

4.1.2 C2 = ∅: analogous to 4.1.1.

4.1.3 C1 = λ: NF (λ �� ��C2) = C2.

4.1.4 C2 = λ: analogous to 4.1.3.

4.1.5 C1 = r1 .. ro and C2 = r′1 .. r′p:
NF ((r1 .. ro) �� ��(r

′
1 .. r′p)) = r1 .. ro r′1 .. r′p |

r1 .. ro; r
′
1 .. r′p |

r′1 .. r′p; r1 .. ro.

4.1.6 C1 = r1 .. ro;C
′ and C2 = r′1 .. r′p:

NF ((r1 .. ro;C
′) �� ��(r

′
1 .. r′p)) = r1 .. ro r′1 .. r′p;C

′ |
r1 .. ro; (C

′
�� ��(r

′
1 .. r′p)) |

r′1 .. r′p; r1 .. ro;C
′.

4.1.7 C1 = r1 .. ro and C2 = r′1 .. r′p;C
′′:

analogous to 4.1.6.

4.1.8 C1 = r1 .. ro;C
′ and C2 = r′1 .. r′p;C

′′:
NF ((r1 .. ro;C

′) �� ��(r
′
1 .. r′p;C

′′) = r1 .. ro r′1 .. r′p; (C
′
�� ��C

′′) |
r1 .. ro; (C

′
�� ��(r

′
1 .. r′p;C

′′)) |
r′1 .. r′p; ((r1 .. ro;C

′) �� ��C
′′)).

50

4.1.9 C1 = X1 | . . . |Xn and C2 = r′1 .. r′p[;C
′′]:

NF ((X1| . . . |Xn) �� ��(r
′
1 .. r′p[;C

′′])) = |
i∈[n]

NF (Xi �� ��(r
′
1 . . . r′p[;C

′′])).

4.1.10 C1 = r1 . . . ro[;C
′] and C2 = X1 | . . . |Xm:

analogous to 4.1.9.

4.1.11 C1 = X1 | . . . |Xn and C2 = X ′
1 | . . . |X

′
m:

NF ((X1 | . . . |Xn) �� ��(X
′
1 | . . . |X

′
m)) = |

i∈[n],j∈[m]

NF (Xi �� ��X
′
j).

4.2 C1 is in NF and C2 not:
NF (C1 �� ��C2) = NF (C1 �� ��NF (C2)).

4.3 C1 is not in NF and C2 is:
NF (C1 �� ��C2) = NF (NF (C1) �� ��C2).

4.4 C1 and C2 are not in NF :
NF (C1 �� ��C2) = NF (NF (C1) �� ��NF (C2)).

5. C = C1$C2

5.1 C1 and C2 are in NF :

5.1.1 C1 = ∅: NF (∅$C2) = ∅.

5.1.2 C2 = ∅: analogous to 5.1.1.

5.1.3 C1 = λ: NF (λ$C2) = C2.

5.1.4 C2 = λ: analogous to 5.1.3.

5.1.5 C1 = r1 .. ro, C2 = r′1 .. r′p:
NF ((r1 .. ro)$(r

′
1 .. r′p)) = r1 .. ro r′1 .. r′p.

5.1.6 C1 = r1 .. ro;C
′, C2 = r′1 .. r′p:

NF ((r1 .. ro;C
′)$(r′1 .. r′p)) = r1 .. ro r′1 .. r′p;C

′.

5.1.7 C1 = r1 .. ro, C2 = r′1 .. r′p;C
′′:

analogous to 5.1.6.

5.1.8 C1 = r1 .. ro;C
′, C2 = r′1 .. r′p;C

′′:
NF ((r1 .. ro;C

′)$(r′1 .. r′p;C
′′) = r1 .. ro r′1 .. r′p; (C

′$C ′′).

5.1.9 C1 = X1 | . . . |Xn, C2 = r′1 .. r′p[;C
′′]

NF ((X1| . . . |Xn)$(r
′
1 .. r′p[;C

′′])) = |
i∈[n]

NF (Xi$(r
′
1 . . . r′p[;C

′′])).

5.1.10 C1 = r1 . . . ro[;C
′], C2 = X1 | . . . |Xm:

analogous to 5.1.9.

51

5.1.11 C1 = X1 | . . . |Xn, C2 = X ′
1 | . . . |X

′
m:

NF ((X1 | . . . |Xn)$(X
′
1 | . . . |X

′
m)) = |

i∈[n],j∈[m]

NF (Xi$X
′
j).

5.2 C1 is in NF and C2 not:
NF (C1$C2) = NF (C1$NF (C2)).

5.3 C1 is not in NF and C2 is:
NF (C1$C2) = NF (NF (C1)$C2).

5.4 C1 and C2 are not in NF :
NF (C1$C2) = NF (NF (C1)$NF (C2)).

The following example demonstrates the construction of the normal form for
a parallel expression.

Example 5. Constructing the normal form of a parallel expression
Let (r1; r2; r3)$((r4; r5)

∗; r6; r7$r8) be a parallel expression. Its normal form
can be constructed as follows according to definition 49. Since all transfor-
mation steps refer to the same definition we only reference the respective
parts. In order to make clear which parts of the expression are modified in
the next construction step we underline the respective parts.
NF

(
(r1; r2; r3)$((r4; r5)

∗; r6; r7$r8)
)

= NF
(
(r1; r2; r3)$NF

(
(r4; r5)

∗; r6; r7$r8
))

[5.2]

= NF
(
(r1; r2; r3)$NF

(
NF ((r4; r5)

∗); r6; r7$r8
))

[1.2]

= NF
(
(r1; r2; r3)$NF

(
(λ | r4; r5; (r4; r5)

∗); r6; r7$r8
))

[3.1.3]

= NF
(
(r1; r2; r3)$NF

(
(λ; r6; r7$r8) | (r4; r5; (r4; r5)

∗; r6; r7$r8)
))

[1.1.1]

= NF
(
(r1; r2; r3)$(NF

(
λ; r6; r7$r8

)
| (r4; r5; (r4; r5)

∗; r6; r7$r8))
)

[2.3]

= NF
(
(r1; r2; r3)$((r6; r7$r8) | (r4; r5; (r4; r5)

∗; r6; r7$r8))
)

[1.1.2]

= NF
(
(r1; r2; r3)$(r6; r7$r8) | (r1; r2; r3)$(r4; r5; (r4; r5)

∗; r6; r7$r8)
)

[5.1.10]
= NF

(
(r1; r2; r3)$(r6; r7$r8)

)
|NF

(
(r1; r2; r3)$(r4; r5; (r4; r5)

∗; r6; r7$r8)
)
[2.4]

= r1 r6; ((r2; r3)$(r7$r8)) | r1 r4; ((r2; r3)$(r5; (r4; r5)
∗; r6; r7$r8)) [5.1.8]

The normal form of (r1; r2; r3)$((r4; r5)
∗; r6; r7$r8) provides two choices:

r1 r6; ((r2; r3)$(r7$r8)) with r1 r6 is the first parallel rule to be applied and
r1 r4; ((r2; r3)$(r5; (r4; r5)

∗; r6; r7$r8)) with r1 r4 as first parallel rule.

Semantics of a parallel expression employing the normal form

The semantics of a parallel expression employing the normal form builds per-
mitted derivations stepwise. Starting from the normal form of the parallel
expression the first derivation step is performed with the provided parallel

52

rule. Then the remaining expression again is transformed to normal form
and the next derivation step is performed. This process goes on until the
whole expression is dissolved or none of the provided parallel rules could be
applied. In case the parallel expression containing some subexpression C∗

the derivation process could go on infinitely, but frequently will provide per-
mitted derivations.

The following definition introduces this procedure formally.

Definition 50. SEMII

Let C be a parallel expression. The semantics of the second approach em-
ploying the normal form of C is defined by:

SEMII(C) = SMNF (NF (C)) with

1. SMNF (∅) = ∅,

2. SMNF (X1 | . . . |Xn) = SMNF (X1) ∪ · · · ∪ SMNF (Xn),

3. SMNF (λ) = {G
0
⇒ G | G ∈ G},

4. SMNF (r) = {G⇒
r
G′ | G,G′ ∈ G},

5. SMNF (r;C) = {G⇒
r
G′ | G,G′ ∈ G} ◦ SMNF (NF (C)).

In the following both semantic approaches are illustrated by respectively one
example.

Example 6. count-down
A typical example of synchronised parallelism is a step counter that com-
bines a graph transformation unit with a counting mechanism. A very simple
counting mechanism is implemented by the transformation unit count-down
which gets a node with a number of loops as input and has a rule that re-
moves a loop if applicable.

count-down
initial : gr(N)

rules : tic = ⊇ ⊆

where gr(N) contains all graphs gr(n) = ({•}, [n + 1], s, t, l) with s(i) =
t(i) = • and l(i) = ∗ for i ∈ [n+ 1].

Let gtu = (I, P, C, T) be a graph transformation unit with the rules r1, . . . rk

53

such that the label ∗ is not used in gtu. Then gtu can be combined with the
count-down unit yielding a step counter for gtu:

stepcount(gtu)
import : gtu, count-down
initial : Igtu + gr(N)
rules : r1, . . . , rk, tic
control : ((r1 | . . . | rk)$tic)

∗

terminal : Tgtu + gr(N)

Starting with G + gr(n) for G ∈ SEM(I) and n ∈ N, the control condi-
tion requires that the rules of gtu must run synchronously with the tic rule.
But if such a run takes more than n steps, then all unlabelled loops are re-
moved such that there is no longer a subgraph from gr(N) and no terminal
graph can be reached. As also the control condition C must hold for the gtu-
part of the runs, the semantics of stepcount(gtu) restricts the semantics of
gtu to the derivations that are not longer than the given n.

For this example we employ the language control. Hence, we first construct
the language of the control condition ((r1 | . . . | rk)$tic)

∗.

L(((r1 | . . . | rk)$tic)
∗) = L((r1 | . . . | rk)$tic)

∗ [def. 41(6)]
= (L(r1 | . . . | rk)$L(tic))

∗ [def. 41(7)]
= ((L(r1) ∪ · · · ∪ L(rk))$L(tic))

∗ [def. 41(5)]
= ({r1, . . . , rk}${tic})

∗ [def. 41(3)]
= {r1$tic, . . . , rk$tic}

∗ [def. 40]
= {r1 tic, . . . , rk tic}∗ [def. 39, exa. 2]

Now we could build all possible derivations with rule application sequences
provided by {r1 tic, . . . , rk tic}∗.
SEM(stepcount(gtu)) = {G0⇒

r̄1
G1⇒

r̄2
. . .⇒

r̄n
Gn | r̄1r̄2 . . . r̄n ∈ {r1 tic, . . . , rk tic}∗,

G0, ..., Gn ∈ G}

Example 7. Quidditch
This example presents the transformation unit Quidditch, which models two
players (seekers) chasing after a ball, the snitch. The player who reaches the
snitch first wins.

Quidditch
initial : undirected & unlabelled & loopfree
rules :

54

starti: ⊇ ⊆
i

chasei:

i

⊇ ⊆
i

winneri =

i snitch

⊇ ⊆

snitch = ⊇ ⊆
snitch

control : snitch; start1 start2; chase
∗
1$chase

∗
2; (winner1 | winner2)

Quidditch runs on an undirected, unlabelled, and loop-free graph. First,
snitch is applied at a node. Secondly, the two seekers choose a target of an
edge as start node and then, according to the control condition, they chase
synchronously along edges. The seeker who happens to reach the node of
the snitch can be the winner (if the respective rule is applied). As the start
nodes are targets of edges and as the graph is undirected, the chase rules
can always be applied from the start on.

For the Quidditch example we employ the normal form control. Accord-
ing to Definition 50 the semantics of the units control condition is given by
SMNF (NF (snitch; start1 start2; (chase1$chase2)

∗; (winner1 | winner2))) and
evaluated as follows. (As we are only interested to see which rules are applied
in parallel and in which order we use no actual graphs but dummy graphs
G,G′, which stand for any suitable graphs.)
We abbreviate the rule names in order to keep the lines shorter
SMNF (NF (sn; st1 st2; (chs1$chs2)

∗; (win1 | win2)))
= SMNF (sn; st1 st2; (chs1$chs2)

∗; (win1 | win2)) [49(1.1.3)]
= {G⇒G′

sn
} ◦ SMNF (NF (st1 st2; (chs1$chs2)

∗; (win1 | win2)))

= {G⇒G′

sn
} ◦ SMNF (st1 st2; (chs1$chs2)

∗; (win1 | win2)) [49(1.1.3)]

= {G⇒G′

sn
} ◦ {G⇒G′

st1 st2
} ◦ SMNF (NF ((chs1$chs2)

∗; (win1 | win2))) [50(5)]

= {G⇒G′

sn
} ◦ {G⇒G′

st1 st2
} ◦ SMNF (NF (NF ((chs1$chs2)

∗); (win1 | win2)) [49(1.2)]

= {G⇒G′

sn
}◦{G⇒G′

st1 st2
}◦SMNF (NF (NF (NF (chs1$chs2)

∗); (win1 |win2))) [49(3.2.4)]

= {G⇒G′

sn
} ◦ {G⇒G′

st1 st2
} ◦SMNF (NF (NF ((chs1 chs2)

∗); (win1 |win2))) [49(5.1.5)]

Since {G⇒G′

sn
}◦{G⇒G′

st1 st2
} is a completed derivation pattern and does not alter

anymore we replace it by D in order to keep the example clear
= D ◦ SMNF (NF ((λ | (ch1 chs2); (chs1 chs2)

∗); (win1 | win2))) [49(3.1.3)]
= D◦SMNF (NF (λ; (win1|win2)|(chs1 chs2); (chs1 chs2)

∗; (win1|win2)) [49(1.1.4)]
= D ◦ SMNF (NF ((win1 | win2) | (chs1 chs2); (chs1 chs2)

∗; (win1 | win2)))

55

= D ◦ SMNF ((win1|win2) | (chs1 chs2); (chs1 chs2)
∗; (win1|win2))) [49(2.1)]

= D◦(SMNF (win1)∪SMNF (win2)∪SMNF ((chs1 chs2); (chs1 chs2)
∗; (win1|win2)))

[50(2)]
= D ◦ ({G⇒G′

win1

} ∪ {G⇒G′

win2

} ∪ {G⇒G′

ch1 ch2

} ◦ SMNF (NF ((ch1 ch2)
∗; (win1 | win2)))

[50(4,5)]
= D◦{G⇒G′

win1

}∪D◦{G⇒G′

win2

}∪D◦{G⇒G′

ch1 ch2

}◦SMNF (NF ((ch1 ch2)
∗; (win1 |win2)))

D◦{G⇒G′

win1

} and D◦{G⇒G′

win2

}are completed derivation patterns. Therefore we

omit them at the moment. We continue the evaluation with D ◦ {G⇒G′

ch1 chs2
} ◦

SMNF (NF ((chs1 chs2)
∗; (win1 |win2))) which strongly reminds of the expres-

sion in line four of the evaluation.
D◦{G⇒G′

ch1 ch2

}◦ SMNF (NF ((chs1 chs2)
∗; (win1|win2)))

= . . .
= D◦{G⇒G′

ch1 ch2

}◦({G⇒G′

win1

}∪{G⇒G′

win2

}∪{G⇒G′

ch1 ch2

}◦SMNF (NF ((chs1 chs2)
∗; (win1|win2))))

= D ◦ {G⇒G′}
ch1 ch2

◦ {G⇒G′}
wi1

∪

D ◦ {G⇒G′}
ch1 ch2

◦ {G⇒G′}
win2

∪

D ◦ {G⇒G′

ch1 ch2

} ◦ {G⇒G′

ch1 ch2

} ◦ SMNF (NF ((chs1 chs2)
∗; (win1 | win2)))

At this point we cut of the evaluation since it should be clear how it works.
We yielded the completed derivation patterns
{G⇒G′

sn
} ◦ {G⇒G′

st1 st2
} ◦ {G⇒G′

win1

},

{G⇒G′

sn
} ◦ {G⇒G′

st1 st2
} ◦ {G⇒G′

win2

},

{G⇒G′

sn
} ◦ {G⇒G′

st1 st2
} ◦ {G⇒G′

ch1 ch2

} ◦ {G⇒G′

win1

}, and

{G⇒G′

sn
} ◦ {G⇒G′

st1 st2
} ◦ {G⇒G′

ch1 ch2

} ◦ {G⇒G′

win2

}. The first two representing one seeker

finds the snitch without chasing it (i.e. the snitch was at its start node) and
the other two representing both seekers synchronously make a chase step and
then one finds the snitch. Moreover, we yielded the non complete pattern
{G⇒G′

sn
}◦{G⇒G′

st1 st2
}◦{G⇒G′

ch1 ch2

}◦{G⇒G′

ch1 ch2

}◦SMNF (NF ((chs1 chs2)
∗; (win1 |win2)))

which has to be evaluated further. As one can expect each evaluation
of SMNF (NF ((chs1 chs2)

∗; (win1 |win2))) yields {G⇒G′

win1

} and {G⇒G′

win2

} com-

pleting the derivation pattern or provides another synchronous chase step
{G⇒G′

ch1 ch2

} again followed by SMNF (NF ((chs1 chs2)
∗; (win1 | win2))).

56

Chapter 4

Languages of Parallel
Expressions are Regular

The last chapter has introduced parallel expressions as an extension of regular
expressions by respectively one parallel operator. Moreover, it has shown
that parallel expressions describe languages. This chapter now shows that
the languages of parallel expressions are still regular despite the additional
parallel operators.

Proposition 51. Let C be a parallel expression.
The language L(C) is regular.

To prove this proposition we use the fact that finite state automata recognise
the class of regular languages (cf., e.g. [Ric08]). I.e. if we are able to build fi-
nite state automata from parallel expressions, which recognise the languages
of these expressions, we have a proof that the language of a parallel expres-
sion is regular. Therefore in a first step we construct finite state automata
from parallel expressions, and then show that the language of these ’parallel
automata’ is equal to the language of their respective parallel expression.

4.1 Parallel Expressions to Automata

The construction of finite state automata from parallel expressions bases
on the recursive automata construction from regular expressions and adds
automata constructions for weakly parallel and synchronously composed ex-
pressions.
The automata constructions for regular expressions as we assume them are
given in the preliminaries.

57

Definition 52. Constructing automata from parallel expressions
Let C1, C2, C be parallel expressions over X∗ and r ∈ X∗.

• A(∅), A(λ), A(r), A(C1;C2), A(C1|C2), A(C
∗) are constructed as for reg-

ular expressions,

• A(C1 �� ��C2) = A(C1) �� ��A(C2),

• A(C1$C2) = A(C1)$A(C2).

The automata constructions for parallel composed expressions employ the
weak parallel respectively synchronous composition of two automata, also
denoted by �� �� and $, which are introduced in the following.

Parallel composition of automata

The parallel composition of two automata should result in an automaton
which executes both input automata simultaneously according to the given
parallel operator. I.e. in every execution step the composition automaton
should provide a transition labeled with r1 r2 whenever the input automata
in this step provide transitions label with r1 respectively r2. Moreover, the
weak parallel composition automaton should provide two more transitions
one labeled with r1 and one with r2, whereas the synchronous composition
automaton should only provide a transition representing one of the input
automata operating on its own, when the other has reached a final state.

As a basis for our parallel automata compositions, we make use of the prod-
uct automaton, a concept from automata theory. The product automaton
combines two input automata in such a way that it makes a transition la-
beled with x whenever the two input automata make a transition with x. To
achieve this behaviour the states of the product automaton are comprised
of state pairs, each component representing one of the input automata. The
product auomaton then makes a transition label with x from one state pair
to another if both input automata do so regarding their respective states and
state transitions. A formal definition of a product automata is given in the
preliminaries.

In order to realise the weakly parallel and synchronous composition of two
automata we have to adapt this construction in order to meet our require-
ments. In the following we first define the weakly parallel and afterwards the
synchronous composition of two automata.

58

Weak parallel composition of automata

The weak parallel composition of two automata A1 and A2 combines the
state sets S1 and S2 of the input automata to pairs of states S1 × S2. The
input alphabet comprises the set of all parallel rules over I1 and I2, I1|×|I2,
as well as I1 and I2 on their own. It allows transitions from a state pair
(s1, s2) labeled with r1 r2 to a pair (s′1, s

′
2) if there are respective transitions

in A1 and A2 as well as transitions labeled with only a single rule to a pair
(s′1, s2) (respectively (s1, s

′
2)) reflecting that only one input automaton makes

a transition and the other waits.

Definition 53. Weak parallel composition of finite state automata
Let Ai = (Si, Ii, di, s0i , Fi), i ∈ {1, 2} be two finite state automata. The weak
parallel composition of A1 and A2 is defined by
A1 �� ��A2 = (S, I, dw, (s01, s02), F) with
S = S1 × S2,
I = (I1|×|I2) ∪ I1 ∪ I2,
dw = {((s1, s2), r1 r2, (s

′
1, s

′
2)) | (s1, r1, s

′
1) ∈ d1, (s2, r2, s

′
2) ∈ d2} ∪

{((s1, s2), r1, (s
′
1, s2)) | (s1, r1, s

′
1) ∈ d1} ∪

{((s1, s2), r2, (s1, s
′
2)) | (s2, r2, s

′
2) ∈ d2}

F = F1 × F2.

To illustrate the weak parallel composition, Figure 4.1 depicts two automata
and their weak parallel composition.

59

A1:

A2:

x0 x1 x2r1 r2

y0 y1 y2 y3r′1 r′2 r′3

A1 �� ��A2:

x0, y0 x1, y1 x2, y2 x2, y3r1+r′1 r2+r′2 r′3

x1, y0

x0, y1

r1

r′1

r′1

r1

x2, y1

x1, y2

r′2

r2

r2

r′2

r2 r′
1

r1 r′2

x2, y0

x0, y2

r2

r′2

r′
1

r1

r2 r′3

x1, y3

x0, y3

r′3

r1 r′3

r′3

r1

r2

Figure 4.1: Weak parallel composition of two automata A1 and A2

Synchronous composition of automata

The synchronous composition of two automata resembles the weak parallel
composition except for that individual transitions of one input automaton
are only allowed if the other has reached a final state. In such a case it has
to be ensured that the latter automaton makes no more transitions. For
that reason the states of the synchronous composition automaton not only
contain state pairs, but also the single states of the input automata. If one
of the input automatons has come to an end the corresponding transition of
the composition automaton leads from a state pair to a single state of the
automata which operates alone. So it is ensured that the automaton which
has reached a final state can make no more transitions after it stops operating.

60

Definition 54. Synchronous composition of finite state automata
Let Ai = (Si, Ii, di, s0i , Fi), i ∈ {1, 2} be two finite state automata. The
synchronous composition of A1 and A2 is defined by
A1$A2 = (S, I, dS, (s01 , s02), F) with
S = (S1 × S2) ∪ S1 ∪ S2,
I = (I1|×|I2) ∪ I1 ∪ I2,
dS = {((s1, s2), r1 r2, (s

′
1, s

′
2)) | (s1, r1, s

′
1) ∈ d1, (s2, r2, s

′
2) ∈ d2} ∪

{((s1, s2), r1, s
′
1) | (s1, r1, s

′
1) ∈ d1, s2 ∈ F2} ∪

{((s1, s2), r2, s
′
2) | s1 ∈ F1, (s2, r2, s

′
2) ∈ d2} ∪

d1 ∪ d2,
F = (F1 × F2) ∪ F1 ∪ F2.

Figure 4.2 depicts the synchronous composition of two automata A1 and A2

omitting unreachable states.

A1:

Automata A1 and A2:

A2:

x0 x1 x2r1 r3

r2

y0 y1 y2 y3 y4r′1 r′2 r′3 r′4

Synchronous composition A1$A2:

x0y0 x1y1 x2y2 y3 y4r1+r′
1

r3+r′2 r′3 r′4

r2+r′
2

x0y2 x1y3r1+r′
3

x2y4r3+r′
4

x0y4

r2+r′
4

x1r1 x2r3

x0

r2

r1

r3

r1

Figure 4.2: Synchronous composition of two automata A1 and A2

61

4.2 Automata Recognise Parallel Languages

Now, after we have defined automata for parallel expressions we have to prove
that these automata actually recognise the language of parallel expressions,
i.e. L(A(C)) = L(C) for a parallel expression C. This is done by induc-
tion over the structure of parallel expressions. Since finite state automata
recognise regular languages this proof is already done for the induction be-
gin and induction steps for the possible structures C1;C2, C1|C2, and C∗

(see, e.g., [Ric08]). What is left to do are the induction steps for the struc-
tures C1 �� ��C2 and C1$C2, i.e. the proofs for L(A(C1 �� ��C2)) = L(C1 �� ��C2) and
L(A(C1$C2)) = L(C1$C2), provided that L(A(C1)) = L(C1) and L(A(C2)) =
L(C2).

Weak parallel case

Proposition 55. Induction step for C1 �� ��C2

Let C1 and C2 be two parallel expressions, and let L(A(C1)) = L(C1) and
L(A(C2)) = L(C2). Then it holds

L(A(C1 �� ��C2)) = L(C1 �� ��C2).

Proof. Let A(Ci) = (Si, Ii, di, s0i , Fi), i ∈ {1, 2} be the two finite state au-
tomata for C1 and C2, and let A(C1) �� ��A(C2) = (S, I, dw, (s01 , s02), F) the
weak parallel composition of A(C1) and A(C2).

L(A(C1 �� ��C2)) = L(A(C1) �� ��A(C2)) [def. 52 (A(C))]
= {w | (s′1, s

′
2) ∈ d∗

w
((s01 , so2), w), [def. L(A)]

(s′1, s
′
2) ∈ F}

= {w | w ∈ w1 �� ��w2, [lemma 56]
s′1 ∈ d∗1(s01, w1),
s′2 ∈ d∗2(s02, w2),
(s′1, s

′
2) ∈ F}

= {w | w ∈ w1 �� ��w2, [def. 53 (A1 �� ��A2)]
s′1 ∈ d∗1(s01, w1),
s′2 ∈ d∗2(s02, w2),
s′1 ∈ F1, s

′
2 ∈ F2}

= {w | w ∈ w1 �� ��w2, [def. L(A)]
w1 ∈ L(A(C1)),
w2 ∈ L(A(C2))}

=
⋃
(w1 �� ��w2) with w1 ∈ L(A(C1)), w2 ∈ L(A(C2))

= L(A(C1)) �� ��L(A(C2)) [def. 40 (L1 �� ��L2)]

62

= L(C1) �� ��L(C2) [i.h.]
= L(C1 �� ��C2). [def. 41 (L(C))]

Lemma 56 is the centerpiece of the preceding proof. It states that whenever
a weak parallel composition automata is able to process a word w its input
automata are able to process words w1 respectively w2 and w is a weak
parallel composition of w1 and w2.

Lemma 56. Let Ai = (Si, Ii, di, si0, Fi), i ∈ {1, 2} be two finite state au-
tomata and A = (S, I, dw, (s01, s02), F) be the weak parallel composition
A1 �� ��A2. Then for all w ∈ I∗∗ holds:

(s′1, s
′
2) ∈ d∗

w
((s1, s2), w)⇔ s′1 ∈ d∗1(s1, w1), s

′
2 ∈ d∗2(s2, w2), w ∈ w1 �� ��w2.

Proof. .
Induction over the structure of w.
Basis: w = λ:
(s′1, s

′
2) ∈ d∗

w
((s1, s2), λ)⇔ s′1 = s1, s

′
2 = s2

⇔ s′1 ∈ d∗1(s1, λ), s
′
2 ∈ d∗2(s2, λ), λ ∈ λ �� ��λ.

Hypothesis: For a w ∈ I∗∗ holds:
(s′1, s

′
2) ∈ d∗

w
((s1, s2), w)⇔ s′1 ∈ d∗1(s1, w1), s

′
2 ∈ d∗2(s2, w2), w ∈ w1 �� ��w2.

Step: Proof for wx with x ∈ I∗.
(s′1, s

′
2) ∈ d∗

w
((s1, s2), wx) ⇔ (s′1, s

′
2) ∈ dw((s̄1, s̄2), x) for some [def. d∗]

(s̄1, s̄2) ∈ d∗
w
((s1, s2), w)

⇔ (s′1, s
′
2) ∈ dw((s̄1, s̄2), x) for some [i.h.]

s̄1 ∈ d∗1(s1, w1), s̄2 ∈ d∗2(s2, w2), w ∈ w1 �� ��w2

According to the definition of dw we obtain three possibilities how dw((s̄1, s̄2), x)
could be obtained from d1 and d2
⇔ (s′1, s

′
2) ∈ {(

..
s1,

..
s2) | (

..
s1 ∈ d1(s̄1, x1),

..
s2 ∈ d2(s̄2, x2), x = x1 x2) [def. 53]

or
(
..
s1 ∈ d1(s̄1, x),

..
s2 = s̄2)

or
(
..
s1 = s̄1,

..
s2 ∈ d2(s̄2, x))} for some

s̄1 ∈ d∗1(s1, w1), s̄2 ∈ d∗2(s2, w2), w ∈ w1 �� ��w2

Now concerning d1 and d2 we again use the definition of d∗ (but backwards)
in order to combine the single transition steps for x1 and x2 resp x with the
respective state transitions d∗1(s1, w1) and d∗2(s2, w2).
⇔ (s′1, s

′
2) ∈ {(

..
s1,

..
s2) | (

..
s1 ∈ d∗1(s1, w1x1),

..
s2 ∈ d∗2(s2, w2x2), x = x1 x2 [def.

d∗]
or

63

..
s1 ∈ d∗1(s1, w1x),

..
s2 = s̄2 ∈ d∗2(s2, w2)

or
..
s1 = s̄1 ∈ d∗1(s1, w1),

..
s2 ∈ d∗2(s2, w2x)),

w ∈ w1 �� ��w2}
Since we want to prove that wx is a weakly composition of a word processed
by A1 and a word processed by A2 we add the information we have so far
about wx leaving the information how the state pair (s′1, s

′
2) arises from d∗1

and d∗2, which we do not need anymore.
⇔ s′1 ∈ d∗1(s1, w1x1), s

′
2 ∈ d∗2(s2, w2x2), wx ∈ (w1 �� ��w2){x1 x2}, w ∈ w1 �� ��w2

or
s′1 ∈ d∗1(s1, w1x), s

′
2 ∈ d∗2(s2, w2), wx ∈ (w1 �� ��w2){x}, w ∈ w1 �� ��w2

or
s′1 ∈ d∗1(s1, w1), s

′
2 ∈ d∗2(s2, w2x), wx ∈ (w1 �� ��w2){x}, w ∈ w1 �� ��w2

Lemma 57, which is given subsequently to the proof, allows to infer that in
every case wx is contained in the weakly composition of the word processed
by d∗1 and the word processed by d∗2.
⇔ s′1 ∈ d∗1(s1, w1x1), s

′
2 ∈ d∗2(s2, w2x2), wx ∈ (w1x1) �� ��(w2x2) [lemma 57]

or
s′1 ∈ d∗1(s1, w1x), s

′
2 ∈ d∗2(s2, w2), wx ∈ (w1x) �� ��w2

or
s′1 ∈ d∗1(s1, w1), s

′
2 ∈ d∗2(s2, w2x), wx ∈ w1 �� ��(w2x).

Lemma 57. Let w,w1, w2 ∈ R
∗
∗, x, x1, x2 ∈ R∗ and w ∈ w1 �� ��w2 Then the

following holds:
a) wx ∈ (w1 �� ��w2){x1 + x2} ⇔ wx ∈ (w1x1) �� ��(w2x2),
b) wx1 ∈ (w1 �� ��w2){x1} ⇔ wx1 ∈ (w1x1) �� ��w2,
c) wx2 ∈ (w1 �� ��w2){x2} ⇔ wx2 ∈ w1 �� ��(w2x2).

Proof.
a)
’⇒’:
wx ∈ (w1 �� ��w2){x1 + x2} ⇒ wx ∈ ((w1 �� ��w2){x1 + x2}∪ [def. ∪,∈]

(w1 �� ��(w2x2)){x1}∪
((w1x1) �� ��w2){x2})

⇔ wx ∈ (w1x1) �� ��(w2x2). [lemma 58]
’⇐’:
wx ∈ (w1x1) �� ��(w2x2)⇔ wx ∈ ((w1 �� ��w2){x1 + x2}∪ [lemma 58]

(w1 �� ��(w2x2)){x1}∪
((w1x1) �� ��w2){x2})

⇒wx ∈ (w1 �� ��w2){x1 + x2}. [w ∈ w1 �� ��w2]
b)

64

case 1: w2 = λ (contains w1 = λ and w1 �= λ):
wx1 ∈ (w1 �� ��λ){x1} ⇔ wx1 ∈ {w1}{x1} [def. 39]

⇔ wx1 ∈ {w1x1}
⇔ wx1 ∈ (w1x1) �� ��λ. [def. 39]

case 2: w2 = w̄2b, b ∈ R∗ (contains w1 = λ and w1 �= λ):
wx1 ∈ (w1 �� ��(w̄2b)){x1} ⇔ wx1 ∈ (w1 �� ��(w̄2b)){x1}∪ [def. ∪ and (∗)]

(w1 �� ��w̄2){x1 + b}∪
((w1x1) �� ��w̄2){b}

⇔ wx1 ∈ ((w1x1) �� ��(w̄2b)). [lemma 58]

c)
case 1: w1 = λ (contains w2 = λ and w2 �= λ):
wx2 ∈ (λ �� ��w2){x2} ⇔ wx2 ∈ {w2}{x2}

⇔ wx2 ∈ {w2x2}
⇔ wx2 ∈ (λ �� ��(w2x2)).

case 2: w1 = w̄1a with w̄1 ∈ R
∗
∗, a ∈ R∗:

wx2 ∈ ((w̄1a �� ��w2){x2} ⇔ wx2 ∈ ((w̄1a �� ��w2){x2} ∪
(w̄1 �� ��w2{a x2} ∪
(w̄1 �� ��(w2x2){a})

⇔ wx2 ∈ ((w̄1a �� ��(w2x2).

(*) ’⇐’ holds since w ∈ w1 �� ��w2

Lemma 58 states when having two weakly composed rule sequences one can,
analogously but reverse to the definition of the weak parallel composition,
also split off rules from the right side of the sequences. I.e. the weak parallel
composition of rule sequences treats left and right addition equally.

Lemma 58. Let I ∈ R∗ be a set of parallel rules. Let w1, w2 ∈ R
∗
∗, and

r1, r2 ∈ R∗. Then the following holds:
(w1r1) �� ��(w2r2) = (w1 �� ��w2){r1 r2} ∪ (w1 �� ��(w2r2)){r1} ∪ ((w1r1) �� ��w2){r2}.

Proof. Induction over |w1|+ |w2|
Basis: |w1|+ |w2| = 0:
|w1|+ |w2| = 0 implies w1 = λ, w2 = λ.
(λr1) �� ��(λr2) = r1 �� ��r2

= {r1 r2} ∪ {r1; r2} ∪ {r2; r1} [def. 39(iii)]

65

= {λ}{r1 r2} ∪ {r1}{r2} ∪ {r2}{r1} [def. 41, prop. 43]
= (λ �� ��λ){r1 r2} ∪ (r1 �� ��λ){r2} ∪ (λ �� ��r2){r1} [def. 39(i)]
= (λ �� ��λ){r1 r2} ∪ (λ �� ��(λr2)){r1} ∪ ((λr1) �� ��λ){r2}.

Hypothesis: For all w1, w2 with |w1|+ |w2| ≤ n, n ∈ N holds:
(w1r1) �� ��(w2r2) = (w1 �� ��w2){r1 r2} ∪ (w1 �� ��(w2r2)){r1} ∪ ((w1r1) �� ��w2){r2}

Step: Step from n to n+1 implies |xw1|+ |w2| = n+1 or |w1|+ |xw2| = n+1
with x ∈ I.
W.l.o.g. we choose |xw1|+ |w2| = n+ 1.
Case 1: w2 = λ:
(xw1r1) �� �� (λr2) = (xw1r1) �� ��r2

= {x r2}((w1r1) �� ��λ) ∪
{x}((w1r1) �� ��r2) ∪
{r2}((xw1r1) �� ��λ) [def. 39(iii)]

= {x1 r2}((w1r1) �� ��λ) ∪ [i.h.]
{x}((w1 �� ��λ){r1 r2} ∪ (w1 �� ��r2){r1} ∪ (w1r1 �� ��λ){r2}) ∪
{r2}((xw1r1) �� ��λ)

= {x1 r2}{w1r1} ∪ [def. 39(i)]
{x}({w1}{r1 r2} ∪ (w1 �� ��r2){r1} ∪ {w1r1}{r2}) ∪
{r2}{xw1r1}

= {x1 r2}{w1}{r1} ∪
{x}{w1}{r1 r2} ∪ {x}(w1 �� ��r2){r1} ∪ {x}{w1r1}{r2} ∪
{r2}{xw1}{r1}

= {x1 r2}{w1 �� ��λ}{r1} ∪ [def. 39(iii)]
{x}{w1}{r1 r2} ∪ {x}(w1 �� ��r2){r1} ∪ {x}{w1r1}{r2} ∪
{r2}{xw1 �� ��λ}{r1}

= {x}{w1}{r1 r2} ∪
{x1 r2}{w1 �� ��λ}{r1}∪{x}(w1 �� ��r2){r1}∪{r2}{xw1 �� ��λ}{r1}∪
{x}{w1r1}{r2}

= {xw1}{r1 r2} ∪
({x1 r2}{w1 �� ��λ} ∪ {x}(w1 �� ��r2) ∪ {r2}{xw1 �� ��λ}){r1} ∪
{xw1r1}{r2}

= (xw1 �� ��λ){r1 r2} ∪ [def. 39 (i),(iii)]
(xw1 �� ��λr2){r1} ∪
(xw1r1 �� ��λ){r2}.

Case 2: w2 = bw̄2:
(xw1r1) �� �� (bw̄2r2) = {x b}((w1r1) �� ��(w̄2r2)) ∪ [def. 39]

{x}((w1r1) �� ��(bw̄2r2)) ∪
{b}((xw1r1) �� ��(w̄2r2))

66

= {x b}((w1 �� ��w̄2){r1 r2} ∪ (w1 �� ��(w̄2r2)){r1} ∪ ((w1r1) �� �� w̄2){r2}) ∪
{x}((w1 �� ��(bw̄2)){r1 r2} ∪ (w1 �� ��(bw̄2r2)){r1} ∪ ((w1r1) �� ��(bw̄2)){r2}) ∪
{b}(((xw1) �� ��w̄2){r1 r2}∪ ((xw1) �� ��(w̄2r2)){r1}∪ ((xw1r1) �� ��w̄2){r2})[i.h.]

= {x b}(w1 �� ��w̄2){r1 r2}∪{x b}(w1 �� ��(w̄2r2)){r1}∪{x b}((w1r1) �� ��w̄2){r2}∪
{x}(w1 �� ��(bw̄2)){r1 r2}∪{x}(w1 �� ��(bw̄2r2)){r1}∪{x}((w1r1) �� ��(bw̄2)){r2}∪
{b}((xw1) �� �� w̄2){r1 r2}∪{b}((xw1) �� ��(w̄2r2)){r1}∪{b}((xw1r1) �� ��w̄2){r2}

= {x b}(w1 �� ��w̄2){r1 r2}∪{x}(w1 �� ��(bw̄2)){r1 r2}∪{b}((xw1) �� ��w̄2){r1 r2}∪
{x b}(w1 �� ��(w̄2r2)){r1}∪{x}(w1 �� ��(bw̄2r2)){r1}∪{b}((xw1) �� ��(w̄2r2)){r1}∪
{x b}((w1r1) �� ��w̄2){r2}∪{x}((w1r1) �� ��(bw̄2)){r2}∪{b}((xw1r1) �� ��w̄2){r2}

= ({x b}(w1 �� ��w̄2) ∪ {x}(w1 �� ��(bw̄2)) ∪ {b}((xw1) �� ��w̄2)){r1 r2} ∪
({x b}(w1 �� ��(w̄2r2)) ∪ {x}(w1 �� ��(bw̄2r2)) ∪ {b}((xw1) �� ��(w̄2r2))){r1} ∪
({x b}((w1r1) �� ��w̄2) ∪ {x}((w1r1) �� ��(bw̄2)) ∪ {b}((xw1r1) �� ��w̄2)){r2} ∪

= ((xw1) �� ��(bw̄2)){r1 r2} ∪ [def. 39]
((xw1) �� ��(bw̄2r2)){r1} ∪
((xw1r1) �� �� (bw̄2)){r2}.

A little excursion regarding weak parallel composition of words

Lemma 58 suggests that considering two words to compose weak parallel
it makes no difference if they are composed from the left side (forward) or
from the right side (backward). In order to prove this assumption we define

backward weak parallel composition (denoted by
←−
�� ��) and then show that

forward and backward parallel composition have the same result.

Definition 59. Backwards weak parallel composition
Let I be an alphabet, w,w1, w2 ∈ I∗, and r1, r2 ∈ I. The backwards weak
parallel composition

←−
�� �� of w1 and w2 is defined by

w
←−
�� ��λ = {w} = λ

←−
�� ��w

w1r1
←−
�� ��w2r2 = (w1

←−
�� ��w2){r1 r2} ∪ (w1

←−
�� ��(w2r2)){r1} ∪ ((w1r1)

←−
�� ��w2){r2}

Proposition 60. Let I be an alphabet and let w1, w2 ∈ I∗. Then it holds
w1 �� ��w2 = w1

←−
�� ��w2.

Proof. We prove the proposition by induction over |w1|+ |w2|.
Basis : |w1|+ |w2| = 0:
|w1|+ |w2| = 0 implies w1 = λ and w2 = λ.
λ �� ��λ = λ [def. 39(i)]

= λ
←−
�� ��λ. [def. 59]

Hypothesis : w1 �� ��w2 = w1
←−
�� ��w2 holds for all w1, w2 with |w1|+ |w2| ≤ n.

Step: Proof for w′
1 �� ��w

′
2 with |w′

1|+ |w
′
2| = n+ 1.

67

|w′
1|+ |w

′
2| = n+ 1 implies w′

1 = w1x, w
′
2 = w2 or w′

1 = w1, w
′
2 = w2y.

W.l.o.g. we choose w′
1 = w1x, w

′
2 = w2.

Case 1: w2 = λ:
w1x �� ��λ = w1x [def. 39(i)]

= w1x
←−
�� ��λ. [def. 59]

Case 2: w2 = w̄2y:
w1x �� ��w̄2y = (w1 �� ��w̄2){x y} ∪ (w1 �� ��(w̄2y)){x} ∪ ((w1x) �� ��w̄2){y} [lemma
58]

= (w1
←−
�� ��w̄2){x y} ∪ (w1

←−
�� ��(w̄2y)){x} ∪ ((w1x)

←−
�� ��w̄2){y} [i.h.]

= w1x
←−
�� �� w̄2y [def. 59]

Synchronous case

As for the weak parallel case we now prove the induction step for the syn-
chronous case. The proof is analogously constructed and employs analogous
lemmas also given subsequently to the needing proof.

Proposition 61. Let C1 and C2 be two parallel expressions, and let by
induction hypothesis L(A(C1)) = L(C1) and L(A(C2)) = L(C2). Then it
holds L(A(C1$C2)) = L(C1$C2).

Proof. ,
Let A(Ci) = (Si, Ii, di, s0i, Fi), i ∈ {1, 2} be the two finite state automata for
C1 respectively C2. Moreover, let
A(C1$C2) = A(C1)$A(C2) = (S, I, dS, (s01 , s02), F).

L(A(C1$C2)) = L(A(C1)$A(C2)) [def. 52]
= {w | ((s01 , s02), w, (f1, f2)) ∈ d∗

S
, (f1, f2) ∈ F [def. L(A)]

or
((s01 , s02), w, f1) ∈ d∗

S
, f1 ∈ F1

or
((s01 , s02), w, f2) ∈ d∗

S
, f2 ∈ F2}

= {w1$w2 | (s01 , w1, f1) ∈ d∗1, (s02, w2, f2) ∈ d∗2, f1 ∈ F1, f2 ∈ F2 [lemma 62]
or

(s01 , w1, f1) ∈ d∗1, ∃(s02, w2, s2) ∈ d∗2, s2 ∈ F2, f1 ∈ F1

or
∃(s01 , w1, s1) ∈ d∗1, s1 ∈ F1, (s02 , w2, f2) ∈ d∗2), f2 ∈ F2}

= {w1$w2 | w1 ∈ L(A(C1), w2 ∈ L(A(C2))} [f1, s1 ∈ F1, f2, s2 ∈ F2]
= L(A(C1)$L(A(C2) [def. 40]
= L(C1)$L(C2) [i.h.]
= L(C1$C2). [def. 41]

68

Analogously to Lemma 56 the following Lemma 62 states that whenever a
synchronous composition automaton A1$A2 processes a rule sequence w there
are rule sequences w1 and w2 processed by A1 respectively A2 and w is the
synchronous composition of w1 and w2. Lemma 62 consists of three parts
due to the construction of the synchronous composition automata. Part a)
addresses the case where both input automata yet take part in the creation
of w, i.e. w is comprised of w1 and w2 in equal shares. Part b) covers the case
where at some point of the creation of w A2 has reached a final state and A1

operates further alone, i.e. the first part of w is composed of w′
1 and w2 with

w1 = w′
1w

′′
1 and the last part consists of w′′

1 . Part c) covers the analogous
situation for A1 has reached a final state. Since the proof for Lemma 62
needs information about the ratio of the length of w1 and w2 (|w1| = |w2|
respectively |w1| < |w2| , and |w1| > |w2|) we add this information to the
lemma.

Lemma 62. Let Ai = (Si, Ii, di, si0, Fi), i ∈ {1, 2} with Ii ∈ R∗ be two finite
state automata and A = (S, I, dS, (s01 , s02), F) be the synchronous composi-
tion A1$A2. Then for all w ∈ I∗∗ holds:
a) (s′1, s

′
2) ∈ d∗

S
((s1, s2), w)⇔ w = w1$w2,

s′1 ∈ d∗1(s1, w1), s
′
2 ∈ d∗2(s2, w2),

|w1| = |w2|,

b) s′1 ∈ d∗
S
((s1, s2), w), s

′
1 ∈ S1 ⇔ w = w1$w2,

s′1 ∈ d∗1(s1, w1), ∃s
′
2 ∈ d∗2(s2, w2), s

′
2 ∈ F2,

|w1| > |w2|,

c) s′2 ∈ d∗
S
((s1, s2), w), s

′
2 ∈ S2 ⇔ w = w1$w2,

∃s′1 ∈ d∗1(s1, w1), s
′
1 ∈ F1, s

′
2 ∈ d∗2(s2, w2),

|w1| < |w2|.

Proof. .
a) Induction over the structure of w.
Basis: w = λ:
(s′1, s

′
2) ∈ d∗

S
((s1, s2), λ)⇔ d∗1(s1, λ) = {s

′
1}, d

∗
2(s2, λ) = {s

′
2},

λ$λ = λ, |λ| = |λ|.

Hypothesis: For a w ∈ I∗∗ holds:
(s′1, s

′
2) ∈ d∗

S
((s1, s2), w)⇔ w = w1$w2,

s′1 ∈ d∗1(s1, w1), s
′
2 ∈ d∗2(s2, w2),

|w1| = |w2|.

Step: Proof for wx with x ∈ I∗.

69

(s′1, s
′
2) ∈ d∗

S
((s1, s2), wx)⇔ (s′1, s

′
2) ∈ dS((s̄1, s̄2), x) [def. d∗]

for some (s̄1, s̄2) ∈ d∗
S
((s1, s2), w)

⇔ (s′1, s
′
2) ∈ dS((s̄1, s̄2), x) [i.h.]

for some s̄1 ∈ d∗1(s1, w1),s̄2 ∈ d∗2(s2, w2),
|w1| = |w2|,w = w1$w2

Knowing that (s′1, s
′
2) ∈ dS((s̄1, s̄2), x) is a state transition in A1$A2 we

can, employing dS, infer that there are state transitions s′1 ∈ d1(s̄1, x1),
s′2 ∈ d2(s̄2, x2) in A1 resp. A2 with x = x1 + x2.

⇔ s′1 ∈ d1(s̄1, x1), s
′
2 ∈ d2(s̄2, x2), x = x1 + x2,

for some s̄1 ∈ d∗1(s1, w1),s̄2 ∈ d∗2(s2, w2),
|w1| = |w2|, w = w1$w2 [def. dS]

Now we are able to combine the state transitions d1 processing x1 with d∗1
processing w1 resp. d2 processing x2 with d∗2 processing w2.

⇔ s′1 ∈ d∗1(s1, wx1), s
′
2 ∈ d∗2(s2, wx2), x = x1 + x2,

|w1| = |w2|, w = w1$w2 [def. d∗]
Since we know that |w1| = |w2| we also know that |w1x1| = |w2x2|. With the
help of Lemma 63a we infer that wx processed by A1$A2 is the synchronous
composition of w1x1 processed by A1 and w2x2 processed by A2

⇔ s′1 ∈ d∗1(s1, wx1), s
′
2 ∈ d∗2(s2, wx2).

Moreover, ((|w1| = |w2|)⇔ (|w1x1| = |w2x2|)), and
wx = (w1$w2)(x1 + x2)

=(w1x1)$(w2x2). [lemma 63(a)]

b) Induction over |w1| − |w2|.
Since b) covers the case where at some point of the creation of w A2 has
reached a final state and A1 operates further alone we run the induction over
|w1| − |w2| where |w1| − |w2| = 1 is the induction basis (the first time where
A1 operates alone). Since w1 and w2 only occur on the right side of the
equation to be proved we begin the proof from there.
Basis: |w1| − |w2| = 1:
|w1| − |w2| = 1 implies w1 = w′

1y with |w′
1| = |w2|.

s′1 ∈ d∗
1
(s1, w

′
1y), s

′
2 ∈ d∗

2
(s2, w2), s

′
2 ∈ F2, w = (w′

1y)$w2, |w
′
1| = |w2|

⇔ s′1 ∈ d1(s̄1, y) for some s̄1 ∈ d∗1(s1, w
′
1), s

′
2 ∈ d∗2(s2, w2), s

′
2 ∈ F2,

w = (w′
1y)$w2, |w

′
1| = |w2| [d∗]

⇔ s′1 ∈ d1(s̄1, y) for some (s̄1, s
′
2) ∈ d∗

S
((s1, s2), w

′
1$w2), s

′
2 ∈ F2,

w = (w′
1y)$w2 and s′1 ∈ S1 since s1 ∈ d1(s̄1, y) [lemma 62 (a)]

⇔ s′1 ∈ dS((s̄1, s2), y) for some (s̄1, s
′
2) ∈ d∗

S
((s1, s2), w

′
1$w2), s

′
1 ∈ S1 [dS]

⇔ s′1 ∈ d∗
S
((s1, s2), (w

′
1$w2)y), s

′
1 ∈ S1 [d∗]

⇔ s′1 ∈ d∗
S
((s1, s2), (w

′
1y)$w2), s

′
1 ∈ S1. [lemma 63(b)]

Hypothesis: For all w1, w2 with |w1| − |w2| = n for an n ∈ N holds:

70

s′1 ∈ d∗((s1, s2), w), s
′
1 ∈ S1 ⇔ w = w1$w2,

s′1 ∈ d∗1(s1, w1), ∃s
′
2 ∈ d∗2(s2, w2), s

′
2 ∈ F2,

|w1| > |w2|.

Step: Step from |w1| − |w2| = n to |w′
1| − |w

′
2| = n+ 1.

|w1| − |w2| = n, |w′
1| − |w

′
2| = n + 1 implies w′

1 = w1x, w
′
2 = w2 or w′

1 =
w1, w

′
2 = w2x for x ∈ R∗. W.l.o.g. we choose w′

1 = w1x, w
′
2 = w2.

s′1 ∈ d∗1(s1, w1x), s
′
2 ∈ d∗2(s2, w2), s

′
2 ∈ F2, |w1x| > |w2|, w = (w1x)$w2

⇔ s′1 ∈ d1(s̄1, x) for some s̄1 ∈ d∗1(s1, w1), s
′
2 ∈ d∗2(s2, w2), s

′
2 ∈ F2,

|w1x| > |w2| , w = (w1x)$w2 [d∗]
⇔ s′1 ∈ d1(s̄1, x) for some s̄1 ∈ d∗

S
((s1, s2), w1$w2), s

′
2 ∈ F2, w = (w1x)$w2.

Moreover, s′1 ∈ S1 since s′1 ∈ d1(s̄1, x) [i.h.]
⇔ s′1 ∈ dS(s̄1, x) for some s̄1 ∈ d∗

S
((s1, s2), w1$w2), s

′
2 ∈ F2, w = (w1x)$w2, s

′
1 ∈

S1 [dS]
⇔ s′1 ∈ d∗

S
((s1, s2), (w1$w2)x), s

′
1 ∈ S1 [d∗]

⇔ s′1 ∈ d∗
S
((s1, s2), (w1x)$w2), s

′
1 ∈ S1. [lemma 63(b)]

c) The proof for c) is analogous to b).

The following Lemma 63 is needed in the last steps of the above proofs
for Lemma 62 in order to show that x1 x2 respectively x when sequentially
composed to w1$w2 could be involved in the synchronous composition in the
desired position. According to the three parts of Lemma 62 Lemma 63 also
is comprised of three parts. Each part representing one possible situation
when composing two words synchronously, employing the information about
the ratio of the length of the words to each other.

Lemma 63. Let R∗ be a class of parallel rules. Moreover, let w1, w2 ∈ R
∗
∗

and x1, x2, x̄ ∈ R∗. Then
a) (w1$w2)(x1 x2) = (w1x1)$(w2x2) if |w1| = |w2|,
b) (w1$w2)x̄ = (w1x̄)$w2 if |w1| ≥ |w2|,
c) (w1$w2)x̄ = w1$(w2x̄) if |w1| ≤ |w2|.

Proof. .
a) Induction over the structure of w1.
Basis: w1 = λ:
Since |w1| = |w2| and w1 = λ we obtain w2 = λ.
(λ$λ)(x1 + x2) = λ(x1 + x2) [def. 39(b(i))]

= (x1 + x2)λ
= (x1 + x2)(λ$λ) [def. 39(b(i))]
= (x1λ)$(x2λ) [def. 39(b(ii))]
= x1$x2

71

= (λx1)$(λx2).

Hypothesis: For a w1 ∈ R
∗
∗ holds:

(w1$w2)(x1 + x2) = (w1x1)$(w2x2) if |w1| = |w2|.

Step: Proof for xw1 with x ∈ R∗:
|xw1| = |w2| implies w2 = yw′

2. Then we obtain
((xw1)$(yw

′
2))(x1 + x2) = (x+ y)(w1$w

′
2)(x1 + x2) [def. 39(b(ii))]

= (x+ y)((w1x1)$(w
′
2x2)) [i.h.]

= (xw1x1)$(yw
′
2x2) [def. 39(b(ii))]

= (xw1x1)$(w2x2).

b) Induction over the structure of w1.
Basis: w1 = λ:
Since |w1| ≥ |w2|, and w1 = λ we obtain w2 = λ.
(λ$λ)x = λx = (λx)$λ.

Hypothesis: For a w ∈ R∗
∗ holds:

(w1$w2)x̄ = (w1x̄)$w2 if |w1| ≥ |w2|.

Step: Proof for xw1 with x ∈ R∗.
case 1: w2 = λ:
((xw1)$λ)x̄ = (xw1)x̄ [def. 39(b(i))]

= xw1x̄
= (xw1x̄)$λ. [def. 39(b(i))]

case 2: w2 = yw′
2:

((xw1)$(yw
′
2))x̄ = ((x+ y)(w1$w

′
2))x̄ [def. 39(b(ii))]

= (x+ y)((w1$w
′
2)x̄) [ass. concat.]

Since |w1| ≥ |w2| we also know that w1 ≥ w′
2 because w2 = w′

2y. So we are
able to apply the induction hypothesis

= (x+ y)((w1x̄)$w
′
2) [i.h.]

= (xw1x̄)$(yw
′
2) [def. 39(b(ii))]

= (xw1x̄)$(w2).

c) The proof for c) is analogous to b).

72

Chapter 5

As-long-as-possible Control
Condition

This chapter introduces an as-long-as-possible control condition which is able
to express the iteration of an entire process until the process could not take
place anymore entirely.

In the Preliminaries we have encountered an as-long-as-possible control con-
dition over a set of rules, demanding the application of rules from the set
until no more application is possible. As a reminder, the semantics of that as-
long-as-possible control condition is given by: SEM(as-long-as-possible) =

{(G,H) | G
∗
⇒ H ∈ der(P), �H ⇒

r
H ′, ∀r ∈ P}.

In the following we enhance this concept to entire expressions rather than
a set of rules. The resulting control condition is called as-long-as-possible
-expression.

5.1 As-long-as-possible Expressions

As-long-as-possible expressions (alap-expressions for short) enhance regular
expressions by an unary as-long-as-possible operator, denoted by the symbol!.
The operator ! applied to an expressions e means that e has to be iteratively
executed as long as there are rules, prescribed by e, that can be applied to
the current graph. The execution stops if no more iteration of e is possible.

73

5.2 Syntax and Semantics

The syntax of alap-expressions over a given rule set is, apart from the oper-
ator !, defined like for regular expressions.

Definition 64. Alap-expressions over rules
Let P ⊆ R be a set of rules. Alap-expressions over P are recursively defined
by

(i) ∅, λ, and r ∈ P are alap-expressions,

(ii) if C,C1 and C2 are alap-expressions, C1;C2, C1|C2, C
∗, and C! are

alap-expressions.

The binding strength for the operators ∗, ; , and | is the same as for regular
expressions, and ! has the same binding strength as ∗.

The semantics of an alap-expression is defined as a set of derivations. Other
than for regular expressions, the semantics of alap-expressions depends on
the actual input graph. Therefore we provide two semantic definitions. The
first explicitly takes into account a given input graph. In the second defini-
tion all graphs from G are considered as input graphs. The operators used
within the definitions are defined afterwards.

Definition 65. Semantics of alap-expressions for a given input graph
Let P ⊆ R, r ∈ P and C,C1, and C2 be alap-expressions. Moreover let G ∈ G
be a graph. The semantics of an alap-expression provided the input graph
G is defined by

• SEM (∅, G) = ∅,

• SEM (λ,G) = {G
0
⇒ G},

• SEM (r, G) = {G⇒
r
H | H ∈ G},

• SEM (C1;C2, G) = SEM (C1, G) ◦
⋃
SEM (C2, G

′)
G

∗
⇒G′∈SEM (C1,G)

,

• SEM (C1|C2, G) = SEM (C1, G) ∪ SEM (C2, G),

• SEM (C∗, G) =
∞⋃
i=0

SEM (C,G)i, and

• SEM (C!, G) = {G
∗
⇒G′ ∈ SEM (C∗, G) | SEM (C,G′) = ∅} ∪SEM (C,G)∞.

74

Considering no specific input graph, but all possible graphs, the semantics
of an alap-expression is defined as follows.

Definition 66. Semantics of alap-expressions
Let P ⊆ R, r ∈ P and C,C1, and C2 be alap-expressions.

• SEM (∅) = ∅,

• SEM (λ) = {G
0
⇒ G | G ∈ G},

• SEM (r) = {G⇒
r
H | G,H ∈ G},

• SEM (C1;C2) = SEM(C1) ◦ SEM(C2),

• SEM (C1|C2) = SEM(C1) ∪ SEM(C2),

• SEM (C∗) =
⋃∞

i=0 SEM(C)i, and

• SEM (C!) = {G
∗
⇒ G′ ∈ SEM(C∗) | G′ ∗

⇒ G′′ /∈ SEM(C), G,G′, G′′ ∈
G} ∪SEM(C)∞.

In the following the iterative operators used in the semantic definitions are
defined.

Definition 67. Finite and infinite iteration
Let C be a alap-expression and G ∈ G.
The n-times iteration of the semantics of C, for an n ∈ N, according to an
input graph G is recursively defined by:

(i) SEM (C,G)0 = {G
0
⇒ G},

(ii) SEM (C,G)n+1 = SEM (C,G)◦{SEM (C,G′)n | G
∗
⇒ G′ ∈ SEM (C,G)}.

The infinite iteration is defined by:

SEM (C,G0)
∞ = {G0

∗
⇒ G1

∗
⇒ G2

∗
⇒ · · · | Gi

∗
⇒ Gi+1 ∈ SEM (C,Gi),

Gi ∈ G, i ∈ N}.

Considering all graphs as input graphs the n-times iteration is defined by:

(i) SEM(C)0 = {G
0
⇒ G | G ∈ G},

(ii) SEM(C)n+1 = SEM(C) ◦ SEM(C)n.

The infinite iteration is defined by:

SEM(C)∞ = {SEM(C) ◦ SEM(C) ◦ . . . }.

75

5.3 Further Notions and Definitions

In this section some notions and definitions around alap-expressions are
given.

C-run. An element of the semantics of an alap-expression C, SEM(C,G)
respectively SEM(C), is called a CG-run respectively C-run.

C-reconcilable derivations. A C-reconcilable derivation is a derivation
which is not permitted so far (and it’s prolongation perhaps never will be),
but not contradicts C yet. In the following we define infinite C-reconcilable
derivations.

Definition 68. Infinite C-reconcilable derivations for a specific input graph

• Inf(∅, G) = ∅

• Inf(λ,G) = ∅

• Inf(r, G) = ∅

• Inf(C1;C2, G) = Inf(C1, G) ∪ SEM (C1, G) ◦
⋃
Inf(C2, G

′)
G

∗
⇒G′∈SEM (C1,G)

• Inf(C1|C2, G) = Inf(C1, G) ∪ Inf(C2, G)

• Inf(C∗, G) = Inf(C,G) ∪SEM(C,G)∞∪⋃
k∈N

(SEM (C,G)k◦
⋃

Inf(C,G′))
G

∗
⇒G′∈SEM (C1,G)k

• Inf(C!, G) = Inf(C,G) ∪ SEM(C,G)∞∪⋃
k∈N

(SEM (C,G)k ◦
⋃

Inf(C,G′))
G

∗
⇒G′∈SEM (C1,G)k

Definition 69. Infinite C-reconcilable derivations for all graphs G ∈ G

• Inf(∅) = ∅

• Inf(λ) = ∅

• Inf(r) = ∅

• Inf(C1;C2) = Inf(C1) ∪ SEM (C1) ◦ Inf(C2)

• Inf(C1|C2) = Inf(C1) ∪ Inf(C2)

76

• Inf(C∗) = Inf(C) ∪ SEM(C)∞ ∪
⋃
k∈N

(SEM (C)k ◦ Inf(C))

• Inf(C!) = Inf(C) ∪ SEM(C)∞ ∪
⋃
k∈N

(SEM (C)k ◦ Inf(C))

77

Chapter 6

Sufficient Conditions for
Termination of
As-long-as-possible Expressions

Considering mere regular expressions the question of termination only is of
concern when asking if the semantics is finite or infinite. Regarding the com-
putation of single semantic elements each running computation turns out to
be permitted or not eventually. When the alap-operator comes into play this
situation changes. Terminations now is essential to answer the question if a
given running computation will end up to be permitted or not.

Termination in general is an important property. On the one hand termina-
tion of the modelled processes itself is essential (at least if they are expected
to do so). Consider the modelling of negotiations between trucks and pack-
ages over pick up and delivery in a logistic environment. It is crucial that the
negotiations will come to an end eventually. On the other hand termination
is a necessary property for verification, i.e. proving the total correctness of
the developed model. Despite termination is undecidable in general, it is
worthwhile to examine alap-expressions to the effect if they definitely termi-
nate.

This chapter makes use of the formality of graph transformation and in-
troduces sufficient conditions for termination.
After a short outline of the consideration of termination in literature this
chapter introduces termination regarding alap-expressions employing Petri
nets.

78

6.1 Termination in Literature

Termination in general is undecidable for most modelling frameworks (see,
e.g. [Plu98]), meaning that there is no general procedure, which applied to
a model of a process will tell whether the process will terminate or not. A
well known textbook example in computer science, considering the undecid-
ability of termination, is the halting problem, which can be stated as follows:
given a program (which also is a process) and an input for that program,
decide whether the program will eventually halt when run with that input,
or will run forever. Alan Turing proved that a general algorithm to solve the
halting problem for all possible program-input pairs cannot exist. However
in many practical applications one does not have to prove termination in
general, but for special cases. Therefore the main approaches regarding ter-
mination specify sufficient conditions for termination for specific frameworks.

A lot of approaches base on the classical approach to guarantee termina-
tion. In this approach termination is proved by finding a valuation function
that associates a natural number to each graph with the additional property
that the value decreases whenever a rule application step is done. Since no
natural number can decrease forever the process of rule application has to
stop eventually. This valuation function then is called a termination func-
tion. Let P be a set of rules and val : G → N be a valuation function with
val(G) > val(G′) for each direct derivation G ⇒

P
G′. Then each derivation

composed of direct derivations has to be finite. Alternatively, one may re-
place the natural numbers by some ordered domain which does not have any
decreasing infinite sequence (see, e.g., [DM78]). Unfortunately, this criterion
applies only to very special processes and does not work for many others
although they terminate, too. The reason is that one may not find any eval-
uation function that decreases in each step. In other cases there may exist
such a function, but it is hard to find.

Sufficient conditions for termination were focused by e.g. [BHPT05] or
[VVE+06]. In [BHPT05] sufficient termination conditions for high-level re-
placement units with regular expressions without the Kleene-star operator,
but with as-long-as-possible were introduced. The rough idea is to extend
the notion of rule application to derived rules, i.e. several sequentially applied
rules are summarised to one rule, the derived rule, and find a termination
function which works for this derived rule. For an expression with several
sequentially composed as-long-as-possible expressions, there may be sev-
eral termination functions. In [VVE+06] a sufficient termination criterion

79

for graph transformation systems was proposed. In that paper the authors
abstracted from the structure of the graphs and applied Petri nets to sim-
ulate the graph transformation system. If the Petri net runs out of tokens
sometime they can conclude that the original graph transformation system
is terminating.

6.2 Termination Regarding Alap-expressions

Our approach, called assured termination, enhances the idea of the classi-
cal approach in order to include more terminating processes. Thereby, it
needs no explicitly given termination function. In contrast to the classical
approach our approach considers entire derivations as steps instead of sin-
gle rule applications. Thus, not in every single rule application step there
has to decrease something. The rough idea is to exploit the knowledge we
have about the structure of the derivations permitted by an alap-expression.
All permitted derivations have particular structures that are known in ad-
vance. They are applications of rule sequences and of iterated rule sequences.
Non-termination of the derivation process is only caused by the iterative ap-
plication of rule sequences, which only arises due to the operators ∗ and !
of the underlying expression. The application of rule sequences is finite and
therefore causes no non-termination. The idea is to estimate what is deleted
and added by those iterated sequences and project whether they can be re-
peated infinitely often or not. This projection is done with the help of Petri
nets and their algebraic analysing methods.

In order to develop the notion of assured termination, in a first step we
define termination with respect to alap expressions. Thereby we distinguish
two types of termination, namely strong and weak termination. In a second
step we restrict what we have defined by strong termination to a termination
criterion called structural termination. This is done by taking into account
only the structure of the as-long-as-possible expression without considering
the input graph and its transformation during the derivation process. In a
last step we implement the above roughly sketched approach. There we also
have to make some restrictions which eventually leads to the notion of as-
sured termination. The chapter concludes with an algorithm to check assured
termination and an example.

80

6.2.1 Strong Termination

In this thesis the term termination refers to the computation of the semantics
of a control condition. Here one can distinguish between weak termination
and strong termination. Weak termination means that at least one element
of the semantics can be computed in finite time, or it can be decided in finite
time that there are no elements at all. Strong termination denotes that all
elements of the semantics can be computed in finite time. In general weak
and strong termination depend on the input graph.

The focus of this thesis is on strong termination. In the further we refer
to ’strong termination of the derivation process regulated by a control con-
dition C’ by the notion of ’C terminates strongly ’. As said above, informally
speaking, strong termination of a control condition is that all elements of the
semantics can be computed in finite time. That means during the computa-
tion of the semantics only finitely long and finitely many derivations arise.
This is expressed by the following definition.

Definition 70. Strong termination regarding a specific input graph
Let C be an alap expression over R and G ∈ G a graph.
(C,G) terminates strongly if there is no infinitely long (C,G)-reconcilable
derivation, i.e. Inf(C,G) = ∅.

Please note, that in order to determine the deletion and addition of graph
elements by rules we consider only graph transformation approaches with
injective matches. Without injective matches a rule could be considered e.g.
to delete two items but through identification of these two items by a non
injective match actually deletes only one item.

The following Lemma 71 introduces some compositional properties of alap
expressions regarding strong termination.

Lemma 71. Properties of strongly terminating control conditions
Let C,C1, and C2 be alap expressions over R and G,G′ ∈ G.

• (∅, G) terminates strongly for all G ∈ G.

• (λ,G) terminates strongly for all G ∈ G.

• (r, G) terminates strongly for all G ∈ G.

• (C1;C2, G) terminates strongly, iff (C1, G) terminates strongly and ∀G′ :

G
∗
⇒ G′ ∈ SEM(C1, G) (C2, G

′) terminates strongly.

81

• (C1|C2, G) terminates strongly iff (C1, G) terminates strongly and (C2, G)
terminates strongly.

• (C∗, G) terminates strongly iff (C,G) terminates strongly and

SEM(C,G)∞ = ∅ and ∀G′ with G
∗
⇒ G′ ∈ SEM(C,G)k, k ∈ N (C,G′)

terminates strongly.

• (C!, G) terminates strongly iff (C,G) terminates strongly and

SEM(C,G)∞ = ∅ and ∀G′ with G
∗
⇒ G′ ∈ SEM(C,G)k, k ∈ N (C,G′)

terminates strongly.

Proof. Let C,C1, C2 be alap expressions over R.

• (∅, G) terminates strongly for all G ∈ G ⇔ Inf(∅, G) = ∅ for all G ∈ G.
This is true by definition.

• (λ,G) terminates strongly for all G ∈ G ⇔ Inf(λ,G) = ∅ for all G ∈ G.
This is true by definition.

• (r, G) terminates strongly for all G ∈ G ⇔ Inf(r, G) = ∅ for all G ∈ G.
This is true by definition.

• (C1;C2, G) terminates strongly ⇔ Inf(C1;C2, G) = ∅
⇔ Inf(C1, G) ∪ SEM (C1, G) ◦

⋃
Inf(C2, G

′)
G

∗
⇒G′∈SEM (C1,G)

= ∅

⇔ Inf(C1, G) = ∅ and SEM (C1, G) ◦
⋃

Inf(C2, G
′)

G
∗
⇒G′∈SEM (C1,G)

= ∅

⇔ Inf(C1, G) = ∅ and
⋃

Inf(C2, G
′)

G
∗
⇒G′∈SEM (C1,G)

= ∅

⇔ (C1, G) terminates strongly and (C2, G
′) terminates strongly ∀G

∗
⇒

G′ ∈ SEM (C1, G)

• (C1|C2, G) terminates strongly ⇔ Inf(C1|C2, G) = ∅
⇔ Inf(C1, G) ∪ Inf(C2, G) = ∅
⇔ Inf(C1, G) = ∅ and Inf(C2, G) = ∅
⇔ (C1, G) and (C2, G) terminate strongly

• (C∗, G) terminates strongly ⇔ Inf(C∗, G) = ∅
⇔ Inf(C,G) ∪ SEM(C,G)∞ ∪

⋃
k∈N

(SEM (C,G)k ◦
⋃

Inf(C,G′))
G

∗
⇒G′∈SEM (C,G)k

= ∅

⇔ Inf(C,G) = ∅ and SEM (C,G)∞ = ∅ and
SEM(C,G)k ◦

⋃
Inf(C,G′)

G
∗
⇒G′∈SEM (C,G)k

= ∅, k ∈ N

⇔ (C,G) terminates strongly and SEM (C,G)∞ = ∅ and

82

⋃
Inf(C,G′)

G
∗
⇒G′∈SEM (C,G)k

= ∅, k ∈ N [def. 70]

⇔ (C,G) terminates strongly and SEM (C,G)∞ = ∅ and

(C,G′) terminates strongly ∀G
∗
⇒ G′ ∈ SEM (C,G)k, k ∈ N

• The case C! works analogous to C∗

Definition 72. Strong termination for all input graphs
Let C be an alap expression over R.
C terminates strongly if (C,G) terminates strongly for all G ∈ G.

Remark 1. Note that in the case of strong termination for all input graphs,
despite termination of all the single derivation processes, the checking will
not terminate if there are infinitely many input graphs. This problem is
taken up in Section 6.2.3.

Lemma 71 indicates why termination is undecidable in general. In order to
decide strong termination for an as-long-as-possible expression one has to
compute all the intermediate graphs of its described derivations, i.e. all the
possible derivations. If this were realisable we would not have to ask the
question of termination. To cope with this problem we have to restrict the
demands. This leads to the notion of structural termination, which is focused
in the following section.

6.2.2 Structural Termination

As we cannot compute all the intermediate graphs structural termination
of an as-long-as-possible expression C demands that all subexpressions of C
must terminate strongly for all graphs, i.e. strong termination is inherent in
the structure of the expression.

Definition 73. Structural termination
Let C be an alap expression over R.
C terminates structurally if all subexpressions of C terminate strongly for
all graphs G ∈ G.

Remark 2. Structural termination implies strong termination, as each ex-
pression is a subexpression of itself.

Lemma 74. Properties of structurally terminating control conditions
Let C0, C1, C2 be alap expressions over R.

83

• ∅ terminates structurally.

• λ terminates structurally.

• r terminates structurally.

• C1;C2 terminates structurally iff C1 terminates structurally and C2

terminates structurally.

• C1|C2 terminates structurally iff C1 terminates structurally and C2 ter-
minates structurally.

• C∗
0 terminates structurally iff C0 terminates structurally and

SEM (C0)
∞ = ∅.

• C0! terminates structurally iff C0 terminates structurally and
SEM (C0)

∞ = ∅ .

Proof. Let C,C1, C2 be control conditions over R. Assumption: every ex-
pression Ci is considered to be parenthesised.

• ∅ terminates structurally ⇔ ∅ terminates strongly for all graphs. This
is true by definition.

• λ terminates structurally ⇔ λ terminates strongly for all graphs. This
is true by definition.

• r terminates structurally ⇔ r terminates strongly for all graphs. This
is true by definition.

• C1;C2 terminates structurally
⇔ All subexpressions of C1;C2 terminate strongly for all graphs
⇔ All subexpressions of C1 terminate strongly for all graphs and all
subexpressions of C2 terminate strongly for all graphs
⇔ C1 terminates structurally and C2 terminates structurally

• C1|C2 terminates structurally
⇔ All subexpressions of C1|C2 terminate strongly for all graphs
⇔ All subexpressions of C1 terminate strongly for all graphs and all
subexpressions of C2 terminate strongly for all graphs
⇔ C1 terminates structurally and C2 terminates structurally

• C∗ terminates structurally
⇔ All subexpressions of C∗ terminate strongly for all graphs [def. 73]
⇔ C∗ terminates strongly for all graphs and all subexpressions of C

84

terminate strongly for all graphs
⇔ C terminates strongly for all graphs and SEM (C)∞ = ∅ and ∀G

∗
⇒

G′ ∈ SEM(C)k, k ∈ N(C,G′) terminates strongly and all subexpres-
sions of C terminate strongly for all graphs [prop.71]
⇔ C terminates strongly for all graphs and SEM (C)∞ = ∅ and all
subexpressions of C terminate strongly for all graphs
⇔ C terminates strongly for all graphs and all subexpressions of C
terminate strongly for all graphs and SEM (C)∞ = ∅
⇔ C terminates structurally and SEM (C)∞ = ∅

• The case C! works analogous to C∗.

Non-termination of an as-long-as-possible expression C is only caused by ∗

and !. The following lemma reduces the definition of structural termination
to statements about subexpressions of the form C∗

0 and C0!.

Lemma 75. C terminates structurally if and only if for all subexpressions
C∗

0 and C0! of C holds SEM (C0)
∞ = ∅.

Proof. Let C be a control condition over R.
We show the proposition by induction over the structure of C.

Basis : For C = ∅, λ, r the hypothesis is true, since ∅, λ, r terminate struc-
turally and contain no subexpression C∗

0 or C0!.

Step: Examine each of the cases (i) C = C1;C2, (ii) C = C1|C2, (iii) C = C ′∗,
(iv) C = C ′! separately. In order to keep the proof overseeable we abbreviate
the term subexpressions by sbxps.

(i) C = C1;C2

C1;C2 terminates structurally
⇔ C1 terminates structurally and C2 terminates structurally [lemma 74]
⇔ ∀ sbxps of C1 and C2 of the form C∗

0 and C0! holds SEM (C0)
∞ = ∅ [i.h]

⇔ ∀ sbxps C∗
0 and C0! of C1;C2 holds SEM (C0)

∞ = ∅

(ii) C = C1|C2

C1|C2 terminates structurally
⇔ C1 terminates structurally and C2 terminates structurally [lemma 74]
⇔ ∀ sbxps of C1 and C2 of the form C∗

0 and C0! holds SEM (C0)
∞ = ∅ [i.h]

⇔ ∀ sbxps C∗
0 and C0! of C1|C2 holds SEM (C0)

∞ = ∅

85

(iii) C = C ′∗

C ′∗ terminates structurally
⇔ C ′ terminates structurally and SEM (C ′)∞ = ∅ [lemma 74]
⇔ (∀ sbxps C∗

0 (C0!) of C
′ SEM (C0)

∞ = ∅) and SEM (C ′)∞ = ∅ [i.h.]
⇔ ∀ sbxps C∗

0 (C0!) of C
′∗ SEM (C0)

∞ = ∅

(iv) C = C ′! works analogously to (iii).

6.2.3 Assured Termination

According to Lemma 75 in order to decide if C terminates structurally we
have to decide whether SEM (C0)

∞ = ∅ for all subexpressions C0 of an as-
long-as-possible expression C. It holds that SEM (C0)

∞ = ∅ if there exists
no infinitely long derivation build by concatenations of C0-runs. Such an
infinitely long derivation only exists if again and again after an execution of
a C0-run a further entire C0-run is executable. This is only the case if the
preconditions for the execution are complied, i.e. every graph structure that
is needed by C0 is provided by the current input graph. This is only the case
if the respective structures are not deleted during execution of the C0-runs
or they are deleted, but also added again in a sufficient amount.

Informal description of the idea:

SEM(C)∞ = ∅ if

1. Every C-run deletes at least one graph item and

2. during the interaction of the different C-runs, at least one deleted graph
item of every C-run cannot eventually be counterbalanced by another
C-run adding the same item.

With this approach we are able to make statements about sufficient condi-
tions for termination without having to examine all possible input graphs.
In order to formalise the informal description we define measures on graphs
to represent what can be deleted from a graph respectively added, and define
means to estimate upper bounds for the changes on these measures inflicted
by runs of a control condition C. After that we model the defined structures
with Petri nets and use their algebraic analysing methods to investigate the
possibilities of interaction between the different C-runs.

86

Measure sets for graphs

A measure maps graphs to natural numbers such that for each rule its ap-
plication yields the same change in the measured value, independently from
the graph to which the rule is applied.

Definition 76. Measure on graphs
A measure on graphs is a mapping μ : G → N such that for all graphs
G,G′, G,G

′
∈ G and every rule r ∈ R, G⇒

r
G′ and G⇒

r
G

′
implies μ(G′) −

μ(G) = μ(G
′
)− μ(G). We will write a set of k measures μ1, . . . , μk (k ∈ N)

as a vector
→
μ = (μi)i∈[k].

Possible examples for measures are: number of nodes, number of edges, num-
ber of a-labelled edges or number of b-labelled loops for some symbols a, b
of the graph-labelling alphabet. Of course, which mappings qualify as mea-
sures depends on the graph transformation approach and the rules occurring
in the considered control condition. For instance, node-rewriting rules (see,
e.g., [ER97]) usually admit implicit multiplication of embedding edges, so
that an edge-based mapping is no measure. If, however, every rule in the
concrete set will just transfer every incident a-labelled edge to exactly one
replacing node, counting a-labelled edges is valid as a measure. As said above
we employ a graph transformation approach with injective matches, so we
are able to use every graph item and label as basis for a measure.

Change(C) – Estimate upper bounds for C-runs

In order to represent the changes in graph measures inflicted by execution
of a control condition C, we define a set Change(C), which contains for
every C-run a vector indicating the changes inflicted by the C-run. Since
there could be infinitely many or infinitely long C-runs it is not possible to
have one change-vector for every C-run which represents the exact changes
of the respective run. The changes have to be estimated under worst case
assumptions. This is the reason for the notion of assured termination. We
define a set Change(C) ⊆ Zk

∞ of vectors for each control condition C so that
each vector has k entries in Z∞ = Z∪{∞} that serve as upper bounds for the
change in measured values whenever a derivation admitted by C is executed.

Definition 77. Change(C)

Let C be an alap expression over R and
→
μ a measure set.

1. For C = ∅, λ, let Change(C) = ∅

87

2. For C = r ∈ R, let Change(C) = {x}, where x is the unique vector

x =
→
μ(G′)−

→
μ(G) for all G,G′ ∈ G with G⇒

r
G′, and vector difference

is computed component-wise.

3. For C = C1;C2, let Change(C) = {x + y | x ∈ Change(C1), y ∈
Change(C2)}, where vector addition is computed component-wise.

4. For C = C1|C2, let Change(C) = Change(C1) ∪ Change(C2).

5. For C = C∗
0 , C = C0! let Change(C) = {(x1, . . . , xk) | xi =∞ if

∃(y1, . . . , yk) ∈ Change(C0) : yi > 0 and xi = 0 otherwise, for i ∈ [k]}.

The reasons for the entries of Change(C) in item 5. are the following: for an
expression C0 that terminates strongly, C∗

0 admits rule application sequences
where C0 is iterated arbitrarily often, and C0! where C0 is iterated as long
as possible. Any decrease in a measure through a C0-run does not occur if
C0 is iterated zero times. In contrast, an increase in a measure may lead to
arbitrarily large values of that measure, indicated by ∞.
The following lemma states that all changes in the values of measures of
graphs transformed by the application of an alap-expression C are bounded
by Change(C).

Lemma 78. Let C be an alap expression over R.
a) Finite case:

For all G,G′ ∈ G with G
∗
⇒ G′ ∈ SEM (C) there exists x ∈ Change(C) with

→
μ(G′)−

→
μ(G) ≤ x.

b) Infinite case:

For all G
∗
⇒ Gi1

∗
⇒ Gi2

∗
⇒ · · · ∈ SEM(C) there exist a strictly increasing

sequence (p1, p2, . . .), pk ∈ N and x ∈ Change(C) such that
→
μ(Gpk)−

→
μ(G) ≤

x, for all k ∈ N.

Proof. We show the assertions by induction over the structure of C.
a) Finite case:
Basis : For C = ∅ or C = λ, the assertion is true, since SEM (∅) and SEM (λ)
contain no elements.
For C = r ∈ R, the assertion follows from the definition, i.e. Change(r) =

{x} with x =
→
μ(G′)−

→
μ(G) for all G,G′ ∈ G with G⇒r G

′.
Step: Examine each of the cases (i) C = C1;C2, (ii) C = C1|C2, (iii) C =
C∗

0 (!) separately.

(i) Let C = C1;C2 with G
∗
⇒ G

∗
⇒ G′ ∈ SEM (C), and G

∗
⇒ G ∈

SEM (C1), G
∗
⇒ G′ ∈ SEM (C2)

88

By induction hypothesis, we have
→
μ(G)−

→
μ(G) ≤ x1 for some x1 ∈ Change(C1) and

→
μ(G′)−

→
μ(G) ≤ x2 for some x2 ∈ Change(C2).

Consequently,
→
μ(G′)−

→
μ(G) =

→
μ(G′) + (−

→
μ(G) +

→
μ(G))−

→
μ(G) =

(
→
μ(G′)−

→
μ(G)) + (

→
μ(G)−

→
μ(G)) ≤ x2 + x1 = x1 + x2.

x1 + x2 ∈ Change(C1;C2) by definition.

(ii) Let C = C1|C2 and G
∗
⇒ G′ ∈ SEM (C). If G

∗
⇒ G′ ∈ SEM (C1), then

by induction hypothesis there exists x1 ∈ Change(C1) with
→
μ(G′) −

→
μ(G) ≤ x1. Moreover, Change(C) = Change(C1) ∪ Change(C2), so

that x1 ∈ Change(C). The case G
∗
⇒ G′ ∈ SEM (C2) is analogous.

(iii) Let C = C∗
0 (!), G

∗
⇒ G′ ∈ SEM (C), and {x} = Change(C).

Since G
∗
⇒ G′ ∈ SEM (C) = SEM (C∗

0(!)) there are n ∈ N and (G =

G0)
∗
⇒ G1, G1

∗
⇒ G2, . . . , Gn−1

∗
⇒ (Gn = G′) with Gi−1

∗
⇒ Gi ∈

SEM(C0), i ∈ {1, . . . , n} and (G = G0)
∗
⇒ G1

∗
⇒ G2

∗
⇒ . . .

∗
⇒ (Gn =

G′) ∈ SEM (C).
By induction hypothesis there exists x1, . . . , xn ∈ Change(C0) so that
→
μ(Gi)−

→
μ(Gi−1) ≤ xi for all i ∈ {1, . . . , n}. Similarly to (i) we obtain:

→
μ(G′)−

→
μ(G) =

→
μ(Gn)−

→
μ(G0) =

∑n

i=1

→
μ(Gi)−

→
μ(Gi−1) ≤

∑n

i=1 xi =:
x0. In order to prove that x0 ≤ x, we have to compare their entries. If
the k-th entry of x0 is greater than 0, there is at least one xi whose k-th
entry is also greater than 0, so that the k-th entry of x is∞. Otherwise,
the k-th entry of x0 is at most 0, which is the minimal entry that x
may have.

b) Infinite case:

Basis: Let C = ∅, λ, r. There exists no G
∗
⇒ Gi1

∗
⇒ Gi2

∗
⇒ · · · ∈ SEM(C),

hence the proposition is true.
Inductive Step: Examine each of the cases (i) C = C1;C2, (ii) C = C1|C2,
(iii) C = C∗

0 , (iv) C = C0! separately.

(i) Let C = C1;C2 and G = G0
∗
⇒ Gn

∗
⇒ Gn+1

∗
⇒ · · · ∈ SEM(C1;C2)

with G
∗
⇒ Gn ∈ SEM(C1) and Gn

∗
⇒ Gn+1

∗
⇒ · · · ∈ SEM(C2). By a) there

exist x1 ∈ Change(C1) with
→
μ(Gn) −

→
μ(G) ≤ x1 and by induction hypoth-

esis there exists a strictly increasing sequence (j1, j2, . . .), jk ∈ N as well as

x2 ∈ Change(C2) with
→
μ(Gjk)−

→
μ(Gn) ≤ x2.

Let the sequence (p1, p2, . . .) = (j1, j2, . . .) and x = x1+x2 ∈ Change(C1;C2).

89

To show:
→
μ(Gpk) =

→
μ(Gjk)−

→
μ(G) ≤ x.

→
μ(Gn)−

→
μ(G) +

→
μ(Gjk)−

→
μ(Gn) ≤ x1 + x2 ⇔

→
μ(Gjk)−

→
μ(G) ≤ x1 + x2 ⇔

→
μ(Gpk)−

→
μ(G) ≤ x1 + x2 = x

(ii) Let C = C1|C2.

Let G0
∗
⇒ G1

∗
⇒ G2

∗
⇒ · · · ∈ SEM(C1|C2). If G0

∗
⇒ G1

∗
⇒ G2

∗
⇒ · · · ∈

SEM(C1), then by induction hypothesis there exists x1 ∈ Change(C1) and

a strictly increasing sequence (j1, j2, . . .), jk ∈ N with
→
μ(Gjk) −

→
μ(G) ≤ x1.

Moreover, Change(C) = Change(C1)∪Change(C2) , such that x1 ∈ Change(C).

The case G0
∗
⇒ G1

∗
⇒ G2

∗
⇒ · · · ∈ SEM(C2) works analogous.

(iii) Let C = C∗
0 with G

∗
⇒ G1 . . .

∗
⇒ Gn

∗
⇒ Gn+1

∗
⇒ · · · ∈ SEM (C∗

0),

n ∈ N, with (G = G0)
∗
⇒ Gn ∈ SEM(C0)

n, Gi−1
∗
⇒ Gi ∈ SEM(C0), i ∈ [n]

and Gn
∗
⇒ Gn+1

∗
⇒ · · · ∈ SEM (C0). Moreover let {x} = Change(C∗

0). To
show: There exists a strictly increasing sequence (p1, p2, . . .), pk ∈ N with
→
μ(Gpk)−

→
μ(G) ≤ x.

By a) there exist x1, . . . , xn ∈ Change(C0) with
→
μ(Gi) −

→
μ(Gi−1) ≤ xi

for all i ∈ {1, . . . , n}. Moreover by induction hypothesis there exist x′ ∈

Change(C0) and a strictly increasing sequence (j1, j2, . . .)jk∈N,jk>n with
→
μ(Gjk)−

→
μ(Gn) ≤ x′.

Let (p1, p2, . . .) = (j1, j2, . . .).
→
μ(G1)−

→
μ(G0)+

→
μ(G2)−

→
μ(G1)+· · ·+

→
μ(Gn)−

→
μ(Gn−1) +

→
μ(Gpk)−

→
μ(Gn) ≤

∑
i∈[n]

xi + x′ ⇔

→
μ(Gpk)−

→
μ(G0) ≤

∑
i∈[n]

xi + x′

Let x0 :=
∑
i∈[n]

xi To show: x0 + x′ ≤ x. In order to prove that x0 + x′ ≤ x,

we have to compare the entries of x0 + x′ and x. If the k-th entry of x0 + x′

is greater than 0, then the k-th entry of x0 or of x′ is greater than 0. If the
k-th entry of x0 is greater than 0, there is at least one xi whose k-th entry
is also greater than 0, so that the k-th entry of x is ∞. A similar argument
applies to x′. If the the k-th entry of x′ is greater than 0, the k-th entry of x
is ∞. Otherwise, the k-th entry of x0 + x′ is at most 0, which is the minimal
entry that x may have.

(iv) Let C = C0! with d = (G = G0)
∗
⇒ G1

∗
⇒ G2

∗
⇒ · · · ∈ SEM (C0!)

with
1) d ∈ SEM(C0)

∞ and Gi
∗
⇒ Gi+1 ∈ SEM (C0) for i ∈ N, or

2) d1 = (G = G0)
∗
⇒ Gn ∈ SEM (C0)

n for n ∈ N with Gi
∗
⇒ Gi+1 ∈

90

SEM(C0) for i ∈ N and d2 = Gn
∗
⇒ Gn+1

∗
⇒ · · · ∈ SEM (C0), d1 ◦ d2 = d.

Moreover let {x} = Change(C).

To show: ∃(p1, p2, . . .), pk ∈ N with
→
μ(Gpk)−

→
μ(G) ≤ x

ad 1) By a) we have xi ∈ Change(C0) with
→
μ(Gi+1)−

→
μ(Gi) ≤ xi, i ∈ N. Let

(p1, p2, . . .) = (0, 1, 2, . . .).
→
μ(G1)−

→
μ(G0) +

→
μ(G2)−

→
μ(G1) + · · ·+

→
μ(Gpk)−

→
μ(Gpk−1) ≤

∑
i=0,...,pk

xi ⇔

→
μ(Gpk)−

→
μ(G0) ≤

∑
i=0,...,pk

xi ⇔

To show:
∑

i=0,...,pk

xi ≤ x. Like in (iii) if the k-th entry of
∑

i=0,...,pk

xi is greater

than 0, there is at least one xi whose k-th entry is also greater than 0, so
that the k-th entry of x is ∞. Otherwise, the k-th entry of

∑
i=0,...,pk

xi is at

most 0, which is the minimal entry that x may have.

ad 2) analogously to (iii)

Lemma 79. Let C be an alap expression over R.
Change(C) is finite.

Proof. Induction over the structure of C
Basis : For C = r ∈ R, Change(r) consists of a unique vector by definition.
Step:
(i) Let C = C1;C2. By induction hypothesis, Change(C1) and Change(C2)
are finite. By construction, Change(C1;C2) contains at most the product of
the sizes of Change(C1) and Change(C2) and therefore is finite, too.
(ii) Let C = C1|C2. By induction hypothesis, Change(C1) and Change(C2)
are finite. By construction, Change(C1|C2) is the union of these sets and
consequently finite.
(iii) Let C = C∗

0(!). By construction, Change(C) consists of a unique vector.

Petri nets to model and analyse the interaction of C-runs

With Change(C) we have a means to estimate what is deleted and added by
C-runs. In order to decide whether SEM (C)∞ = ∅ we have to analyse the
possibilities of interaction between the different C-runs. This is done with
the help of Petri nets and their algebraic analysing methods.

Using the vectors of Change(C) we construct a Petri net. The places rep-
resent the different graph measures and the transitions represent the C-runs

91

(respectively subsumptions of them). The edges are marked with values
of the vectors from Change(C), so when a transition fires the graph items
modified by the respective C-run are added to and subtracted from the re-
spective places. The incidence matrix of the Petri net is given by the vectors
of Change(C) as columns. Since Change(C) contains ∞-labels they also
occur in the Petri net. As ∞ is no number usually Petri nets do not contain
∞ markings and also there are no ∞ entries in a matrix, but in our case the
∞ entries do no harm. Why this is the case is explained later.

Definition 80. Constructing Petri-net NC from alap-expression C
Let C be an alap expression over R and let

→
μ = (μi)i∈[k] be a measure set.

Construct the pure Petri net NC as follows.

• The set of places is PC = {l ∈ [k]},

• the set of transitions is TC = Change(C),

• the incidence matrix AC has as columns the vectors in Change(C).

In order to decide if there can be an infinitely long concatenation of C-runs,
we have to look if there is at least one transition in the Petri net, which
can fire infinitely often. This property is called partial repetitiveness and
was introduced in the Preliminaries. Partial repetitiveness means that there
exists an initial marking and a firing sequence such that some transitions fire
infinitely often. The other way round if the Petri net is not partially repetitive
for all initial marking there is no transition which can fire infinitely often
hence there can not be an infinitely long sequence build by concatenations
of C-runs. This is formalised by the following lemma.

Lemma 81. Let C be an alap-expressions and NC the pure Petri net con-
structed from C. Then
NC is not partially repetitive ⇒ SEM(C)∞ = ∅.

Proof. By contra-position to Definition 33 of partial repetitiveness we ob-
tain: NC is not partially repetitive ⇒ ¬(∃M0 and a firing sequence σ from
M0 such that some transition occur infinitely often in σ)
⇔ NC is not partially repetitive ⇒ ∀M0 and firing sequences σ from M0 all
transitions occur finitely often in σ.
This in turn implies that there exists no infinitely long derivation SEM(C) ◦
SEM(C) ◦ . . . , consisting of C-runs, since all elements of SEM (C) are rep-
resented by transitions of the Petri net and there are only finitely many
transitions. Therefore SEM(C)∞ = ∅.

With the help of Lemma 81 and 75 we define assured termination.

92

Definition 82. Assured termination
Let C be an alap expression over R.
C terminates assuredly if for all subexpressions C∗

0 and C0! holds NC0
is not

partially repetitive.

Remark 3. Assured termination implies structural termination.

Partial repetitiveness can be shown with the help of the incidence matrix.
The changes in the graph measures caused by a derivation represented by a
Parikh-vector can be computed by multiplying the incidence matrix with the
Parikh-vector. When there is no Parikh-vector �= 0, i.e. at least one C-run is
executed, such that all caused changes in graph measures are non-negative,
this implies that every possible combination of C-runs deletes something, i.e.
there could not exist an infinitely long derivation composed of C-runs.

Lemma 83. NC is not partially repetitive if and only if there is no vector
x : TC → Z of non-negative integers such that AC ∗ x ≥ 0 and x �= 0.

Proof. By contra position to theorem 34 in both directions we obtain the
proposition.

”⇒”: ¬(there exists a |T |−vector x : T → Z of non-negative integers such
that A ∗ x ≥ 0 and x �= 0) ⇒ ¬(N is partially repetitive) ⇔
there exists no |T |−vector x : T → Z of non-negative integers such that
A ∗ x ≥ 0 and x �= 0 ⇒ N is not partially repetitive

”⇐”: analogous

In order to show that there is no vector x : T → Z of non-negative integers
such that A∗x ≥ 0 and x �= 0 we can use e.g. the Fourier-Motzkin elimination
presented in the Preliminaries.

Dealing with ∞-entries

The Fourier-Motzkin elimination is not defined for entries with the value
∞, but in our case ∞ does not cause trouble. When a control condition
terminates assuredly it is due to other entries than those with the coefficient
∞. In order to be able to calculate, the ∞ entries are replaced by variables.
The inequations then of course are not resolved to this variables.

93

6.3 An Algorithm to Check Assured Termi-

nation

Using the results of this chapter we can state the following algorithm to check
assured termination for an alap expression C.

Check(C : alap expression over R) : {true, false};
case C ∈ R :

return true;
C = C1;C2 or C = C1|C2 :

return Check(C1) and Check(C2);
C = C∗

0 or C = C0! :
return Check(C0) and NC0

is not partially repetitive
endcase

6.3.1 Example

As a simple example to show the application of the Check-algorithm we
present the transformation unit ShortDist. ShortDist computes the short-
est distance between every two nodes in a graph. It is depicted in Figure 6.3.1
and works as follows: As input it receives a ”road map graph” with distance-
edges (d-edges) between some nodes, representing the roads, labelled with
the distance between the two respective nodes and with test-edges (t-edge)
between all nodes labelled with t :∞.

With the rules min1 and min2 applied in choice as-long-as-possible the test-
edges between every two nodes are marked with the minimum of all parallel
d-edges existing between these nodes, i.e. the distance of the shortest road
between this nodes. (min1 relabels every t-edge, labelled with ∞ with the
value of an arbitrary parallel d-edge. min2 relabels an t-edge, labelled with
a natural number, with the value of a parallel d-edge if this value is smaller.)
The t-edges between nodes with no d-edges inbetween remain labelled with
∞.

The rules sum1 and sum2, applied choicewise as-long-as-possible, label step
by step the t-edges with the shortest distances between their nodes. The rule
sum1 searches for triangles of t-edges labelled only with natural number. It
relabels an edge if its label is greater than the sum of the two other edges.
The rule sum2 searches for triangles of t-edges where one edge is labelled with
∞ and the others with natural numbers. It replaces the ∞ with the sum

94

of the two other edges. Both rules relabel an edge if there is a shorter path
between the nodes of the edge. We have two min rules and two sum rules
in order to distinct between the deletion/addition of ∞ values and natural
numbers. We need this distinction for the purpose of specifying the graph
measures.

ShortDist

initial: graph with edges between all nodes labelled with t :∞

rules: min1 = ⊇ ⊆ a ∈ N+
t:∞
d:a d:a

t:a
d:a

min2 = ⊇ ⊆ if a < z,
a, z ∈ N+

t:z
d:a d:a

t:a
d:a

sum1 = ⊇ ⊆ if a + b < z,
z, a, b ∈ N+

t:a t:b

t:z

t:a t:b t:a t:b

t:a+b

sum2 = ⊇ ⊆ a, b ∈ [n],
n ∈ N+

t:a t:b

t:∞

t:a t:b t:a t:b

t:a+b

control: (min1|min2)!; (sum1|sum2)!

Figure 6.1: The Transformation Unit ShortDist

Applying the Check-Algorithm

check((min1|min2)!; (sum1|sum2)!)
⇔ check((min1|min2)!) and check((sum1|sum2)!)
⇔ check((min1|min2)) and Nmin1|min2

is not part. rep. and
check(sum1|sum2) and Nsum1|sum2

is not part. rep.
⇔ check(min1) and check(min2) and Nmin1|min2

is not part. rep. and
check(sum1) and check(sum2) and Nsum1|sum2

is not part. rep.
⇔ T and T and Nmin1|min2

is not part. rep. and
T and T and Nsum1|sum2

is not part. rep.
⇔ Nmin1|min2

is not part. rep. and Nsum1|sum2
is not part. rep.

In order to decide whether Nmin1|min2
respectively Nsum1|sum2

is not partially
repetitive we apply Lemma 83. Lemma 83 uses the incidence matrix of the

95

net, which is constructed by the change-vectors of the respective alap expres-
sion. As graph measures we employ the number of t-edges labelled with ∞
(first component of change-vector), and the total amount of the values of all
t-edges not labelled with ∞ (second component of change-vector).
First we apply Lemma 83 to min1|min2 and afterwards to sum1|sum2.

Change(min1|min2) = Change(min1) ∪ Change(min2) =
{(−1,+a1)} ∪ {(0,−(z − a2))} = {(−1,+a1), (0,−(z − a2))}

Amin1|min2
=

(
−1 0
+a1 −(z − a2)

)
According to Lemma 83 we have the following inequations:
I −1 ∗ x1 + 0 ∗ x2 ≥ 0
II a1 ∗ x1 − (z − a2) ∗ x2 ≥ 0
Dissolving the two inequations to x1 leads to:
I x1 ≤ 0
II x1 ≥ ((z − a2) ∗ x2)÷ a1
Putting I and II together leads to ((z − a2) ∗ x2)/a1 ≤ x1 ≤ 0
As we can read directly x1 ≤ 0. Since (z − a2) and a1 greater than 0
((z − a2) ∗ x2)/a1 ≤ x1 ≤ 0 implies that x2 =≤ 0. Since x1 and x2 must not
be negative they both have to be 0. Thus Nmin1|min2

is not partially repetitive.

Change(sum1|sum2) = Change(sum1) ∪ Change(sum2) =
{(0,−y) | y = z − (a1 + b1)} ∪ {(−1, p) | p = a2 + b2} =
{(0,−y), (−1, p) | y = z − (a1 + b1), p = a2 + b2}

Asum1|sum2
=

(
0 −1
−y p

)
According to Lemma 83 we have the following two inequations:
I = 0 ∗ x1 − 1 ∗ x2 ≥ 0 and
II = −y ∗ x1 + p ∗ x2 ≥ 0
Dissolve the two equations to x2 leads to
I = x2 ≥ (y ∗ x1)/p and
II = x2 ≤ 0.
Putting these inequations together gives the following result: (y ∗ x1)/p ≤
x2 ≤ 0. Since p > 0 it follows x1 ≤ 0 and x2 ≤ 0. Since x1 and x2 must
not be negative they both have to be 0. This implies that Nsum1|sum2

is not
partially repetitive.

96

Chapter 7

Stepwise Controls

This chapter introduces a control condition, which allows to directly guide
the graph transformation process. It is called stepwise control.

Control conditions cut down the non-determinism of rule application leading
to a decreased amount of permitted derivations. Nevertheless this reduction
most of the time does not apply to the time the computation of these permit-
ted derivations takes. Often the semantics of a control condition is computed
by building non-deterministically all possible derivations according to the
given rules and then select those derivations which satisfy the control condi-
tion. Although this procedure cuts down the set of admitted derivations the
time it takes to compute them may be still exponential. Various examples
indicate that this approach is adequate on the level of modelling. But with
respect to the explicit execution, it is not very helpful. From the viewpoint of
execution, one would like to have a way of controlling the derivation process
directly by the control condition so that derivations are only prolonged if
they may end up to be permitted. If derivations take place in such a direct
control mode, then the control condition determines which next steps are
permitted at each current state of derivation.

A well known example of a direct control condition is a priority condition.
Given a current graph, many rule applications may be possible, but only
one is performed using a rule with highest priority. Another nice example
of a direct control condition is a finite state automaton with rules as inputs.
Beginning with the initial state of the automaton the following procedure
is iterated starting with some initial graph: Choose a rule that has a state
transition from the current state to a follow-up state which becomes the new
current state, apply this rule to the current graph yielding the new current
graph. The procedure can stop whenever a final state is reached. In this

97

case, the resulting derivation is permitted.

In the following we define, construct, and execute basic stepwise controls
providing permitted derivations (respectively graph pairs) as semantics. In
order to construct stepwise controls we introduce some basic compositions of
stepwise controls. On the basis of these composition operators we transform
already existing control conditions to stepwise controls. Particularly we in-
troduce parallel stepwise controls which are able to model weak, synchronous,
and proactive processes. The last section then equips transformation units
with stepwise controls.

7.1 Basic Stepwise Controls

To get an image of a stepwise control one can imagine a finite state automaton
extended by the ability to make a transition depending on some conditions.
For example make a transition if a given rule is applicable to the current
graph or only make a transition if a given rule is not applicable. Stepwise
controls are additionally equipped with a set of regulation statements for
steering their execution.

7.1.1 Definition and Construction

A stepwise control comprises a set of states, also called control states, in-
cluding a start state and a set of final states. Control states are linked by
transitions provided by a so called guard relation. The guard relation regu-
lates the derivation process. Given a control state and a graph it provides a
choice of actions or regulation statements leading to a result graph and a
next control state. Actions may be any graph transforming devices, which
provide a semantics consisting of graph pairs, in the simplest case they are
rules. Regulation statements help to steer the derivation process and do not
transform the input graph.

Definition 84. Stepwise control
A stepwise control SC is a tuple SC = (S, s0, F, A,R, guard) with

• S is a finite set of control states,

• s0 ∈ S is an initial control state,

• F ⊆ S is a set of final control states,

98

• A is a finite set of actions which provide a semantics SEM(x) ⊆ G ×
G ∀x ∈ A,

• R is a set of regulation statements, and

• guard is a relation with guard ⊆ G × S × (A ∪ R) × G × S. Mostly
referred to as guard(G, s, x) ⊆ G×S or guard(G, s) ⊆ (A∪R)×G×S
for G ∈ G, s ∈ S and x ∈ A ∪ R.

Given an input graph G and a control state s, the guard relation provides a
selection of possible next transition steps potentially subject to some condi-
tions regarding the input graph G. I.e. it provides in each case an action or
regulation statement x, each leading to a graph G′ and a next control state
s′, where G′ is the result graph of a graph transformation performed by the
action x if x ∈ A, or G′ = G if x is a regulation statement. If no transition
step is possible the result of the guard relation is the empty set.

In the following we model some simple stepwise controls and afterwards in-
troduce some basic composition operators for stepwise controls.

Examples: Some simple stepwise controls

The following examples present some simple stepwise controls modelling a
rule application, a rule application attempt, and an application of a rule as
long as possible.
For the given examples let r ∈ R be a rule and G,G′ ∈ G be graphs.

Rule application .
SC(r) = ({s0, s1}, s0, {s1}, {r}, ∅, guard) with
guard(G, s0, r) = {(G

′, s1) | G⇒
r
G′}.

s0 s1
r

G ⇒
r

G′

Try .
SC(try(r)) = ({s0, s1}, s0, {s1}, {r}, {skip}, guard) with
guard(G, s0, r) = {(G

′, s1) | G⇒
r
G′}, and

guard(G, s0, skip) = {(G, s1) | ¬∃G⇒
r
G′}.

s0 s1

r

skip

G ⇒
r

G′

�G ⇒
r

G′

99

As-long-as-possible .
SC(r!) = ({s0, s1}, s0, {s1}, {r}, {skip}, guard) with
guard(G, s0, r) = {(G

′, s0) | G⇒
r
G′}, and

guard(G, s0, skip) = {(G, s1) | �G⇒
r
G′}.

r
G ⇒

r

G′

s0 s1
skip

�G ⇒
r

G′

Composition of stepwise controls

Like finite state automata, stepwise controls can be composed sequentially,
in choice, and iteratively. The following definition implements these compo-
sitions adapting the respective definitions for automata.

Definition 85. Basic composition of stepwise controls
Let SC i = (Si, s0i, Fi, Ai, Ri, guardi) for i = 1, 2, 3 be stepwise controls.
Moreover, let G,G′ ∈ G be graphs.

Sequential composition
The sequential composition of SC1 and SC2 is defined by

SC1;SC2 = (S1 � S2, s01, F, A1 ∪ A2, R1 �R2, guard) with

F =

{
F1 ∪ F2 if s02 ∈ F2

F2 otherwise,

guard(G, s, x) = guard1(G, s, x), s ∈ S1, x ∈ A1 ∪ R1,
guard(G, s, x) = guard2(G, s, x), s ∈ S2, x ∈ A2 ∪ R2, and
guard(G, f, x) = {(G′, s′) | f ∈ F1, (G

′, s′) ∈ guard2(G, s02, x), x ∈
A2 ∪ R2}.

Choice composition
The choice composition of SC1 and SC2 is defined by

SC1|SC2 = (S1 � S2 � {s0}, s0, F, A1 ∪ A2, R1 � R2, guard) with

F =

{
F1 ∪ F2 ∪ {s0} if s0i ∈ Fi, i ∈ {1, 2}

F1 ∪ F2 otherwise,

guard(G, s1, x1) = guard1(G, s1, x1) ∀s1 ∈ S1, x1 ∈ A1 ∪ R1,
guard(G, s2, x2) = guard2(G, s2, x2) ∀s2 ∈ S2, x2 ∈ A2 ∪ R2,
guard(G, s0, x) = {(G

′, s′) | (G′, s′) ∈ guard1(G, s01, x), x ∈ A1 ∪
R1}, and
guard(G, s0, x) = {(G

′, s′) | (G′, s′) ∈ guard2(G, s02, x), x ∈ A2 ∪
R2}.

100

Iteration
The iteration of SC is defined by

SC∗
3 = (S3 ∪ {s0∗}, s0∗, F3 ∪ s0∗, A3, R3, guard∗) with

s0∗ /∈ S3,
guard∗(G, s, x) = guard3(G, s, x)
guard∗(G, s0∗, x) = guard3(G, s03, x), and
guard∗(G, f, x) = guard3(G, s03, x), f ∈ F3.

These composition operators can be employed to construct more complex
stepwise controls from already existing ones. In Section 7.2.2 we employ them
to recursively construct stepwise controls from given control conditions.

7.1.2 Execution of Stepwise Controls

An execution of a stepwise control begins at the start state with a given input
graph. According to the guard relation possible steps are performed, each
step resulting in a next control state and a new graph. When a final control
state is reached the execution stops (for the current computation branch).
The derivation induced by the computation is permitted by the stepwise con-
trol.

In order to make the execution tangible in a formal way we combine the
current graph and the current control state to a configuration. Then the ex-
ecution of a stepwise control can be considered as sequences of computation
steps on configurations.

Definition 86. Configuration
Let SC = (S, s0, F, A,R, guard) be a stepwise control.

A configuration is a pair (G, s) with G ∈ G and s ∈ S.
It is initial if s = s0 and terminal if s ∈ F .

Definition 87. Computation
Let SC = (S, s0, F, A,R, guard) be a stepwise control.

• A computation step is given by (G, s) x (G′, s′) if (G′, s′, x) ∈ choice(G, s)
for some x ∈ A∪R.

(Also denoted by (G, s) (G′, s′) if x is not of interest.)

101

• A computation is a sequence of computation steps

(G0, s0) x1
(G1, s1) x2

. . . xn
(Gn, sn), n∈N starting at an initial configu-

ration. (Abbreviated by (G0, s0)
n (Gn, sn) or (G0, s0)

* (Gn, sn).)
The shortest computation is given by a configuration (G, s0).

• A computation (G0, s0) x1
(G1, s1) x2

. . . xn
(Gn, sn) is complete if (Gn, sn)

is a terminal configuration.

A computation is composed of computation steps, each performing an action
modifying the current graph, or a regulation step, which does not alter the
current graph. A computation contains all necessary information to provide
a semantics of stepwise controls comprising permitted derivations or graph
pairs.

7.1.3 Semantics of Stepwise Controls

Permitted graph pairs can straightforwardly be build from the set of complete
computations. One only has to combine the input and result graphs of each
computation to a pair.

Definition 88. Semantics: Permitted graph pairs SEMg

Let SC be a stepwise control condition. The set of all permitted graph pairs
is defined by

SEMg(SC) = {(G,G′) | (G, s0)
* (G′, sn) is a complete computation}.

In order to provide permitted derivations, we have to transform the complete
computations to derivations, i.e. we have to remove the regulation steps
and the states and assemble the remaining information to a derivation. A
derivation build from a computation is called induced derivation and defined
as follows.

Definition 89. Induced derivation
Every computation of a stepwise control SC = (S, s0, F, A,R, guard) induces
a derivation recursively defined by

⇒

d((G, s) x (G′, s′)) =

{
G⇒

x
G′ if x ∈ A.

G
0
⇒ G otherwise.

⇒

d((G, s) x (G′, s′) * (Ḡ, s̄)) =

⎧⎨
⎩G⇒

x
G′ ◦

⇒

d((G′, s′) * (Ḡ, s̄)) if x ∈ A.
⇒

d((G′, s′) * (Ḡ, s̄)) otherwise.

102

The semantics of a stepwise control providing a set of permitted derivations
then is defined by the set of all induced derivations from complete computa-
tions.

Definition 90. Semantics: Permitted derivations SEMd

Let SC be a stepwise control condition. The set of all permitted derivations
is defined by

SEMd(SC) = {
⇒

d((G0, s0)
* (Gn, sn)) | (G0, s0)

* (Gn, sn) is a complete
computation}.

In order to obtain stepwise controls one can model them from scratch as it
is done above for simple examples. Another option is to transform existing
control conditions to stepwise controls, which is the focus of the next section.

7.2 Transform Given Control Conditions to

Stepwise Controls

Given basic stepwise controls modelling rule applications, and the com-
position operators provided in the last section one can straightforwardly
model regular expressions over rules as stepwise controls. In the follow-
ing we construct stepwise controls for weak parallel and synchronous expres-
sions, straightforwardly employing the automata constructions from Chapter
4. Also we construct stepwise controls from ’downgraded’ alap-expressions,
which are alap-expressions without the operators ∗ and | . Finally, we in-
troduce parallel stepwise controls executing weak parallel, synchronous, and
proactive expressions.

7.2.1 Weak and Synchronous Stepwise Controls

In Chapter 4 we have constructed finite state automata which execute weak
and synchronous expressions. Since stepwise controls resemble finite state
automata we could transfer these definitions to fit stepwise controls.

In order to model weak and synchronous expressions as stepwise controls
we employ the composition operators introduced in Definition 85 and addi-
tionally define the weak and synchronous composition of stepwise controls.

Definition 91. Weak and synchronous expressions to stepwise con-
trols

103

Let C,C1, C2 be parallel expressions. Stepwise controls for parallel expres-
sions are recursively defined by:

• SC(∅) = ({s0}, s0, ∅, ∅, ∅, ∅),

s0

• SC(λ) = ({s0}, s0, {s0}, ∅, ∅, ∅),

s0

• SC(r) = ({s0, s1}, s0, {s1}, {r}, ∅, guard) with
guard(G, s0, r) = {(G

′, s1) | G⇒
r
G′},

s0 s1
r

G ⇒
r

G′

• SC(C1;C2) = SC(C1);SC(C2),

• SC(C1 | C2) = SC(C1) | SC(C2),

• SC(C∗) = SC(C)∗,

• SC(C1$C2) = SC(C1)$SC(C2),

• SC(C1 �� ��C2) = SC(C1) �� ��SC(C2).

To define the weak parallel and synchronous composition of two stepwise
controls we modify the definitions for the respective compositions of finite
state automata (Definitions 53 and 54). Since stepwise controls for parallel
expressions do not contain regulation statements, they do not have to be
considered by the parallel composition, i.e. the set R stays empty.

Definition 92. Weak parallel composition of stepwise controls
Let SC1 = (S1, s01, F1, A1, ∅, grd1) and SC2 = (S2, s02, F2, A2, ∅, grd2) be two
stepwise control conditions constructed from parallel expressions. The weak
parallel composition of SC1 and SC2 is defined by
SC1 �� ��SC2 = (S, s0, F, A, ∅, grd) with
S = S1 × S2,
s0 = (s01, s02),
F = F1 × F2,
A = (A1|×|A2) ∪A1 ∪ A2,
R = ∅,
Simultaneous execution step with parallel rule composed of rules r1 from SC1

104

and r2 from SC2:
grd(G, (s1, s2), r1 r2) = {(G

′, (s′1, s
′
2)) | r1 ∈ A1, r2 ∈ A2,

(G′
1, s

′
1) ∈ grd1(G, s1, r1),

(G′
2, s

′
2) ∈ grd2(G, s2, r2),

G ⇒
r1+r2

G′},

SC1 operates alone:
grd(G, (s1, s2), r1) = {(G

′
1, (s

′
1, s2)) | (G

′
1, s

′
1) ∈ grd1(G, s1, r1), r1 ∈ A1},

SC2 operates alone:
grd(G, (s1, s2), r2) = {(G

′
2, (s1, s

′
2)) | (G

′
2, s

′
2) ∈ grd2(G, s2, r2), r2 ∈ A2}.

The first equation of guard defines a simultaneous execution step with the
parallel rule composed of the respective rules from the input stepwise con-
trols. The second and the third equation define a transition step where only
one of the input stepwise controls is operating.

Definition 93. Synchronous composition
Let SC1 = (S1, s01, F1, A1, ∅, grd1) and SC2 = (S2, s02, F2, A2, ∅, grd2)be two
stepwise control conditions constructed from parallel expressions. The syn-
chronous composition of SC1 and SC2 is defined by
SC1$SC2 = (S, s0, F, A, ∅, grd) with

• S = (S1 × S2) ∪ S1 ∪ S2,

• s0 = (s01, s02),

• F = F1 × F2,

• A = (A1|×|A2) ∪A1 ∪A2,

• R = ∅, and

• transition step with a parallel rule:
grd(G, (s1, s2), r1 r2) = {(G

′, (s′1, s
′
2)) | r1 ∈ A1, r2 ∈ A2,

(G′
1, s

′
1) ∈ grd1(G, s1, r1),

(G′
2, s

′
2) ∈ grd2(G, s2, r2),

G ⇒
r1+r2

G′},

one input stepwise control operates further alone if the other has reached
a final state:
grd(G, (s1, s2), x1) = {(G

′, s′1) | s2 ∈ F2, x1 ∈ A1, (G
′
1, s

′
1) ∈ grd1(G, s1, x1)},

grd(G, (s1, s2), x2) = {(G
′, s′2) | s1 ∈ F1, x2 ∈ A2, (G

′
2, s

′
2) ∈ grd2(G, s2, x2)},

keep original guard relations:

105

grd(G, s1, r1) = {(G
′, s′1) | (G

′
1, s

′
1) ∈ grd1(G, s1, r1)},

grd(G, s2, r2) = {(G
′, s′2) | (G

′
1, s

′
2) ∈ grd2(G, s2, r2)}.

Please note, that the weak and synchronous composition of stepwise controls
are only defined for stepwise controls build from weak and synchronous ex-
pressions.

The semantics of stepwise controls for weak parallel and synchronous ex-
pressions is defined as for basic stepwise controls.

Modelling proactive expressions in a similar way would result in an huge and
complex stepwise control containing all possibilities to proactively compose
the provided rules regarding the current graph, and the regulation neces-
sary to organise the different cases. Therefore, in the next section we rather
present a stepwise control implementing parallelism in a different way.

7.2.2 Parallel Stepwise Controls

A parallel stepwise control is a modified basic stepwise control able to model
weak parallel, synchronous, and proactive processes. Different from stepwise
controls for weak and synchronous expressions, it does not explicitly provide
transitions labelled with parallel rules. The structure of a parallel stepwise
control only provides the information which of its parts have to be executed
in parallel, not how. The actual composition of the intended parallel rules
takes place in the course of the stepwise control’s computation.

In order to indicate which parts of the stepwise control have to be executed
in parallel we employ hyperedges. Hyperedges do not only link two single
states but sets of states, i.e. several states could be linked by only one edge.
Considering parallel stepwise controls a hyperedge from a single state to a
set of states indicates that all the target states have to be considered simul-
taneously during execution of the stepwise control. Vice versa a hyperedge
from a set of states to a single state indicates that the parallel consideration
of the source states ends.

A parallel stepwise control does not differ much from a basic stepwise control.
One difference is that, due to the hyperedges, its guard relation operates on
sets of states instead of single states. The other difference is that a paral-
lel stepwise control contains a set of waiting states W . W comprises states
in which the stepwise control explicitly is allowed to wait, i.e. it does not
have to perform a rule application while executed in parallel with others.

106

We need explicit waiting states due to synchronous composition of parallel
stepwise controls. This is explained in more detail when introducing parallel
composition (Definition 96).

Definition 94. Parallel stepwise control
A parallel stepwise control is a tuple pSC = (S, s0, F,W,A,R, guard) where

• S, s0, F, A,R, are defined as for basic stepwise controls (Def. 84),

• W ⊆ S is a set of waiting states, and

• guard is the transition relation operating on sets of states,
guard ⊆ (G × P(S)× (A ∪ R)× G × P(S)).

The following definition recursively constructs a parallel stepwise control
from a given parallel expression.

Definition 95. Parallel stepwise control from parallel expression
Let C be a proactive, weak, or synchronous expression. The parallel stepwise
control implementing C, pSC(C), is recursively defined by:

• pSC(∅) = ({s0}, s0, ∅, ∅, ∅, ∅, ∅),

• pSC(λ) = ({s0}, s0, {s0}, ∅, ∅, ∅, ∅),

• pSC(r) = ({s0, s1}, s0, {s1}, ∅, {r}, ∅, guard)
guard(G, {s0}, r) = {(G

′, {s1}) | G⇒
r
G′},

• pSC(C1;C2) = pSC(C1); pSC(C2),

• pSC(C1 | C2) = pSC(C1) | pSC(C2),

• pSC(C∗) = pSC(C)∗,

• pSC(C1PC2) = pSC(C1) pSC(C2),

• pSC(C1 �� ��C2) = pSC(C1) pSC(C2),

• pSC(C1$C2) = pSC(C1) pSC(C2).

The sequential, choice, and iterative composition are defined analogously to
basic stepwise controls (Definition 85), apart from employing sets of states
instead of single states in the guard relation and taking into account the
waiting states by uniting the waiting states of the input stepwise controls.
Since the differences are marginal we do not provide the definitions explic-
itly. The weak, synchronous, and proactive composition are all mapped to

107

the parallel composition of stepwise controls, pSC(C1) pSC(C2), implement-
ing the general parallel structure.

In order to compose two stepwise controls in parallel we add a new start
state and link it to the former start states with a begin||-hyperedge, indicat-
ing their parallel association. To enable an input stepwise control to wait,
when its execution has come to an end we add copies of all former final states,
serving as waiting states. Every former final state then is linked to its copy
by an transition labelled with wait. In order to quit the parallel execution
of the two input stepwise controls we link by pairs of two the waiting states
(one originated in F1 and one in F2) by a hyperedge labelled with end|| to
a new final state. The new set of waiting states is comprised of the former
waiting states and the new ones. We do not use the former final states them-
selves as waiting states for two reasons. First of all, the explicit distinction of
final states from the other states is lost when composing the input stepwise
controls. Hence, we need another way to distinct waiting states from the
other states, e.g., another explicitly given set. If we would use the former
final states collected in such a set it could be the case that a final state also
has another outgoing transition, e.g., labelled with a rule. Allowed to wait a
stepwise control could pause execution if the respective rule is not applicable
and continue if it is. This is forbidden when composing two stepwise controls
synchronously. Consider the same situation employing copies of former final
states as waiting states. Now, being in a former final state the stepwise con-
trol can choose to continue execution choosing the transition with the rule,
or stop execution by making the transition to the respective waiting state.
(Since the technical realisation of a copy operation would make the following
definition confusing we do not explicitly define and use such a function. In-
stead we use a ”dummy”-function copy(state), considered to provide a copy
of state which could be recognised as a copy of state.

Definition 96. pSC||pSC
Let pSC1 = (S1, s10 , F1,W1, A1, R1, grd1) and
pSC2 = (S2, s20 , F2,W2, A2, R2, grd2) be two parallel stepwise controls.
The parallel composition of pSC1 and pSC2 is defined by:

pSC1||pSC2 = (S, s0, {sf},W,A,R, grd) with

• S = S1�S2�{s0, sf}∪copy(F1)∪copy(F2), Since F1 and F2 are subsets
of S1 respectively S2 we assume copy(F1) and copy(F2) to be disjoint.

• W = W1 ∪W2 ∪ copy(F1) ∪ copy(F2), Since W1 and W2 are subsets of
S1 respectively S2 we assume W1 and W2 to be disjoint and, as above,

108

copy(F1) and copy(F2) to be disjoint.

• A = A1 ∪ A2,

• R = R1 ∪ R2 ∪ {begin||, end||, wait},

• Hyperedge from new start state to both old start states to indicate
their parallel connection:
grd(G, {s0}, begin||) = {(G, {s10, s20})},

Hyperedges from each possible pair of waiting states (one associated
with pSC1 the other with pSC2) to new final state in order to quit par-
allel connection:
grd(G, {s1, s2}, end||) = {(G, {sf})}, s1 ∈ copy(F1), s2 ∈ copy(F2),

Keep original guard relations:
grd(G, {s}, x) = {(G′, {s′}) | (G′, {s′}) ∈ grd1(G, {s}, x)∪grd2(G, {s}, x)},

Keep original hyperedges:
grd(G, {s}, begin||) = {(G, {s1, s2}) | (G, {s1, s2}) ∈

grd1(G, {s}, begin||) ∪ grd2(G, {s}, begin||)},
grd(G, {s1, s2}, end||) = {(G, {s}) | (G, {s}) ∈

grd1(G, {s1, s2}, end||) ∪ grd2(G, {s1, s2}, end||)},

Link all old final states to their respective waiting state:
grd(G, f, wait) = {(G, f ′) | f ′ = copy(f)}∀f ∈ F1 ∪ F2.

For illustration, Figure 7.1 depicts a schematic representation of the paral-
lel composition of two stepwise controls. The ”assembly” of hyperedges is
denoted by a dot, in order to distinguish the assembly from an arbitrary
intersection of edges. The input stepwise controls are depicted in grey.

109

s0 beg||

s01

wait

wait

s02

wait

wait

sf

end||

end||

end||

end||

Figure 7.1: Parallel composition of two stepwise controls

Parallel computation

Parallel computation realises the execution of a parallel stepwise control. It
operates on sets of states, all of which have to be considered in each compu-
tation step. According to the kind of computation step some of these states
make a transition (e.g., the computation performs a regulation step for one
of the states, or it performs a synchronous transition step, where all states
have to make a transition.) The next current state is given by the follower
states of the performed transitions and the states that made no transition.
The next current graph is obtained by applying the respective (parallel) rule
if the transitions where labelled with rules, or the current graph stays the
same if the computation has performed a regulation step.

Formally, a parallel computation runs on parallel configurations comprising
the current graph and the set of current states.

Definition 97. Parallel configuration
Let pSC = (S, s0, F,W,A,R, guard) be a parallel stepwise control.

A parallel configuration is a pair (G, cS) with G ∈ G is the current graph
and cS ⊆ S is the set of current states.
It is initial if cS = {s0} and terminal if cS = {sf} with sf ∈ F .

The parallel computation performs a single rule application or regulation
step analogously to basic stepwise controls: considering a current state a
transition is chosen and performed. In order to prevent the application of a
single rule when parallelism is demanded, a single rule application only can
be performed if the set of current states contains only this single rule. To
keep the reading simple in the following we call ”the set of current states” cS.

110

In order to perform a parallel rule application a subset Sact ⊆ cS is cho-
sen according to the parallel form (weak, proactive, or synchronous). This
set contains all active states that make a transition in the current compu-
tation step. The passive states which make no transition are assembled in
a set called Spass. For weak parallel composition Sact is an arbitrary subset
of cS. Considering proactive composition it is a subset of cS subject to the
following condition: After choosing a rule-labelled transition for each state
in cS, each parallel rule composed of the respective rules and one additional
rule provided by a transition for some state in Spass is no more applicable to
the current graph. For synchronous composition Sact contains all states of
cS, that are no waiting states.

For each state from Sact one transition is chosen providing a rule and a
next state. (Please note, that there may be several possibilities to make such
a choice, since the considered stepwise controls are non-deterministic.) The
obtained rules are composed to a parallel rule and applied to the current
graph, leading to the result graph of the computation step. All the next
states provided by the chosen transitions and the states from Spass consti-
tute the next current state.

Since a parallel stepwise control is recursively constructed the information,
which of its parts have to be considered in parallel, is encoded in the structure
of the stepwise control by successive begin||-hyperedges. Hence, the compu-
tation may only perform a parallel rule application if all states, associated
by successive begin||-hyperedges, have been collected. In order to collect
all these states beforehand the computation has to prefer transitions with
begin||-hyperedges. This vice versa applies analogously to end||-hyperedges.

Definition 98. Parallel computation steps
Let pSC = (S, s0, F,W,A,R, guard) be a parallel stepwise control. The par-
allel computation steps on parallel configurations are defined as follows.

Regulation step

(G, cS) x (G, cS ′)
for some (G,{s′}) ∈ grd(G,{s}, x), s ∈ cS, x ∈ R and
cS ′ = (cS \{s}) ∪ {s′}.

Single (non parallel) rule application

(G,{s}) x (G′,{s′})
for some (G′,{s′}) ∈ grd(G, {s}, x), x ∈ A.

111

Begin parallel execution
(G, cS) �

beg||
(G, cS ′)

if (G, {s1, s2}) ∈ grd(G, {s}, begin||), for some s ∈ cS and
cS ′ = (cS \{s}) ∪ {s1, s2}).

Quit parallel execution
(G, cS) �

end||
(G, cS ′)

if (G, {s}) ∈ grd(G, {s1, s2}, end||), for some s1, s2 ∈ cS and
cS ′ = (cS\ {s1, s2}) ∪ {s}.

Proactive rule application
(G, cS) � (G′, cS ′)

Choose set of active states and a transition for each active state
Choose Sact ⊆ cS and for all s ∈ Sact a transition
(G′, nexts, rs) ∈ grd(G, s) with rs ∈ A.
The parallel rule composed of rules provided by the chosen transitions is
applicable to G, resulting in G′

Then G ⇒∑
s∈Sact

rs
G′ and

No parallel rule application with an additional rule possible
�G ⇒∑

s∈Sact

(rs) r
G′′ for a rule r provided by some transition

(Ḡ, s̄, r) ∈ grd(G, spass), spass ∈ cS \ Sact and
No begin|| or end|| transition possible for passive states
�(G, {s1, s2}) ∈ grd(G, {s}, begin||) ∀s ∈ (cS \ Sact) and
�(G, {s}) ∈ grd(G, {s1, s2}, end||) ∀s1, s2 ∈ (cS \ Sact) and
The next parallel state is given by the next states of the chosen
transitions and the states that made no transition
cS ′ = (S \ Sact) ∪ {nexts | s ∈ Sact}.

Weak parallel rule application
(G, cS) � (G′, cS ′)

Choose Sact ⊆ cS and for all s ∈ Sact a transition
(G′, nexts, rs) ∈ grd(G, s), rs ∈ A.
Then G ⇒∑

s∈Sact

rs
G′ and

No begin|| or end|| transition possible for passive states
�(G, {s1, s2}) ∈ grd(G, {s}, begin||) ∀s ∈ (cS \ Sact) and
�(G, {s}) ∈ grd(G, {s1, s2}, end||) ∀s1, s2 ∈ (cS \ Sact) and

112

cS ′ = (S \ Sact) ∪ {nexts | s ∈ Sact}.

Synchronous rule application
(G, cS) � (G′, cS ′)

Choose a transition for all states that are no waiting states
Let Sact = cS \W . Choose for all s ∈ Sact a transition
(G′, nexts, rs) ∈ grd(G, s), rs ∈ A.
Then G ⇒∑

s∈Sact

rs
G′ and

No begin|| or end|| transition possible for passive/waiting states
�(G, {s1, s2}) ∈ grd(G, {s}, begin||) ∀s ∈ W and
�(G, {s}) ∈ grd(G, {s1, s2}, end||) ∀s1, s2 ∈ W and
cS ′ = W ∪ {nexts | s ∈ Sact}.

Induced derivation

The induced derivation of a parallel computation is analogously defined to
basic stepwise controls in Definition 89. The semantics of a parallel stepwise
control is defined as for basic stepwise controls in Definition 88 and 90.

Definition 99. Induced derivation for parallel computation
Every parallel computation of a parallel stepwise control
pSC = (S, s0, F,W,A,R, guard) induces a derivation recursively defined by

⇒

d((G, cS) x (G
′, cS ′)) =

{
G⇒

x
G′ if x ∈ A∗.

G
0
⇒ G otherwise.

⇒

d((G, cS) x (G
′, cS ′) * (Ḡ, c̄S)) =

⎧⎨
⎩G⇒

x
G′ ◦

⇒

d((G′, cS ′) * (Ḡ, c̄S)) if x ∈ A∗.
⇒

d((G′, cS ′) * (Ḡ, c̄S)) otherwise.

7.2.3 As-long-as-possible Stepwise Controls

Another control condition we want to model as stepwise control is as-long-
as-possible. In the following we try to construct a stepwise control from
an alap-expression as introduced in Chapter 5. Thereby we encounter some
problems and avoid them by omitting the operators ∗ and | . The resulting
expression, called alap−-expression (reduced alap-expression), then is mod-
elled as stepwise control.

113

In 7.1.1 we have constructed a stepwise control from scratch executing a
rule r as long as possible. The stepwise control iterates the application of r

r
G ⇒

r

G′

s0 s1
skip

�G ⇒
r

G′

as long as r is applicable to the current graph. In
case r is no more applicable it makes a transition
to its final state.

In order to transfer this idea to entire alap-expressions we consider the follow-
ing idea: Model the expression, which has to be iterated as long as possible,
as stepwise control. Extend the resulting stepwise control in such a way that
it starts a new iteration whenever it has come to an end; and in case it gets
stuck (without being in a final state), it aborts the iteration process if there
is no other (unexplored) possibility to accomplish a complete run.

Unfortunately, in case the expression contains ∗ there may be infinitely many
other potential possibilities to complete a run created by ∗. Hence, the ques-
tion whether there is no other possibility to accomplish a run could sometimes
never be answered positively, since infinitely many possibilities would have to
be considered. Therefore, we omit the ∗-operator. In case the potential runs
are only created by (finite many) | -operators it is possible to decide if all
options have been computed and failed. Although theoretically possible, we
also omit | since the organisation of the computation would be too complex.
The reintegration of the operator | is left for future work.

The resulting expression is called alap−-expression. Iterating an alap−-
expression as long as possible, one can immediately abort the iteration pro-
cess whenever a rule application fails, since there could not be further options
which would have to be explored first. Then the new current graph has to be
the graph present at the begin of the failed run. In order to ’track back’ to
this graph during computation, the computation has to memorise the current
graph each time a new run begins. In order to enable the computation to do
this the alap−-stepwise control has to indicate the begin of a new run.

The above informally described approach constitutes the as-long-as-possible
composition step in the recursive construction of a stepwise control from
an alap−-expression. The as-long-as-possible composition extends the given
stepwise control by the ability to initiate new runs of itself and abort the iter-
ation if it gets stuck. It comprises a new start and a new final state. The new
start state is linked to the former start state by a new transition labelled with
alap, indicating the begin of an iterated execution as long as possible. (En-
countering such a transition the computation memorises the current graph.)

114

Every state of the origin stepwise control (which is not a dead end) is linked
with a transition, labelled with abort, to the the new final state. Such an
abort-transition only is enabled if none of the other transitions is pursuable.
In order to initiate a new run the former final state is linked with the former
start state by a new transition labelled with newrun (like for the transition
alap, encountering newrun the computation memorises the current graph).
Formally the as-long-as-possible composition of an alap−-stepwise control is
defined as follows.

Definition 100. SC! as-long-as-possible composition
Let SC = (S, s0, F, A,R, grd) be a stepwise control. The as-long-as-possible
composition, SC!, is defined by:
SC! = (S �{s!0, sf}, s

!
0, {sf}, A, R∪{alap, abort, newrun}, grd

!) with

initiate alap
grd!(G, s!0, alap) = {(G, s0)} ∀G ∈ G,

maintain guard relation from origin SC
grd!(G, s, x) = {(G′, s′) | (G′, s′) ∈ grd(G, s, x)},

when a final state of the origin SC is reached initiate a new iteration
grd!(G, s, newrun) = {(G, s0)} ∀s ∈ F,G ∈ G,

if a rule provided by guard is not applicable to current graph, abort to final
state
grd!(G, s, abort) = {(G, sf) | ∃(Ḡ

′, s′) ∈ grd(Ḡ, s, x), x ∈ (A∪R), s ∈ (S \F)
but �(G′, s′) ∈ grd(G, s, x)}.

The following illustration depicts an alap-stepwise control. Due to space lim-
itations we have abbreviated the statement ”if �G⇒

r1
G′” by ¬r1.

s!0

s0

alap

s1 s2
r1 r2 s3

r3

s!f

abort

¬r1 abort

¬r2 abort

¬r3

new run

115

Please note, that this construction would not work having final states with
outgoing transitions. Fortunately, due to construction of alap−-stepwise con-
trols there are no final states with outgoing transitions.

Computation of alap−-expressions

As explained above the computation has to continue the computation with
the proper graph in case the current run fails. Therefore it has to to memorise
the current graph before each new run. This is done within the configuration,
which definition is adapted respectively.

Definition 101. Configuration of alap -stepwise control
Let SC = (S, s0, F, A,R, grd) be an alap -stepwise control.
A configuration of SC is a tuple (G, s, σ) with G ∈ G is the current graph,
s ∈ S is the current state, and σ is a sequence of memorised graphs over G.

In case there are no memorised graphs σ is empty, denoted by λ. Otherwise
the most left graph of σ is the latest memorised graph.
Initial and terminal configurations are defined analogously to basic stepwise
controls as well as computation and complete computation.

The computation steps realise the execution of the alap−-stepwise controls.
Encountering an alap-labelled transition, which indicates a succeeding part
of the stepwise control to be iterated as long as possible, the computation
memorises the current graph, i.e. the current graph is appended to the left
of the sequence of memorised graphs. A rule application is performed anal-
ogously to basic stepwise controls, whereby the memorised graphs remain
unaffected. Encountering a newrun-transition the latest memorised graph
is replaced by the current graph. Meeting abort the computation continues
with the latest memorised graph, i.e. the leftmost graph is taken from the
sequence and serves as new current graph.

Definition 102. Computation steps
Let G,G′ ∈ G be graphs and SC = (S, s0, F, A,R, grd) an alap−-stepwise
control. Computation steps on configurations realising the execution of
alap−-stepwise controls are defined as follows.

• Memorise current graph if swc initiates new alap

(G, s, σ)
alap

(G, s′, Gσ) if (G, s′, alap) ∈ grd(G, s).

• Rule application step

(G, s, σ) x (G′, s′, σ) if (G′, s′, x) ∈ grd(G, s), x ∈ A.

116

• Memorise current graph when swc initiates new run

(G, s,G′σ)
newr

(G, s′, Gσ) if (G, s′, newrun) ∈ grd(G, s).

• Continue with memorised graph if swc aborts current run

(G, s,G′σ)
abort

(G′, s′, σ) if (G, s′, abort) ∈ grd(G, s).

Induced derivation

In order to construct the induced derivation from an alap−-computation, we
process the computation from the end. If we would construct the induced
derivation starting from the beginning of the computation, like it is done for
basis stepwise controls, we would have to discard the last piece of the so far
constructed derivation, when encountering an abort. Encountering an abort
means that the last steps of the computation are not used for the permitted
derivation since the last iteration failed.
The problem is that the construction process for the induced derivation works
recursively, with each recursion step having the scope of a direct derivation.
When encountering an abort, the part of the derivation to which the compu-
tation would have to track back to is no more accessible.

Starting with the result graph and constructing the derivation from the end
we are able to construct only derivation parts actually contained in the per-
mitted derivation. Encountering an abort we can continue the construction
process at that point of the computation where the failed run begins and
skip the computation inbetween. The following definition formalises this
proceeding.

Definition 103. Induced derivation of alap Computation
Let SC = (S, s0, F, A,R, grd) be an alap−-stepwise control. Moreover, let

comp be a computation of SC. The induced derivation of comp,
⇒

d(comp),
is recursively defined by

(i)
⇒

d((G, s, λ)) = G
0
⇒ G,

(ii)
⇒

d(...(Gn 1, sn 1, σ) xn

(Gn, sn, σ
′)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⇒

d(...(Gn 1, sn 1, σ)) ◦Gn 1⇒
xn

Gn

if xn ∈ A,
⇒

d(...(Gn 1, sn 1, σ))

if xn ∈ R \ {abort},

117

(iii) Encountering abort, skip the computation up to the latest newrun resp.
alap

a)
⇒

d(...(Gi, si, G
′σ)

new
...(Gj , sj, Gσ) x (Gj+1, sj+1, Gσ)...

abort
(Gn, sn, σ))

=
⇒

d(...(Gi, si, G
′σ)) if x /∈ {alap, newrun}∀j ∈ N, i < j < n,

b)
⇒

d(...(Gi, si, σ) alap
...(Gj , sj, Gσ) x (Gj+1, sj+1, Gσ)...

abort
(Gn, sn, σ))

=
⇒

d(...(Gi, si, σ)) if x /∈ {alap, newrun}∀j ∈ N, i < j < n.

7.3 Transformation Units and Stepwise Con-

trols

The following section examines how to relate stepwise controls and transfor-
mation units. The first part employs a stepwise control as control condition
for a transformation unit. The second part models a transformation unit
itself as stepwise control.

7.3.1 Stepwise Controls for Transformation Units

In the preceding examples we already used stepwise controls as control condi-
tions for simple transformation units, as this is done straightforwardly. The
set of actions of the stepwise control corresponds to the set of rules of the
unit and the guard relation implements the respective rule application in-
structions.

In order to employ stepwise controls as control conditions for structured
transformation units we have to determine how the computation of an im-
ported unit is embedded into the computation of the calling unit. A simple
approach is to consider each execution of an imported unit as single compu-
tation step of the calling unit and do not mind its individual computation.
The imported units then are actions of the main unit and the guard relation
implements the call of an imported unit by a transition labelled with this
unit, employing the graph-pair-semantics of the imported unit.

In case all the imported units themselves are equipped with stepwise controls
one can also execute the imported units in a stepwise manner and embed their
computation explicitly in the computation of the calling unit. Now, when-
ever an imported unit is called, one may interrupt the running process and
start a stepwise computation in the imported unit. If this is terminated, one

118

can return to the interrupted computation and continue it with the result
of the import process. Altogether, one gets a computational process which
control component is organised as a stack of configurations, each configura-
tion representing a unit and its current execution state. The computational
steps are rule applications and stack operations. To start a computation of
an imported unit, a configuration containing the unit itself, its initial control
state, and the current graph is pushed on top of the control stack. To stop a
computation of an imported unit, one can return to the configuration of the
underlying computation by application of the pop operation. In the following
this idea is formalised.

A stack configuration holds all required information regarding respectively
one of the involved transformation units: the unit itself, the current state of
its stepwise control and the current graph.

Definition 104. Stack configuration
A stack configuration is a tuple (G, tu, s) with G ∈ G, tu is a transformation
unit with a stepwise control C, and s ∈ SC . Initial and terminal configuration
are defined analogously to Definition 86.

The configurations are organised in a stack of configurations. The configura-
tion of the currently executed unit is on top of the stack, its calling unit one
configuration deeper and so on.

Definition 105. Stack of configurations
A stack of configurations is a sequence of stack configurations
(G1, tu1, s1) . . . (Gn, tun, sn) with Gi ∈ G, tui are transformation units with
stepwise controls Ci, and si ∈ SCi

for i ∈ N \ {0}.

The computation steps realise the organisation of the execution of the (im-
ported) units. In every computation step the configuration on the top, i.e.
the current unit, is processed. According to the actual situation, one of the
provided computation steps is performed. Whenever an imported unit is
called its configuration is pushed onto the stack and the computation contin-
ues executing this unit. When its execution has terminated, i.e. its control
condition is satisfied and it has reached a terminal graph, the configuration
representing the imported unit is pulled from the stack and the computation
continues with the underlying unit. Rule applications or regulation state-
ments are performed analogously to the respective computation steps for
basic stepwise controls, addressed in Definition 87.

Definition 106. Computation steps on stack of configurations
Let tu1, tu2, tu

′′ be transformation units with stepwise controls C1 and C2, C
′′.

Moreover, let G,G′′,
egal

G ∈ G be graphs.

119

(i) Rule application or regulation step
(G, tu1, s)(G

′′, tu2, s
′′) · · · � (G′, tu1, s

′)(G′′, tu2, s
′′) . . . for

(G′, s′) ∈ guardC1
(G, s, a), a ∈ AC1

∪RC2
.

The stepwise control of the current unit tu1 makes a transition with an
action or a regulation statement.

(ii) New imported unit
(G, tu1, s) · · · � (G, tu2, s0C2

)(G, tu1, s
′) . . . if

(G, s′) ∈ guardC1
(G, s, tu2), G ∈ SEM(Itu2

)
A transition, labelled with an imported unit tu2, is reached by the
stepwise control of the current unit tu1. If the current graph satisfies the
initial graph class expression of tu2, the stepwise control of tu1 makes
a step to its following state, and a new configuration representing the
imported unit tu2 is pushed onto the stack.

(iii) Imported unit complete
(G, tu2, f)(G

′, tu1, s
′) · · · � (G, tu1, s

′) . . . if
f ∈ FC2

and G ∈ SEM(Ttu2
).

The stepwise control of the current unit has reached a final state. Then,
provided the current graph is permitted by the terminal graph class
expression of the current unit, its configuration is pulled from the stack
and the computation continues with the underlying configuration and
the current graph.

7.3.2 Transformation Unit as Stepwise Control

The last section has shown how to employ a stepwise control as control con-
dition for a transformation unit. Now, this section introduces how to model
an entire transformation unit itself as stepwise control.

In order to employ a transformation unit as stepwise control, the control
condition of the unit has to be a stepwise control. Moreover, it has to be
ensured that the initial and terminal graph class expressions of the unit are
satisfied. To achieve this we add a new initial state to the units stepwise
control, linked by a new transition to the former initial state, only allowing a
transition step provided that the input graph satisfies the initial graph class
expression of the unit. Analogously we add a new final state linked by tran-
sitions from the former final states, ensuring that the result graph satisfies
the terminal graph class expression. The following definition presents the
construction of a stepwise control from a transformation unit. It applies to
simple and structured transformation units, since on control condition level

120

the imported units are handled like rules. I.e. the rules and imported units
are all actions of the unit’s stepwise control condition and handled equally.

Definition 107. Transformation unit to stepwise control
Let tu = (I, P, C, T) ∈ T U or tu = (I, P, U, C, T) ∈ T U be a transformation
unit with a stepwise control condition C = (SC , s0C , AC , RC , FC , guardC).
The stepwise control based on tu is defined by:
SC(tu) = (S, s0, F, A, guard) with
S = SC ∪ {s0, f} with s0, f /∈ SC ,
F = {f},
A = AC ∪ {skip},
guard(G, s0, skip) = {(G, s0C)} if G ∈ SEM(I),
Transition from initial state to former initial state providing that current
graph satisfies initial graph class expression

guard(G, s, x) = {(G′, s′)} if (G′, s′) ∈ guardC(G, s, x),
Maintain transitions of the units’ stepwise control

guard(G, fc, skip) = {(G, f)} if fc ∈ FC , G ∈ SEM(T).
Transition from former final states to new final state providing that current
graph satisfies terminal graph class expression

The computation of a stepwise control transformation unit is, according to
the underlying unit, provided by Definition 87 (computation of basic stepwise
control) or Definition 106 (computation of stepwise control for structured
transformation unit).

121

Chapter 8

Conclusion

This chapter summarises the presented work and provides some suggestions
for future work.

The thesis has introduced and examined three kinds of control conditions
for transformation units, parallel expressions, as-long-as-possible expressions,
and stepwise controls. Parallel expressions and as-long-as-possible expres-
sions regard the expressiveness of control conditions. Both augment regular
expressions by additional composition operators. The concept of stepwise
control conditions focuses on the actual computation of semantics. The the-
sis has introduced basic stepwise controls, providing the basic components
and computation of stepwise controls. Employing the concept of stepwise
controls and modifying it when needed, the thesis implemented also parallel
and downgraded as-long-as-possible expressions as stepwise control condi-
tions.

Parallel expression is an umbrella term for three different kinds of expres-
sions, weak parallel, proactive, and synchronous expressions, each of which
employing another kind of parallel composition. Weak parallel composition
enables but not demands the simultaneous application of rules. It allows the
arbitrary composition of rules, simultaneously as well as sequentially. Proac-
tive composition demands the simultaneous application of rules whenever it
is possible, otherwise also sequential composition is allowed. Synchronous
composition demands simultaneous application of the rules. If this is not
possible, the synchronisation fails.

Considering weak parallel and synchronous expressions it was shown that
these describe languages which turned out to be regular. This was proven by
constructing finite state automata for weak parallel respectively synchronous
expressions and then showing that the automata recognise exactly the respec-

122

tive languages. The language of a weak parallel or synchronous expression
can be employed to construct a semantics consisting of all derivations whose
rule application sequence is an element of the language. The thesis also intro-
duced a second semantic approach based on a normal form of weak parallel
and synchronous expressions. For every expression, the normal form provides
the first (parallel) rule which has to be applied. Then in turns building the
normal form, performing a derivation step, and again building the normal
form for the remaining expression until the expression is entirely processed,
permitted derivations can be build. Regarding future work, it would also
be possible to construct a normal form, such that also proactive expressions
could be taken into account. This normal form would not provide an already
composed parallel rule, but give access to the single rules at choice to be ap-
plied proactively. Then the choice which of these rules are actually applied
simultaneously is made according to the current graph, leaving the remain-
ing rules to be applied later, i.e. these rules stay in the remaining expression
which again is transformed to normal form.

The second sort of control conditions the thesis has introduced are as-long-
as-possible-expressions. Adding an as-long-as-possible operator to regular
expressions one is able to express the as long as possible execution of an
entire, rather complex, process description. Examining as-long-as-possible
expressions regarding termination the thesis introduced some sufficient con-
ditions for termination based on the analysis of the expressions with the
help of Petri nets. This approach is called assured termination. Thereby,
the following is done for every subexpression C! of the considered as-long-
as-possible expression. Every possible run through C is represented by a so
called change vector, providing for each considered graph element to which
amount it is added respectively deleted by the run. Thereby, the addition
respectively deletion caused by subexpressions of the form C̄∗ or C̄! is esti-
mated by ∞ respectively 0. This is a worst case estimation and it is left for
future work to find better ones (if possible). Modelling the change vectors of
the different runs as transitions and the kind of the considered graph elements
as places of a Petri net, the interplay of the runs can be analysed employing
analysing methods of Petri nets. If for all possible combinations of runs one
place eventually runs out of tokens the subexpression C! terminates. And if
this happens for all subexpressions C! of the considered as-long-as-possible
expression, the entire expression terminates.

The third control condition introduced by the thesis is the stepwise control.
The name stepwise control refers to the kind it is used to obtain permitted
derivations. A basic stepwise control can be viewed as augmented finite state

123

automata. Being in a state it provides actions (rules) to be applied in the
next derivation step, or regulation statements in order to steer the derivation
process. In contrast to finite state automata it is able to take into account
the current graph, or let its transitions depend on some other conditions.
The execution of a basic stepwise control is implemented by computation
steps on configurations, whereas a configuration represents the overall state
of the stepwise control, i.e. for basic stepwise controls it comprises the cur-
rent graph and its current state. In each computation step a transition is
performed leading to a follower configuration. Carrying out computation
steps until a final state is reached leads to a computation of the stepwise
control. Given such a computation, one can easily ”extract” a derivation,
omitting all regulation steps. Hence, a stepwise control is able to build up
only those derivations which may end up to be permitted.

We have straightforwardly modelled weak parallel and synchronous ex-
pressions as stepwise control, based on the construction of their finite state
automata as these were introduced before. Being able to take into account
the current graph, we are also able to construct stepwise controls for proac-
tive expressions. Here, we pursue another approach implementing parallelism
with stepwise controls. Instead of encoding the respective parallel expression
directly by a stepwise control, now, the stepwise control only provides the
parallel structure, i.e. it indicates which parts have to be (somehow) exe-
cuted in parallel, but does not represent how. The actual weak, proactive,
or synchronous composition of the provided rules is performed during com-
putation.

We also modelled downgraded as-long-as-possible expressions as stepwise
control. As a reminder, a downgraded as-long-as-possible expression, alap−

expression, is an as-long-as-possible expression without the operators ∗ and
|. An alap− stepwise control indicates when an as-long-as-possible iteration
begins and the computation then memorises the current graph, in order to
continue with it in case the iteration fails. Therefore, the computation on
configurations is modified. The configuration is augmented in order to in-
clude the graphs which have to be memorised. It now contains, besides the
current graph and the current state also a sequence of graphs, whereas the
leftmost graph of the sequence represents the graph currently present before
the latest iteration. Whenever during computation a new as-long-as-possible
iteration is indicated the graph currently present is memorised by adding
it to the sequence. Whenever the current iteration fails the computation
continues with the memorised graph which then is taken away from the se-
quence. For future work termination of an alap− stepwise control could be
examined. Being able to take into account the current graph could improve
the ability to make estimations what is deleted respectively added by an

124

expression C which has to be iterated as long as possible. Pursuing such
an approach postpones the question of (assured) termination to the moment
of actual computation instead of checking beforehand. Another task could
be to upgrade the alap−-expression again. The choice operator | has been
omitted, since the computation would have got too complex for the scope of
the thesis. Taking into account the operator | again leads to the possibility
to describe more complex behaviour. Moreover, a further task could be to
construct stepwise controls for expressions which combine alap− expressions
with parallel expressions.

As a last topic we related transformation units and stepwise controls. At
first we considered how to employ stepwise controls as control conditions
for transformation units. Regarding simple transformation units one can
straightforwardly use a stepwise control as control condition for the unit.
Regarding structured units we have two possibilities to integrate the compu-
tation of the imported units into the computation of the calling unit. The
first possibility is to treat an imported unit like a rule, i.e. its entire com-
putation is embedded as one computation step in the computation of the
calling unit, employing the ”graph pair semantics” of the invoked unit. The
second possibility is to embed the entire computation of an imported unit
in a stepwise manner. This possibility requires the control conditions of the
imported units to be stepwise controls. Moreover, we have to modify our
computation approach in order to organise the executing of a calling unit
and its imported units. We employ a stack of configurations, whereas each
configuration represents a unit. The unit represented by the configuration
on top of the stack is the one which is currently executed. Whenever an
imported unit is invoked a new configuration representing this unit is pushed
onto the stack and the computation continues with that unit. If its execu-
tion has terminated and its terminal graph class expression is satisfied the
configuration is pulled from the stack and the computation continues with
the underlying unit.

In order to employ a transformation unit itself as stepwise control, again
the control condition of the unit has to to be a stepwise control. This stepwise
control is augmented in such a way that it provides only one transition from
its start state, subject to the condition that the initial graph class expression
of the underlying unit is satisfied. Analogously, a transition to a final state
only is allowed if the terminal graph class expressions is satisfied. The com-
putation stays the same as for structured units with stepwise controls. Being
able to transform a transformation unit to a stepwise control, a suggestion
for future work is to build one large stepwise control for a structured trans-
formation unit, instead of organising the invocation of its imported units on

125

the level of computation. One could build a stepwise control from every im-
ported unit and integrate them in the stepwise control of its calling unit. In
order to do that, the control conditions of all units have to be decomposable
and recomposable as stepwise control, e.g., regular expressions over rules and
transformation units.

126

Bibliography

[Bau96] Bernd Baumgarten. Petri-Netze. Grundlagen und Anwendun-
gen. Spektrum Akademischer Verlag, Heidelberg, Berlin, Oxford,
1996.

[BHPT05] Paolo Bottoni, Kathrin Hoffmann, Francesco Parisi-Presicce, and
Gabriele Taentzer. High-level replacement units and their termi-
nation properties. J. Vis. Lang. Comput., 16(6):485–507, 2005.

[CMR+96] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut
Ehrig, Reiko Heckel, and Michael Löwe. Algebraic approaches to
graph transformation, part i: Basic concepts and double pushout
approach. In Handbook of Graph Grammars and Computing by
Graph Transformation, Volume 1: Foundations, pages 163–245.
World Scientific, 1996.

[DM78] Nachum Dershowitz and Zohar Manna. Proving termination with
multiset orderings. Technical report, Stanford, CA, USA, 1978.

[EEPT06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele
Taentzer. Fundamentals of Algebraic Graph Transformation
(Monographs in Theoretical Computer Science. An EATCS Se-
ries). Springer, 2006.

[Ehr79] Hartmut Ehrig. Introduction to the algebraic theory of graph
grammars (a survey). In Volker Claus, Hartmut Ehrig, and Grze-
gorz Rozenberg, editors, Graph-Grammars and Their Application
to Computer Science and Biology, volume 73 of Lecture Notes in
Computer Science, pages 1–69. Springer Berlin Heidelberg, 1979.

[EKMR99] Hartmut Ehrig, Hans-Jörg Kreowski, Ugo Montanari, and Grze-
gorz Rozenberg, editors. Handbook of Graph Grammars and
Computing by Graph Transformation: Concurrency, Parallelism,
and Distribution. World Scientific Publishing Company, 1999.

127

[EPS73] Hartmut Ehrig, Michael Pfender, and Hans Jürgen Schneider.
Graph-grammars: An algebraic approach. In Proceedings of
the 14th Annual Symposium on Switching and Automata Theory
(Swat 1973), SWAT ’73, pages 167–180. IEEE Computer Society,
1973.

[ER97] Joost Engelfriet and Grzegorz Rozenberg. Node replacement
graph grammars. In Grzegorz Rozenberg, editor, Handbook
of Graph Grammars and Computing by Graph Transformation,
pages 1–94. World Scientific Publishing Co., Inc., 1997.

[Hab04] Annegret Habel. Graphersetzungssysteme. Lecture notes,
2004. http://users.informatik.haw-hamburg.de/~klauck/

GKA/Habel_skript.pdf.

[HKK06] Karsten Hölscher, Renate Klempien-Hinrichs, and Peter Knirsch.
Undecidable control conditions in graph transformation units. In
Anamaria Moreira Martins and Leila Ribeiro, editors, Brazilian
Symposium on Formal Methods (SBMF 2006), pages 121–135,
2006.

[HMU06] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Intro-
duction to Automata Theory, Languages, and Computation (3rd
Edition). Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2006.

[KK99] Hans-Jörg Kreowski and Sabine Kuske. Graph transformation
units with interleaving semantics. Formal Aspects of Computing,
11(6):690–723, 1999.

[KK07] Hans-Jörg Kreowski and Sabine Kuske. Autonomous units and
their semantics – the parallel case. In WADT’06: Proceedings of
the 18th international conference on Recent trends in algebraic
development techniques, pages 56–73. Springer-Verlag, 2007.

[KK11] Hans-Jörg Kreowski and Sabine Kuske. Graph multiset trans-
formation – a new framework for massively parallel computation
inspired by dna computing. Natural Computing, 10(2):961–986,
2011.

[KK14] Hans-Jörg Kreowski and Sabine Kuske. Theoretische Informatik
I. Lecture notes, University of Bremen, 2014.

128

[KKK06] Hans-Jörg Kreowski, Renate Klempien-Hinrichs, and Sabine
Kuske. Some essentials of graph transformation. In Recent Ad-
vances in Formal Languages and Applications, pages 229–254.
Springer, 2006.

[KKR08] Hans-Jörg Kreowski, Sabine Kuske, and Grzegorz Rozenberg.
Graph transformation units – an overview. pages 57–75, 2008.

[KKS97] Hans-Jörg Kreowski, Sabine Kuske, and Andy Schürr. Nested
graph transformation units. International Journal on Software
Engineering and Knowledge Engineering, 7(4):479–502, 1997.

[Kre78] Hans-Jörg Kreowski. Manipulationen von Graphmanipulationen.
PhD thesis, University of Berlin, 1978.

[Kus98] Sabine Kuske. More about control conditions for transformation
units. In Proc. Theory and Application of Graph Transforma-
tions, volume 1764 of Lecture Notes in Computer Science, pages
323–337, 1998.

[Kus00] Sabine Kuske. Transformation Units-A structuring Principle for
Graph Transformation Systems. PhD thesis, University of Bre-
men, 2000.

[Mur89] Tadao Murata. Petri nets: Properties, analysis and applications.
Proc. IEEE, 77(4), 1989.

[Plu98] Detlef Plump. Termination of graph rewriting is undecidable.
Fundam. Inform., 33(2):201–209, 1998.

[Ric08] Elaine Rich. Automata, Computability, and Complexity – Theory
and Applications. Pearson Education, Inc., Upper Saddle River,
New Jersey, USA, 2008.

[Roz97] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and
Computing by Graph Transformation, Volume 1: Foundations.
World Scientific, 1997.

[Sch92] Uwe Schöning. Theoretische Informatik kurz gefasst. BI-
Wissenschaftsverlag, 1992.

[VVE+06] Dániel Varró, Szilvia Varró-Gyapay, Hartmut Ehrig, Ulrike
Prange, and Gabriele Taentzer. Termination analysis of model
transformations by Petri nets. In ICGT, pages 260–274, 2006.

129

