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Abstract

The Arctic undergoes accelerated warming compared to Global Warming, known as Arctic
amplification. To understand this phenomenon, studying key variables at various scales is
crucial. Every day, satellite radiometers measure Arctic-wide emissions of microwave ra-
diation in terms of brightness temperatures. These observations carry information about
both the surface, e. g., sea ice coverage, and the atmosphere, e. g., water vapor content. We
use the distinct sensitivities of observations at different frequencies to atmospheric and sur-
face parameters, aiming to disentangle the satellite signal and improve a multi-parameter
retrieval. The retrieval involves inverting a forward model with an optimal estimation
method to attribute satellite measurements (6.9 to 89GHz) to a specific geophysical state.
For that, sea ice and snow emissions need to be well represented in the forward model.
We study surface emissions by considering the theoretical concept of emissivity followed
by an analysis of brightness temperature measurements and derived emissivities that we
obtained during a summer ship campaign. Results show a clear distinction between sea
ice and open ocean for frequencies between 22 and 31GHz, vertical polarization. Sea ice
emissivities at 243GHz, horizontal polarization, vary widely and can be both higher and
lower than open ocean emissivities.

In a MOSAiC expedition case study, we examine the impact of changing surface emis-
sions on sea ice concentration (SIC) satellite retrievals. Warm air intrusions modify surface
properties, affecting microwave emission and scattering characteristics. Our findings indi-
cate that SIC algorithms underestimate true SIC when there is a thin ice crust atop the
snow caused by the warm air.

The core of this thesis is the improvement of the multi-parameter retrieval by a better
representation of the sea ice and snow emissions in the forward model for non-melting
conditions. Both forward model and retrieval are evaluated against ground truth, including
datasets from the MOSAiC expedition. The forward model succeeds in simulating realistic
temporal evolution and distributions of brightness temperatures. The retrieval output
agrees well with reference data with regard to SIC. While the retrieval of cloud liquid
water path and snow depth are promising, some disagreements are identified and we
compile a comprehensive collection of potential further improvements and extensions of the
method. Focusing on atmospheric total water vapor (TWV), our analysis demonstrates a
good agreement with numerous reference datasets, including campaign and coastal station
data. We find a substantial improvement over the previous version of the method. Aer
applying the retrieval to satellite data from the last two decades we find dry conditions in
winter over sea ice. Mean values are below 4 kgm−2 and variabilities range from 0.5 kgm−2

to 2.5 kgm−2 and are higher in the regions closer to the ice edge. In some areas over sea
ice we observe a robust moistening trend in winter but whether the Arctic atmosphere has
become wetter or drier strongly depends on the region, month and considered time span.
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Zusammenfassung

Im Vergleich zur globalen Erwärmung erwärmt sich die Arktis stärker und schneller, ein
Phänomen, das als arktische Verstärkung bekannt ist. Um dieses zu verstehen, ist die
Beoboachtung von geophysikalischen Größen, wie der Meereisbedeckung oder des atmo-
sphärischenWasserdampfgehalts, von entscheidender Bedeutung. Jeden Tag messen Satel-
litenradiometer arktisweit Emissionen von Mikrowellenstrahlung in Form von Helligkeits-
temperaturen. Mikrowellenstrahlung wird, abhängig von der Frequenz, unterschiedlich
stark von den verschiedenen atmosphärischen und Oberflächenparameter beeinflusst. Wir
nutzen diesen Umstand, um das Satellitensignal zu entschlüsseln und eine satellitenbasierte
gleichzeitige Bestimmung mehrere Parameter, ein sogenanntes Multi-Parameter Retrieval,
zu verbessern. Die Methode beinhaltet die Umkehrung eines Vorwärtsmodells mit einem
bayesschen Verfahren, um Satellitenmessungen (6.9 bis 89GHz) einem bestimmten geo-
physikalischen Zustand zuzuordnen. Dazu müssen die Emissionen vom (schneebedeckten)
Meereis im Vorwärtsmodell gut dargestellt werden.

Wir beleuchten zunächst das theoretische Konzept der Emissivität, und analysieren
dann Helligkeitstemperaturen und daraus abgeleitete Emissivitäten, die wir während ei-
ner Schiffskampagne in der arktischen Eisrandzone im Sommer 2022 gemessen haben. Wir
finden einen klare Unterschied zwischen Meereis und offenem Ozean für Messungen zwi-
schen 22 und 31GHz bei vertikaler Polarisation. Die Emissivität von Meereis bei 243GHz,
horizontaler Polarisation, variiert stark und kann sowohl höher als auch niedriger sein als
die Emissivität des offenen Ozeans.

In einer Fallstudie von der MOSAiC-Expedition untersuchen wir die Auswirkungen
veränderter Oberflächenemissionen auf die Satellitenmessungen der Meereiskonzentration.
Warmlufteinbrüche verändern die Oberfläche und wirken sich auf die Mikrowellenemission
und die Streuungseigenschaften aus. Wir können zeigen, dass einige Meereiskonzentrati-
onsalgorithmen die tatsächliche Meereiskonzentration unterschätzen, wenn sich auf dem
Schnee eine dünne Eiskruste, verursacht durch die warme Luft, befindet.

Das Kernstück dieser Arbeit ist die Verbesserung des Multi-Parameter Retrievals
durch eine bessere Darstellung der Meereis- und Schneeemissionen im Vorwärtsmodell. So-
wohl das Vorwärtsmodell als auch das Retrieval werden anhand von Daten der MOSAiC-
Expedition evaluiert. Mit dem Vorwärtsmodell gelingt es, eine realistische zeitliche Ent-
wicklung und Verteilung der Helligkeitstemperaturen zu simulieren. Der Großteil der Ab-
weichungen zwischen den Ergebnissen des Vorwärtsmodells und den Satellitenmessungen
kann durch die Wahl der Modellparameter erklärt werden.

Die abgeleiteten Meereinskonzentrationen aus dem Multi-Parameter Retrieval stim-
men gut mit den Referenzdaten überein. In Bezug auf Wolkenflüssigwasser und Schnee-
höhe sind die Ergebnisse vielversprechend, aber wir stellen auch einige Unstimmigkeiten
fest und legen umfassende mögliche Verbesserungen und Erweiterungen der Methode dar.
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Unsere Analyse konzentriert sich auf den atmosphärischen integrierten Wasserdampf-
gehalt und zeigt eine gute Übereinstimmung mit zahlreichen Referenzdatensätzen, ein-
schließlich Kampagnendaten und küstennahen Landstationsdaten. Wir stellen eine we-
sentliche Verbesserung gegenüber der vorherigen Version der Methode fest. Die Satelli-
tendaten bestätigen, dass im Winter über dem Meereis trockene Bedingungen herrschen:
Mittelwerte des integrierten Wasserdampfgehalts liegen unter 4 kgm−2 und die Variabi-
litäten reichen von 0.5 kgm−2 bis 2.5 kgm−2. Nach Anwendung der Methode auf Satelli-
tendaten der letzten zwei Jahrzehnte finden wir einen robusten Anstieg des integrierten
Wasserdampfgehalts in einigen Regionen über Meereis. Ob die Atmosphäre trockener oder
feuchter geworden ist, hängt stark von der betrachteten Region, dem Monat und der un-
tersuchten Zeitspanne ab.
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Chapter 1

Introduction

1.1 The Stage: The Changing Arctic

Looking at the northern sky we can observe the Great Bear, and nearby, the star Polaris,
showing us the direction of the North Pole. The Greek word ἀρκτικός, near the bear, is
therefore the eponym of the fascinating northernmost region of our planet: the Arctic.
Different geographic definitions exist, but most commonly, the Arctic is defined as the
area north of the Arctic Circle at about 66.5◦N. In the Arctic one encounters complete
darkness during winter and the midnight sun in summer. Most of the Arctic area is ocean,
up to several kilometers deep. Its frozen blanket, the Arctic sea ice, controls fluxes of heat,
moisture and momentum between ocean and atmosphere, even though with thicknesses of
the order of meters it is thin compared to the ocean.

The Arctic is the stage for this thesis, and the stage design is changing: As the Arctic
is warming rapidly, and at a much higher pace than areas at lower latitudes (Serreze and
Barry, 2011; Wendisch et al., 2023), the sea ice component of the cryosphere is strongly
affected. During the last decades, the September Arctic sea ice extent declined by about
12.7% per decade (Meier et al., 2022), which corresponds to a loss of 79 400 km2 per year1

(Meier and Stroeve, 2022). Sea ice extent is calculated from gridded data of the area
fraction of sea ice to open ocean (sea ice concentration) and is defined as the total area
of grid cells covered by ice of at least 15% concentration. During the last 30 years, Arctic
near-surface air temperature have increased between 0.87 ◦C to 1.63 ◦C, depending on
season and compared to the preceding 30 years. Globally, the increase was of the order
of 0.58 ◦C to 0.62 ◦C (Wendisch et al., 2023). The larger change of temperature at the
high latitudes compared to the global average change is called Arctic amplification (AA)
(Serreze and Francis, 2006; Serreze and Barry, 2011). A new Arctic climate is emerging
(Landrum and Holland, 2020).

1For comparison, the Czech Republic has an area of 78 871 km2.
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The changes in the Arctic have a myriad of consequences both locally and outside
of the Arctic (Semmler et al., 2012; Intergovernmental Panel on Climate Change, 2023,
e.g.,). These include, among other, threats to traditional human livelihoods (Post et al.,
2019), e. g., more coastal erosion (Fritz et al., 2017), effects on the Arctic ecosystem, e. g.,
wider and earlier phytoplankton blooms (Hill et al., 2018), and effects on mid-latitude
extreme weather events (Post et al., 2019). While there is growing evidence for mid-
latitude linkages (Screen, 2021), currently models still struggle to represent atmospheric
circulation and meridional transport modifications (Wendisch et al., 2023) and a clear
understanding of how Arctic amplification is influencing weather at lower latitudes is still
missing (Cohen et al., 2020).

Local and remote processes and feedback mechanisms cause the amplified changes in
the Arctic climate system which are ultimately fueled by human-induced global warming.
The intertwined chains of effects that are involved in Arctic amplification are depicted
in Figure 1.1. Positive feedback mechanisms enhance and negative mechanisms dampen
AA. The reader may notice that this scheme is lacking land-related processes. In fact,
the melting of the Greenland ice sheet (Shepherd et al., 2020) or thawing of permafrost
(van Huissteden, 2020) are other key processes. It is intelligible that the “Arctic climate
puzzle” (Wendisch et al., 2023) has even more pieces to connect. Clearly, the changing
Arctic system cannot be understood from one discipline or viewpoint alone.

  

Global
 

Warming

Atmosphere-
Cryosphere-

Ocean
Interactions

Sea Ice Snow

Near-surface Air Temperature 

Ocean Biogeochemistry

Surface Albedo

Atmospheric 
Energy
Fluxes

Aerosols & Trace Gases

Water Vapor

Heating of Ocean Mixed Layer

Clouds Precipitation

Atmospheric 
Lapse Rate

Figure 1.1: Scheme of processes and parameters involved in Arctic amplification. Inspired by
Wendisch et al. (2023). Red arrows illustrate the positive ice-albedo feedback.

Observations are the key to improve our understanding of the different mechanisms
and processes contributing to Arctic amplification. For example, monitoring the temporal
and spatial variability of water vapor in the Arctic is needed to assess its role in Arctic
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amplification (the so called water vapor and lapse rate feedbacks) but is hampered by the
sparseness of in situ measurements and the challenges using satellite microwave observa-
tions for atmospheric sounding over sea ice (Kang et al., 2023; Crewell et al., 2021). Here,
the major challenge is the high and highly variable emission of microwave radiation of the
snow-covered sea ice. Every day, numerous satellite observations are not assimilated in
reanalysis products or used in atmospheric soundings because of that issue. There lies a
huge potential of improving our observational toolset of the Arctic. This thesis explores
the possibilities of microwave radiometry in the Arctic by tackling the issue of snow and
sea ice emissions in several ways:

• providing an overview of concept and measurements of surface emissivities and re-
porting on a ship-borne measurement method and its results (Chapter 3),

• underlining the importance of surface emissions for satellite retrievals of sea ice
concentration in a case study of an event during the Multidisciplinary driing Ob-
servatory for the Study of Arctic Climate (MOSAiC) expedition involving warm and
moist air intrusions (Chapter 4),

• improving the characterization of surface emissions using a physical model which is
used in a combined satellite retrieval of atmospheric, including water vapor and cloud
liquid water, and surface parameters, including sea ice concentration, multiyear ice
fraction and snow depth (Chapter 5),

• evaluating the retrieval output using campaign data and reference datasets, both
satellite and reanalysis products (Chapter 5), with a particular focus on evaluating
the water vapor retrieval (Chapter 6),

• applying the multi-parameter retrieval on satellite observations from the last 20 years
to derive spatiotemporal evolution, variabilities and trend patterns of the retrieved
water vapor including an outlook on AA and water vapor feedback (Chapter 6),

• providing overall conclusions and suggestions for further method development and
research (Chapter 7).

Having established the Arctic as scenery of this thesis we can now continue by intro-
ducing the protagonists.
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1.2 The Protagonists:
Sea Ice, Snow, Clouds & Water Vapor

The protagonists of this thesis are all related to H2O in its various forms: sea ice, snow,
clouds and water vapor. We will briefly explain each of the four, including typical Arctic
conditions with respect to them, their role in different feedback mechanisms, and observed
changes. This thesis focuses on these quantities, especially on water vapor. Of course,
this choice of protagonists will not encompass all feedback mechanisms at play in Arctic
amplification here, e. g., we do neither dwell on the role of the ocean, nor do we outline
their roles from a natural and human ecological perspective.

Sea Ice

Sea ice is frozen seawater. While this sounds simple at first, the world of sea ice is
complex and fascinating when we take a closer look. Most notably, seawater contains salt
ions. Ice in its ordinary hexagonal crystal form, Ih, has a lower density than its liquid
form, one of the many anomalies of water (Gallo et al., 2016), and the lattice form restricts
incorporation of ions. The sea salt ions are rejected from the ice during ice growth and
accumulate at the interface or are retained in liquid inclusions: entrapped brine. These
inclusions scatter light, making sea ice appear bright (Petrich and Eicken, 2017). The
amount of brine trapped in the ice depends on the ice growth and seawater salinity. The
brine is not stationary but moves vertically for example because of flushing (percolation
of fresh water through the ice), expulsion or gravity drainage (Lubin and Massom, 2005).
When the ice ages it therefore looses brine and gets more air pockets. Ice that did not
completely melt in summer becomes multiyear ice (MYI).

From this microscopic perspective, which will be of importance later in Chapter 2, we
now take a step back and look at the life of brine. The idealized growth starts with the
formation of frazil ice, randomly oriented crystals, at around −1.86 ◦C. Depending on the
weather conditions the frazil ice is turned to a smooth ice sheet called nilas (calm condi-
tions) or it forms pancake ice, tiny floes that are caused by turbulent conditions (ocean
swell and waves). Due to the insulating effect of ice, the growth rate slows. Congelation
growth takes over: long, columnar crystals start forming onto the underside of the ice
(Lubin and Massom, 2005). Besides these thermodynamic growth processes which depend
on the thickness itself, ice can thicken via dynamic processes (deformation).

Sea ice undergoes a seasonal cycle and reaches its maximum in terms of extent and
area in late February or March. In 2023, the maximum extent comprised 14.79× 106 km2

based on the ARTIST Sea Ice (ASI) satellite product (Spreen et al., 2008). In September,
the sea ice extent reaches its minimum, which was 4.33 × 106 km2 in 2023 based on ASI,
corresponding to around 30% coverage of the total area of the Arctic Ocean. Sea ice plays
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a major role in Arctic feedback processes. The surface albedo feedback is a well know
mechanisms already described by Arrhenius (1896): Melting of sea ice as a consequence of
increasing air temperatures results in a decrease of the Arctic Ocean’s albedo. This in turn
increases the absorption of solar radiation and thus heats up the ocean mixed layer. The
enhanced atmospheric energy fluxes then increase near-surface air temperatures and we are
back at the start of this feedback loop. This direct surface albedo feedback is an important
cause of AA in spring (Screen and Simmonds, 2010; Wendisch et al., 2023). In addition
to this direct effect, the solar energy absorbed in the Arctic Ocean in spring and summer
is released later, delaying refreezing and possibly causing thinner ice in fall. Thinner
ice grows faster than thicker (Maykut, 1986) (negative feedback), but facilitates more
sensible heat transfer from ocean to the atmosphere during fall and winter contributing
to AA (Goosse et al., 2018).

From satellite observations, we know that the Arctic sea-ice area has decreased in every
month of the year from 1979 to today (Fox-Kemper et al., 2021) and that it has become
thinner and younger in the past two decades, i. e., the amount of MYI decreased (Kwok
et al., 2009), especially the oldest and thickest ice (Maslanik et al., 2007). Studies suggest
that the Arctic will become seasonally ice-free in the coming decades (Meier and Stroeve,
2022; Kim et al., 2023)). The climate response to sea ice is nonlinear, regionally-dependent
and remains uncertain (Levine et al., 2021) as other (atmospheric) feedback mechanism
may amplify the effect of sea ice loss.

Snow

Snow falls as solid precipitation to the ground and transform towards a monomineralic
metamorphic rock. In this thesis we focus on snow on the ground, that is, the sea ice. On
the ground snow undergoes metamorphism. The homologous temperature of the snow,
given by the ratio of the snow temperature to the snow’s melt temperature, is very high,
and combined with the high vapor pressure of water the ice particles in the snow undergoes
constant sublimation and deposition (recrystallization). This metamorphism is influenced
by temperature gradients in the snow and can lead to distinct layers with different snow
types that can be classified according to Fierz et al. (2009). At the melting point, liquid
water is present in the snow pore space as well, thus water can coexist in all three phases
in snow on the ground. On Arctic sea ice, snow undergoes metamorphism under strong
temperature gradients and depth hoar oen makes up the base layer of the snowpack.
Depth hoar consists of large-grained, cup-shaped ice crystals that form due to the upward
water vapor flux caused by the temperature gradient (Colbeck, 1983). Icy layers and ice
lenses can be found in Arctic snow as well, formed, e. g., by rain-on-snow, freezing mist
or thaws (Sturm and Massom, 2017). The reader will encounter ice layers in Chapter 4.
Finally, even saline basal snow layers have been found, especially in the Antarctic, that
can for example form when the snowpack comprises highly-saline frost flowers, which are
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ice crystals formed on new ice (Sturm and Massom, 2017). The different microstructures
of snow due to metamorphism translate into different physical properties of the snow.
Their influence on microwave remote sensing will be discussed later in Chapters 2 and 4.
One important quantity is the total height of the snowpack, the snow depth. Snow depth
varies seasonally and spatially. Maximum values over Arctic multiyear ice are reached in
May (34 cm) based on Soviet North Polar Driing stations2 (Barry and Gan, 2021) with
highest values North of Greenland and the eastern Canadian Archipelago (Warren et al.,
1999). During August, the ice is largely snow free and the ice surface consists of a snow-like
layer called surface scattering layer (SSL) (Smith et al., 2022). Despite its fundamental
role, large-scale measurements of snow depth are lacking but the development of satellite
retrievals is an active field of research (Lubin and Massom, 2005) and this thesis adds
to it. Here we want to highlight two aspects of snow for the Arctic climate: the snow
albedo and its role as thermal insulator. The insulation of snow depends primarily on its
density and compared to ice snow has an exceedingly low thermal conductivity (Sturm
et al., 1997) (roughly one order of magnitude lower). Thus, snow acts as a natural barrier
of heat exchange between the cold Arctic winter atmosphere and the warmer ocean and
therefore effects sea ice growth rates. A few centimeters of snow on half a meter sea ice
can already reduce the conductive heat flux by 50% (Petrich and Eicken, 2017). Snow
also contributes to the surface albedo feedback which acts the same way as the ice-albedo
feedback, however, snow albedo values are higher than those of bare ice (Perovich, 2017;
Perovich et al., 1998).

Based on satellite observations, a reduction of snow depth up to 3 cm/decade in March
has been observed over the time period of 2003–2020 (Wendisch et al., 2023; Rostosky
et al., 2018,0).The future of snow on Arctic sea ice is still uncertain (Sturm and Massom,
2017). Difficulties in modeling snow make it hard to predict the interactions of ice and
snow, and the predictions of future precipitation (changes) are uncertain: will there be
more snowfall or will it be rain? How will the precipitation patterns align with freeze-up
dates of the ice?

Clouds

Droplets, ice crystals, snow flakes and other forms of condensed water form clouds. Clouds
and related thermodynamical processes are complex and this applies to their impact on
the Arctic climate system as well. In fact, clouds are one of its least understood compo-
nents (Devasthale et al., 2020). From Climate Data Records (CDRs) based on satellite
observations we know that the Arctic is cloudy: average annual cloud fractions range from
60 to 70% depending on the CDR with even higher values in the summer months3. It
is not only the occurrence of clouds that determines its role in the climate system but

2These measurement campaigns will be mentioned again in Section 1.3.1.
3In Norse mythology the land in the North is called Nivlheim: The home of mist (Nansen, 1897). When

moist air is transported from the open ocean to the colder ice, temperatures drop and condensation takes
place, so fog in the marginal ice zone is very common.
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also the microphysical properties. Similar to snow, water can exist in the liquid and solid
phase in clouds, oen even simultaneously in so-called mixed-phase clouds. Interestingly,
supercooled liquid water is present within Arctic clouds over the entire year (Devasthale
et al., 2020).

One quantity to describe the liquid water content in clouds, which impacts the radiation
properties, is cloud liquid water path (LWP), the amount of liquid water present in the
atmospheric column. At the Arctic observation site Ny-Ålesund, LWP shows a seasonal
cycle with values from 10 to more than 100 gm−2 in summer, while in winter and early
spring, typical monthly median values are below 10 gm−2 (Ebell et al., 2020).

In general, Arctic clouds have a strong cooling effect in summer and a warming effect
in winter (Kay et al., 2016). However, significant uncertainties exist, e. g., in terms of their
response to sea ice loss, but also because of large uncertainties of the observations of cloud
properties. Therefore Devasthale et al. (2020) states that the “exact role of clouds in the
Arctic climate system and future cloud feedbacks in a warming world remain an enigma”.

Water Vapor

Water vapor is a very important gaseous absorber in the Earth’s atmosphere (Shine et al.,
2012). Under clear sky, i. e., when no clouds are present, water vapor contributes to 60%
of the radiative forcing, which is the difference of the longwave flux at the top of the
atmosphere with and without greenhouse absorbers (Kiehl and Trenberth, 1997). It is
also a key element of the hydrological cycle, with a residence time of one week in the
Arctic atmosphere (Vihma et al., 2016), providing resources for clouds and storms. The
total amount of water in the atmosphere, mainly governed by air temperature, is around
0.25 % of the atmospheric mass (Stevens and Bony, 2013). If all atmospheric water were
precipitated, the globally averaged depth would be only 2.5 cm (Colman and Soden, 2021)
which sounds astonishingly small when one thinks about the significant radiative impact
of water vapor. Unlike for example oxygen, water vapor has a heterogeneous vertical
distribution. In the Arctic, inversions are common in both temperature as well as (specific
and relative) humidity (Vihma et al., 2016). Inversions are atmospheric layers where the
values increase instead of decrease with height. The vertical profiles effect, for example,
cloud formation but have also direct effects on the radiative transfer in the atmosphere
(Vihma et al., 2016).

In this thesis we will not investigate moisture profiles but study the total water vapor
or integrated water vapor, also called precipitable water, which is the mass of water vapor
contained in a vertical atmospheric column of unit cross section. In the Arctic this quantity
has a pronounced seasonal cycle due to its close relation to the air temperature, with
mean monthly values of about 13 kgm−2 to 14 kgm−2 in July and 2 kgm−2 to 3 kgm−2 in
January according to reanalysis data (Rinke et al., 2019).

With increasing temperatures, the capacity of the troposphere to hold water vapor
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Figure 1.2: Water vapor feedback scheme. After Ghatak and Miller (2013).

increases exponentially according to the Clausius-Clapeyron equation, resulting in an in-
crease of downward longwave radiation and subsequent air temperature increase: the
positive water vapor feedback. This is schematically depicted in Figure 1.2. Already in
1967 Manabe and Wetherald (1967) suggested that this feedback doubles the response of
temperature to external forcing such as changes in atmospheric CO2. In addition to local
evaporation, enhanced due to sea ice retreat (Boisvert et al., 2015), the Arctic’s atmo-
spheric moisture is a result from transport from lower latitudes. Most of the poleward
moisture transport occurs as pulses of anomalously warm and moist air intruding into the
Arctic (Pithan et al., 2018). Such moist warm air intrusions increase the downward long-
wave radiation flux and the surface temperature and thus contribute to Arctic warming
in winter (Woods et al., 2013; Hao et al., 2019). In addition, there is the release of latent
heat at condensation; and aer condensation there is an increase in cloudiness which has,
at least in winter, a warming effect in the Arctic. This threefold consequence is called
water vapor triple effect (Taylor et al., 2022). Evidence for an increase in meridional heat
and moisture transport (Graham et al., 2017; Valkonen et al., 2021; Rinke et al., 2017;
Hao et al., 2019; Henderson et al., 2021; Woods and Caballero, 2016; Zhang et al., 2023)
underlines the importance of the water vapor feedback.

Overall, Arctic moistening is observed in reanalyses from 1979–2016 but the different
reanalysis products disagree on the magnitude. The trends also vary depending on season
and region including regions with negative trends (Rinke et al., 2019). Based on satellite
data from an infrared sounder from 2003–2013 Boisvert and Stroeve (2015) conclude as
well that most of the Arctic is getting warmer and wetter during the majority of the
months. Locally, moistening in winter over the time period of 1993 to 2014 is observed
in radiosonde data from Ny-Ålesund (Maturilli and Kayser, 2016). Also, positive trends
dominate at Arctic sites when analyzing water vapor data from Global Navigation Satellite
System (GNSS) from 1998 to 2017 (Negusini et al., 2021). In a modeling study Ridley
et al. (2023) predict an increase of water vapor in the Arctic, where the rate of increase is
enhanced due to sea ice loss and shows a pronounced seasonality.
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The Ensemble

Now that we have introduced the protagonists, we want to stress the importance of their
interplay. In the last paragraph we already outlined some interactions: the interplay of
sea ice loss and water vapor increase due to more evaporation and of moisture transport
and cloud formation. The effects may also be delayed. For example, more water vapor in
autumn could lead to warmer air and surface temperatures due to increased cloud fraction
which remain warmer later in the season and affect earlier melt onset of the sea ice in spring
(Boisvert and Stroeve, 2015). In addition to changes in total water vapor, the loss of sea ice
and the corresponding changes in surface turbulent heat fluxes affect the vertical moisture
and temperature profiles. These are intertwined with the Arctic lapse rate feedback, which
describes the weaker atmospheric cooling because of bottom heavy warming in the Arctic
compared to vertically uniform warming. Changes in liquid water content of clouds and
related precipitation patterns may affect snow depth. Models predict a transition from a
snow- to rain-dominated Arctic in the summer and autumn (McCrystall et al., 2021) and
negative (positive) trends in days with solid (liquid) precipitation are already observed
in the Atlantic sector of the Arctic (Łupikasza and Cielecka-Nowak, 2020). Changes
in atmospheric or oceanic circulation influence our protagonists as well. The different
processes are acting on different spatial and temporal scales, further complicating their
analysis. In order to investigate the mechanisms behind AA it is elemental to monitor our
protagonists and their interplay.

1.3 Human Audience: Monitoring the Arctic

Long before Pytheas narrated about “Ultima Thule”, the area in the extreme North, in
the 4th century BC, the Arctic region has been populated and explored by the indigenous
peoples (Lainema and Nurminem, 2009). Siberia, for example, has been inhabited for
more than 40,000 years (Sikora et al., 2019). In the early medieval period, the Vikings
started exploring the frozen seas. Descriptions of the “wonderful nature” (Nansen, 1897)
of sea ice can be found in The King’s mirror of about 1240 (Lainema and Nurminem,
2009). Sledges, kayaks and ships were the means of new discoveries, but remote sensing
leveraged explorations in the last decades. Remote sensing, i. e., the ability to observe
from a distance without direct contact with physical objects provides a way to monitor
the Arctic in which humans do not disturb the fragile Arctic ecosystem. This includes
airborne measurement campaigns and space-borne observations. For climate sciences,
remote sensing is especially important, as satellite observations cover time spans long
enough for climatological assessments. For example, information about the Arctic sea ice
in the last report of the Intergovernmental Panel on Climate Change (2023) mostly stems
from remote sensing.
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1.3.1 By Many Paths and by Many Means: Expeditions

“By many paths and by many means mankind has endeavored to penetrate this kingdom
of death” (Nansen, 1897). One particular expedition was the voyage of exploration of
the ship Fram 1893–96, led by Fritjof Nansen who the quote above is attributed to. A
similar approach was adopted by the Soviet-Russian operation of North Polar driing
stations, measurement stations set up on and driing with the sea ice. It was run, with
breaks, from 1937 to 2015. In recent years suitable ice floes were difficult to find and the
operation of ice camps came to an end (Barry and Gan, 2021). 126 years aer the Fram
expedition, the MOSAiC expedition (Nicolaus et al., 2022; Shupe et al., 2022; Rabe et al.,
2022) followed up on Nansen’s idea. It provided the unique opportunity of measurements
in the central Arctic in winter: the icebreaker and research vessel Polarstern (Knust, 2017)
dried passively with the pack ice anchored to a second-year ice floe for a full year from
October 2019 to September 2020, with one relocation during the summer. Observations
from the MOSAiC campaign will play a central role in Chapter 5.

Despite these tremendous efforts, the central Arctic is harsh and difficult to access and
many lives were lost in the attempts. In situ observations remain sparse both temporally
and spatially. Satellites are therefore a great tool for scientific explorations of the Arctic
especially in winter.

1.3.2 The Loge in Outer Space: The Satellite Era

At the end of the 19th century, Nansen wrote that “darkness still broods over vast tracts
around the Pole” (Nansen, 1897). This has certainly changed with the beginning of obser-
vations of the Arctic from space that keep providing whole new possibilities for exploring
the polar regions. Satellite remote sensing encompasses a variety of sensing methods: pas-
sive and active, including infrared or visual imaging as well as microwave remote sensing.
Inferred products include sea ice concentration (Ludwig et al., 2020), ice thickness (Hunte-
mann et al., 2014), sea ice drag (Mchedlishvili et al., 2023), snow depth (Rostosky et al.,
2018), ice classification (Kortum et al., 2022), melt pond fraction (Niehaus et al., 2023),
lead detection (Murashkin et al., 2018), but also atmospheric variables such as water vapor
(Triana-Gómez et al., 2019), methan and carbon monoxide (Schneising et al., 2019).

According to the Union of Concerned Scientists (2023), as of January 1, 2023 there
are 1167 Earth observation satellites in orbit, most of them in a sun-synchronous, low-
Earth orbit. These are orbits with a period of 128 minutes or less and a high inclination
angle to the equator (polar orbits), enabling the same illumination of the surface as sun-
synchronous orbits observe any given point at the same local mean solar time. The polar
orbits enable daily Arctic-wide coverage.
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Passive Microwave Remote Sensing in Polar Regions

With the advent of satellites, passive microwave radiometers have been measuring energy
emitted in the microwave regime from the Earth’s surface and atmosphere. One of the
early satellites, Cosmos 234, was launched in 1968 and showed the possibility of sea ice
monitoring. Basharinov et al. (1971) reported from its observations which indicated that
brightness temperatures of sea ice depend on a variety of ice properties (Gloersen et al.,
1973). Multichannel satellite observations extend back to Nimbus 5 launched 1972 which
allows climatological assessments of key quantities such as sea ice area.

The atmospheric influence on the satellite measurements in the microwave region is
rather small, an advantage in the cloudy Arctic. The measurements are independent
of sunlight, enabling observations during polar night. Also, microwave remote sensing
enables frequent and spatially complete coverage of the Arctic despite relatively poor
spatial resolution of the order of tens of kilometers. The view from space has unraveled
many mysteries of the Arctic but has also raised new questions and opened up novel
observation possibilities.

Curtains up for microwave remote sensing!
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Chapter 2

Theoretical Background

In this chapter we provide the theoretical background of microwave remote sensing from
basic principles to the inversion scheme used in the retrieval method in Chapter 5. We
also briefly discuss the means and pitfalls of evaluating parameters derived from satellite
data using ground truth.

2.1 Microwave Remote Sensing

We outline the basic principles of microwave remote sensing following closely Ulaby and
Long (2014) if not indicated elsewise. All quantities in formulas are given in SI units if not
mentioned differently. We use the convention to call the electromagnetic spectrum from
0.3GHz to 300GHz the microwave region.

We will see that most of the formulated relations we use in microwave remote sensing
follow from basic principle like the notion of a black body and conservation of energy. We
first outline the measuring principle in radiometry and introduce the measured quantity
called brightness temperature. For explaining radiative transfer and, ultimately, observa-
tions of satellite radiometers, we then also discuss the propagation of waves in media and
at boundaries of different media. Equipped with these basics, we then turn our attention
to the four protagonists introduced in Chapter 1 and contemplate how they determine the
satellite signal.

2.1.1 Black-body Radiation

In 1860 Kirchoff introduced the notion of a “schwarzer Körper”, a black body, which
is an ideal absorber of radiation, i. e., no radiation is reflected or transmitted by this
body, at all wavelengths and all angles of incidence (Kirchhoff, 1860). From this defi-
nition alone we can deduce further properties such as: the black body is also an ideal
emitter at any wavelength, its radiation is isotropic, and the total emitted energy of radia-
tion is a monotonously increasing function of thermodynamic temperature only (Sharkov,
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2003). Laws describing the approximate spectral distribution of the black-body radia-
tion like the Wien radiation law, the Rayleigh-Jeans law and the Stefan-Boltzmann law,
as well as Wien’s displacement law were formulated proceeding from classical thermody-
namic arguments (Howell et al., 2021). However, these laws were not sufficient, e. g., the
Wien radiation law fails to describe the energy distribution at long wavelengths while
the Rayleigh-Jeans law fails for short wavelengths (‘ultraviolet catastrophe’; Ehrenfest
(1911)). Only with the advent of quantum theory it was possible to derive a quantitative
expression valid also for high temperatures and long wavelengths.

Planck’s Law By assuming that emitted radiation occurs in discrete energy quanta,
Planck derived the formula named aer him in 1900 which describes the spectral intensity
distribution If of a black body:

If =
2hf3

c2

(︃
1

exp(hf/kBT )− 1

)︃
, (2.1)

where h is Planck’s constant1, f is frequency, c is the velocity of light2, kB is Boltzmann’s
constant3 and T is the body’s temperature. Here, If is the intensity per frequency interval
emitted by the black body of unit surface area through one unit (steradian, sr) of solid
angle. For low frequencies, Planck’s law can be approximated by the Rayleigh-Jeans law
which had been derived around the same time based on classical assumptions:

If ≈
2kBT

λ2
, (2.2)

where λ is the wavelength4 of the radiation. Figure 2.1 shows the excellent agreement
between the two laws in the microwave region, i. e., from 0.3GHz to 300GHz. At 300K
and 300GHz the Rayleigh-Jeans law deviates from Planck’s expression by about 3%.

2.1.2 Radiometry

We now outline how a remote-sensing antenna intercepts radiation and measures inco-
herent radiant electromagnetic energy. First of all, a typical antenna detects radiation
along a single polarization direction5 according to its radiation pattern F (θ, φ). F (θ, φ)

characterizes the normalized, relative distribution of power received or transmitted by the
antenna in the far-field6. As most antennas are reciprocal, F (θ, φ) is the same for both

1h=6.626 070 15× 10−34 JHz−1

2c=299 792 458ms−1

3kB=1.380 649× 10−23 JK−1

4Note that f = c
λ

and df = −c
λ2 dλ

5The notion of polarization will be introduced in more depth in Section 2.1.3.
6When the wavefront of a wave radiated by a transmitting point can be considered planar across the

antenna aperture because the distance between transmitter and receiver is sufficiently large, the receiving
antenna is in the far-field region. This is the case for most satellite applications.
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Figure 2.1: Planck’s radiation law (solid lines) of black bodies with different temperatures in
comparison to the Rayleigh-Jeans approximation (dashed lines). Shown are the intensities of a
body at T = 258K (blue lines, black-body model of the Earth) and at T = 5800K (orange lines,
black-body model of the Sun).

transmission and reception. The total amount of power P over the frequency range f1 to
f2 that is received by the antenna is given by

P =
1

2
Ar

∫︂ f2

f1

∫︂∫︂
4π

IfF (θ, φ)dΩdf, (2.3)

where Ar is the effective aperture of the antenna given by the fraction of the power density
of an incident wave to the intercepted power. The integration is over the complete solid
angle Ω to account for all directions. Ar is related to the antenna pattern via the pattern
solid angle Ωp as ∫︂∫︂

4π
F (θ, φ)dΩ = Ωp

Ωp =
λ2

Ar
. (2.4)

In the low-frequency approximation (Equation 2.2) we simplify Equation 2.3 to

P ≈ kBTB
Ar
λ2

∫︂∫︂
4π

F (θ, φ)dΩ = Pbb, (2.5)

where we assumed the detection to be limited to a narrow bandwidth B = f2 − f1 << f

over which If is constant. The integral in Equation 2.5 is related to the effective aperture
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(Equation 2.4), and a direct linear relationship between temperature and power can be
derived as

Pbb = kBTB. (2.6)

This is a significant relation and we will elaborate on it a bit further. Nyquist (1928)
studied the electronic noise in conductors stemming from the thermal agitation of the
charge carriers, independent of applied voltage. From thermodynamics and statistical
mechanics Nyquist deduced that this Gaussian thermal noise is proportional to the re-
sistance and temperature of the conductor. His theorem was later generalized in terms
of a quantum-mechanical derivation of the fluctuation-dissipation theorem (Callen and
Welton, 1951). It is now possible to derive Equation 2.6 from Nyquist’s formula. Here, we
think of the antenna as a resistor with a certain impedance inside a black-body enclosure
where the enclosure has temperature T , see Figure 2.2 When we match the impedance of

Figure 2.2: Thought experiment: Power received from within a black-body enclosure with tem-
perature T by an antenna (top) is equivalent to the noise power delivered by a resistor with physical
temperature T (bottom).

the resistor to our antenna measurement system in a way that maximizes power transfer
(from source to receiver), the thermal noise signal reformulated in terms of power gives
Equation 2.6, which, in differential form where Pf is a spectral density, reads

Pf df = kBTA df. (2.7)

This allows to identify the antenna temperature TA (which is not the physical temperature
of the antenna) as the thermodynamic temperature of a matched noise resistance.

Brightness Temperatures So far we have considered idealized black bodies. While
there are objects in nature that can be described well as a black body, for example our sun
or the cosmic background, most natural materials emit less than a black body does. We
may now define the black-body equivalent radiometric temperature and call it brightness



Theoretical Background 17

temperature TB so that Equation 2.2 takes the form

If(θ, φ, f) =
kB
λ2

TB(θ, φ, f) (2.8)

where we introduced the direction dependence of If and multiplied by the factor 1/2 to
obtain the singular-polarized brightness intensity. Again, we consider the antenna to be
a resistor inside an enclosure, only this time it is not a black body but the enclosure is
emitting according to a brightness temperature distribution TB(θ, φ, f). Thus, along the
lines of Equation 2.3, the spectral density received is given by

Pf df =
1

2
Ar df

∫︂∫︂
4π

If(θ, φ, f)F (θ, φ)dΩ (2.9)

=
1

2
Ar df

∫︂∫︂
4π

kB
λ2

TB(θ, φ, f)F (θ, φ)dΩ. (2.10)

By employing Equation 2.7 and 2.4 we derive a relationship between brightness tempera-
ture and antenna temperature from Equation 2.10. This relationship is expressed as

TA(f) =

∫︁∫︁
4π TB(θ, φ, f)F (θ, φ)dΩ∫︁∫︁

4π F (θ, φ)dΩ
. (2.11)

Within the power passband B, assuming no change of TA within, we then obtain the total
power to be

P = kBTAB. (2.12)

TA includes indiscernible contributions from different directions. The main part of received
power of an antenna with a specified directional pattern is localized within a narrow
mainlobe zone (giving the antenna directivity) but there are also contributions from the
so-called sidelobes which are usually undesired. The beam efficiency as the ratio of the
pattern solid angle and the mainlobe solid angle may be used to describe the significance
of these unwanted sidelobe contributions. In the previous discussion we considered ideal
antenna systems, i. e., without ohmic losses. In reality, a radiometer receiver measures
voltage proportional to the antenna temperature including ohmic losses and thermal noise
of antenna, receiver and transmission line.

Radiometric, Spectral and Spatial Resolution Due to the stochastic nature of noise
the signal must be averaged. The detected voltage is integrated over the integration time
τint and the estimate of antenna temperature carries an uncertainty ∆T , called radiometric
resolution, as it is the detection limit. One can show that ∆T of a total-power radiometer
is given by

∆T = TSYS

[︄
1√
Bτint

+

(︃
∆G

G

)︃2
]︄1/2

, (2.13)



18 2.1 Microwave Remote Sensing

where TSYS is the sum of antenna temperature and combined receiver and transmission line
input noise temperature and B is the bandwidth. The minimum bandwidth determines
the spectral resolution. The second term accounts for fluctuations of the system gain G,
i. e., it takes ohmic losses in the antenna itself into account: G is the average system power
gain and ∆G is the root mean square of its fluctuations.

Now that we have discussed the radiometric and spectral resolution we lastly note the
spatial resolution of an antenna, usually given as instantaneous field of view (IFOV). The
beamwidths of the main lobe of an antenna with pattern F (θ, φ) are defined as the angular
width in a given plane where the magnitude of F (θ, φ) is, expressed in decibels, −3dB.
The area on the ground that is covered by the beam, constrained by the beamwidths, is
the IFOV. For today’s space-borne radiometers this is rather coarse – on the order of 5
to 50 km.

2.1.3 Radiative Transfer

Aer having established the basics for sensing radiated energy, we shall now consider
the actual satellite measurement system. Figure 2.3 shows a simple scheme where the

Figure 2.3: Idealized scheme of a satellite measurement: the instrument on the satellite measures
the atmospheric brightness temperatures emitted upwards by clouds and water vapor (red arrow),
the downwelling brightness temperatures that are scattered upwards at the surface (pink arrow)
and the emissions from the surface (orange arrow). At the low microwave frequencies, the latter
are the dominant contribution to the overall signal measured at the satellite.

contributions to the satellite are divided into a part emitted by the atmosphere (the
upwelling atmospheric brightness temperatures), the downwelling atmospheric brightness
temperatures that are scattered upward towards the satellite, and the emissions by the
terrain. When the electromagnetic radiation arrives at the space-borne radiometer it has
interacted with the matter of the terrain and the atmosphere by emission and extinction
(absorption and scattering). We shall now consider these energy transformations within
a volume element. The loss in intensity by scattering and absorption can be described
by the extinction coefficient κe over a distance dR that can be expressed as increment of
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opacity dτ by
dτ = κe dR. (2.14)

The extinction coefficient is the sum of the linear processes of scattering (scattering coef-
ficient κs) and absorption (absorption coefficient κa). Along some distance intensity can
be gained by thermal emission and by scattering of radiation in the propagation direction
(R̂). Assuming local thermal equilibrium within the integration time and the volume el-
ement, Kirchhoff’s law states that emission is equal to absorption. The radiative transfer
equation is given by an energy balance equation for some volume element at R on the
propagation path. In terms of brightness temperature it can be written as

dTB
dτ

+ TB = (1− a)T + aTVS, (2.15)

where a = κs
κe
, T is the local physical temperature of the volume element, and TVS is

called volume scattered radiometric temperature. The latter is a function of location and
propagation direction and is given by integration of the scattering phase function Φ(R̂,R′ˆ )

which dictates the redirection fractions from R′ˆ to R̂ during the scattering process:

TVS =
1

κs

∫︂∫︂
4π

Φ(R̂,R′ˆ )TB(R̂,R′ˆ )dΩ. (2.16)

In case of a nonscattering, nonrefractive atmosphere, valid for gaseous absorption in
the microwave spectrum below 10GHz, we can solve the radiative transfer equation and
obtain at position s with τ(0, s) = sec(θ)

∫︁ s
0 κe dz (Waters, 1976; Chandrasekhar, 1950):

TB(s) = TB(0) exp(−τ(0, s)) +

∫︂ s

0
T (s′) exp(−τ(s′, s))κa(s

′)ds′, (2.17)

where the first term represents attenuation as the radiation, TB(0), emitted and scattered
from the surface, passes from 0 to s and the second accounts for the emission along the
path s (upwelling atmospheric brightness temperature, TB,up). When we express the path
s in terms of height z and zenith angle θ we can define TB,up as

TB,up = sec(θ)
∫︂ ∞

0
T (z′) exp(−τ(z′,∞))κa(z

′)dz′, (2.18)

and along the same lines the downwelling atmospheric brightness temperature, TB,down,
reads

TB,down = sec(θ)
∫︂ ∞

0
T (z′) exp(−τ(0, z′))κa(z

′)dz′. (2.19)

The upper limit of the integral in Equations 2.18 and 2.19 is in principle the height of our
satellite radiometer, here chosen to be ∞ as κa(∞) = 0 for free space.
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Plane-wave Propagation in Media So far we have derived the radiative transfer the-
ory from principal energy considerations. We now introduce wave equations to describe
the propagation of radiation in media and at boundaries of different media. Electro-
magnetic waves are described by time-varying electric and magnetic fields that can be
depicted by vectors. For sinusoidal time variations with angular frequency ω, the electric
field can be split in a spatial component E(x, y, z) and a time-dependent one described as
E(x, y, z, t) = Re(E(x, y, z) exp(iωt)). From Maxwell’s equations the homogeneous wave
equations for both electric field and magnetic field can be derived and take on the form:

∇2E + k2E = 0.7 (2.20)

The wavenumber k is given by
k = ω

√
µϵϵ0, (2.21)

where µ is the magnetic permeability, ϵ is the relative permittivity and ϵ0 is the permittivity
of free space, where the latter two describe the polarizability of the medium. We note that
ϵ and k are complex numbers and introduce the refractive index n given by n =

√
ϵ. The

imaginary part of ϵ is also called dielectric loss. A solution for the wave equation is given
by plane waves, i. e., electric and magnetic field are constant through any plane that is
perpendicular to the direction of propagation. In case of an electric field in x-direction
traveling along the z-direction, the solution to Equation 2.20 is

E(z) = Ex0 exp(−αz) exp(−iβz)x̂, (2.22)

where Ex0 is the amplitude; and attenuation coefficient α and phase constant β (the
complex-valued wavenumber) are related to the permittivity via

α = −ω
√
µϵ0 Im(

√
ϵ) (2.23)

β = ω
√
µϵ0 Re(

√
ϵ). (2.24)

The distance that a wave can penetrate into a lossy medium can be described by the
skin depth δs = 1/α, where the electric field magnitude has fallen to 1/e of its initial value.
In terms of power, the counterpart quantity is the penetration depth. In a scatter-free
medium the power density is of exponential form with a power absorption coefficient given
by 2α. The penetration depth given by δp = δs/2 indicates the maximum depth of the
medium that contributes to the brightness temperature (Hallikainen and Winebrenner,
1992).

7The same equation is valid for the magnetic field by replacing E with H.
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Figure 2.4: Reflection and refraction at a boundary of medium 1 (characterized by ϵ1 and n1) and
medium 2 (characterized by ϵ2 and n2). On the left, the incident light (red line), propagating in
negative z-direction, is horizontally polarized shown by the electric field vector Eih and vertically
polarized on the right (Eiv). The yellow lines within the medium 2 with an angle of θ2 to the
surface normal denote the refracted wave and the orange lines with an angle of θ′1 = θ1 to the
surface normal are the reflected waves.

Dielectric Permittivity We have seen that permittivity plays a fundamental role in
radiative transfer. In a real material such as sea ice or snow (heterogeneous mixtures)
the permittivity is inhomogeneous and can be approximated by an effective permittivity
which is oen described by ‘mixing’ the intrinsic dielectric permittivity of a host material,
for example ice, with the one from the inclusions, for example brine. This will be discussed
in more detail later (Section 2.1.5).

Polarization The locus of the tip of the electric field vector is described by the polariza-
tion. In case of transmission and reflection at oblique incidence (for example for satellite
observations of the Earth’s surface) two orthogonal polarization configurations are used to
describe the wave: horizontal polarization (denoted by subscript h) and vertical (denoted
by subscript v) polarization. The two polarizations are shown in Figure 2.4.

Reflection and Transmission With the previous introduction of permittivity and po-
larization we may now describe what happens when a planar wave encounters a boundary.
The planar boundary separates two dielectric media, that we call medium 1 and medium
2, with different dielectric properties, ϵ1 and ϵ2

8. The incident wave coming from medium
1 is partly reflected to medium 1 and partly refracted (or transmitted) in medium 2. The
angles of incidence, θ1, reflection, θ′1, and refraction, θ2, shown in Figure 2.4, are related
by Snell’s laws: θ1 = θ′1 and sin(θ2)/ sin(θ1) = n1/n2. The attentive reader might have no-
ticed that the expression for the angle is complex (if the imaginary part of the permittivity
is nonvanishing) and does not have the significance of a refraction angle in the traditional
sense. Considering instead the angle formed by the planes of waves with constant phase

8In principle the discontinuity at a boundary applies also to magnetic permeability. As we deal with
nonmagnetic materials, we consider µ to be equal to µ0, the permeability of vacuum.
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offers a physical interpretation of a refraction angle. For the expressions of that angle see
Stratton (1941). For small values of the dielectric loss term, we can approximate the angle
of transmission with Snell’s law using the real part of the refractive index, see Appendix A.

Across a boundary, that is a discontinuity in terms of dielectric properties, the electric
and magnetic field vectors may also change but one can derive boundary conditions, for
example, that the tangential component of the electric field vector is continuous (Born and
Wolf, 2019). This boundary conditions allow to determine the reflection coefficients for
both vertical (ρv) and horizontal (ρh) polarization, given by the fraction of the amplitudes
of the reflected and the incident electric fields. They are described by the Fresnel equations
as

ρv =

√︁
ϵ2/ϵ1 − sin2(θ1)− ϵ2/ϵ1 cos(θ1)√︁
ϵ2/ϵ1 − sin2(θ1) + ϵ2/ϵ1 cos(θ1)

, (2.25)

ρh =
cos(θ1)−

√︁
ϵ2/ϵ1 − sin2(θ1)

cos(θ1) +
√︁
ϵ2/ϵ1 − sin2(θ1)

, (2.26)

for an incident plane wave propagating in negative z-direction as depicted in Figure 2.4;
and the transmission coefficients (fraction of the amplitudes of the transmitted and the
incident electric fields) then read: th = 1 + ρh and tv = (1 + ρh)(cos(θ1)/ cos(θ2)).

The absolute values of the Fresnel coefficients are proportional to the reflected electric
field amplitudes. We can now come back to our energy considerations from the previous
Section 2.1.2. The ratio of reflected to incident power, the reflectivity, for each polarization
is simply given by the square of the absolute value of the corresponding Fresnel coefficient.
Because of conservation of power, the sum of reflectivity and transmissivity (ratio of trans-
mitted to incident power) equals one. The absolute squares of the reflection coefficients
of an ice-air and a water-air boundary are shown in Figure 2.5. We can see that in both
cases there is an incidence angle when ρv equals zero, meaning that the vertically polarized
component is transmitted completely (no reflection). This angle is called Brewster angle.
In an absorbing material, i. e., with nonzero imaginary part of the permittivity, ρv does
not go to zero and the Brewster angle corresponds to the angle where ρv has a minimum.

Scattering We restrict ourselves to the case of a static scattering, where the electro-
magnetic field is incident on a medium with constant dielectric properties. We rewrite
Equation 2.20 describing the space-dependent part of the electric field that is incident on
a medium with refractive index n(r, ω) as (Born and Wolf, 2019)

∇2E(r, ω) + ω2

c2
n2(r, ω)E(r, ω) = 0. (2.27)

In most cases approximate techniques are needed to solve this equation which describes
the scattered field. For dense media like snow, where the scatterers do not scatter inde-
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Figure 2.5: Absolute squared values of the Fresnel reflection coefficients for vertical polarization,
|ρv|2, and for horizontal polarization, |ρh|2, of an air-water boundary (blue) and an air-ice boundary
(grey). Note that the imaginary part of the permittivity is neglected here.

pendently (they can ‘shield’ each other) the dense media radiative transfer framework can
be used. Tsang et al. (2016) first solve Maxwell’s equations numerically over samples of a
few wavelengths. The hereby derived relevant quantities like phase matrix and extinction
coefficients are then used in equations describing the intensity. The authors also utilized
the discrete dipole approximation to solve Maxwell’s equations numerically over a whole
snowpack which enables even fully coherent modeling, i. e., taking into account changing
phase relations of the scattered waves. For special cases, exact solutions of Equation 2.27
can be found. Let us now consider such a case of spherical scatterers, like rain drops.

Mie and Rayleigh Scattering: Spherical Particles The ratio of scattered power
to incident power, the scattering cross section, can be calculated for spherical scatterers
using the solution of Maxwell equations by Mie (1908) which depends on the radius of the
scattering particle, r, the dielectric permittivities of scatterer and background and on the
wavelength. For particles that are much smaller than the wavelength, the solution can be
simplified using Rayleigh approximations.

Figure 2.6 shows the scattering regimes as function of radiation frequency f and particle
radius r. Here we used the size parameter x = 2πrf/v where v is the wave’s phase velocity
(speed of light in air) as rough boundaries to distinguish the regimes as done in Petty
(2006). We can see that in the microwave region for a non-precipitating atmosphere,
scattering can either be neglected or described by Rayleigh scattering.

In the Rayleigh regime with a background medium air the expression for the scattering
cross section Qs of a spherical particle with radius r and dielectric permittivity ϵ is given
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Figure 2.6: Scattering regimes as function of radiation frequency and particle radius r. The size
parameter x = 2πr/λ (λ being the wavelength) separates the broad scatterings regimes. Note
that also lower values for the boundary between Mie scattering and geometric optics are used in
literature (Gimmestad and Roberts, 2023). Typical values for atmospheric particles are shown on
the right axis. The shaded area indicates the microwave region. Adapted from Petty (2006).

by

Qs =
2λ2

3π
(2πr/λ)6

(︃⃓⃓⃓⃓
ϵ− 1

ϵ+ 2

⃓⃓⃓⃓)︃2

. (2.28)

The analog to Qs in terms of absorbed power is the absorption cross section Qa, which
can be approximated in this regime as

Qa = −λ2

π
(2πr/λ)3Im

(︃
ϵ− 1

ϵ+ 2

)︃
. (2.29)

Note that for Rayleigh scattering the strength of scattering is proportional to λ−4 while
the absorption cross section is a function of λ−1. Mie and Rayleigh scattering as described
above apply to single scatterers. In a cloud, for example, we assume randomly distributed
particles with sizes following a drop-size distribution and the scattering is described in
terms of a scattering cross section per unit volume.

Born Approximation Rigorous derivation of scattering from the Maxwell equations
results in the integral equation of potential scattering9 (Eq 2.27, Born andWolf, 2019). The
approximate solution obtained using perturbation methods is called Born approximation,
which is accurate if the incident field is large compared to the scattered field. An improved
Born approximation can be used in a granular media such as snow (Mätzler, 1998) to derive
absorption and scattering coefficients and cross sections as well as phase functions.

9It is a pretty coincidence that this differential equation is mathematically equivalent to the time-
independent, non-relativistic Schrödinger equation.



Theoretical Background 25

Statistical information about the microstructure of such media can be described by the
autocorrelation function C(r). For a medium with two phases, the phase indicator function
is 1 for points r within the volume consisting of phase one and zero otherwise. The auto-
covariance of this phase indicator function yields the correlation function C(r) (Proksch
et al., 2015). By fitting C(r) to an exponential form so that C(r) ∝ exp(−|r|/Iexp) we
can obtain the exponential correlation length Iexp that is oen used in parametrizations
of scattering of snow.

Surface Scattering In case of a specular surface (without roughness) the scattered
energy can be calculated using the reflectivity derived from the Fresnel equations 2.25.
Assuming a downwelling brightness temperature TB,down the upward reflected, p-polarized
(either horizontal or vertical) fraction T p

B,Ω(θ, f) is given by TB,Ω(θ, f) = |ρp|2TB,down. A
Lambertian surface scatters uniformly in all directions (perfect roughness). The angular
response of a real surface which consists of multiple scales of roughness can be characterized
by a combination of specular and Lambertian surface scattering.

To compute non-specular scattering one needs to integrate the product of TB,down and
the bistatic-scattering coefficient10 over the upper hemisphere. Alternatively, diffuse scat-
tering can be represented by downwelling radiation at an effective angle (Mätzler, 2005).
Mätzler (2005) shows that at zenith angles around 55◦ the differences between specular
reflection and scattering by a Lambertian surface are insignificant. Yet another way to
describe rough surfaces is to modify the surface reflectivities using roughness parameters
obtained from the height distribution of the surface (Choudhury et al., 1979). Further
methods to treat surface scattering include the small perturbation model (Tsang and
Kong, 2009), the advanced integral equation method (Chen et al., 2003) or even numerical
solutions of Maxwell’s equations in three dimensions (Zhou et al., 2004). In this thesis, we
will assume zenith angles around around 55◦ and treat the surface as specular scatterer.

Satellite-observed Brightness Temperatures Coming back to our measurement
scheme in Figure 2.3 we can come up with an equation for the brightness temperatures
(TB,sat) measured via the antenna temperature by the satellite radiometer. We first define
the total transmittance of the atmosphere as

Υp(θ, f) = exp
(︃
− sec(θ)

∫︂ ∞

0
κpe(f)dz

)︃
(2.30)

and then obtain

T p
B,sat(θ, f) = TB,up(θ, f) + Υp(θ, f)(T p

B,Ω(θ, f) + T p
B,surf(θ, f)), (2.31)

10The term bistatic-scattering coefficient refers to the ratio of re-radiated power and incident power density
(both polarized) per surface area.
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where superscript p denotes the polarization (either h or v), T p
B,Ω(θ, f) is the upward

scattered fraction of TB,down and T p
B,surf is the surface-emitted brightness temperature.

The treatment of the question of microwave remote sensing has been very general so
far. We will now look into the Earth’s atmosphere and surfaces, in particular, in the
Arctic, and discuss how these parameters influence the microwave signal. To do so we will
mainly focus on the four protagonists introduced in the last chapter.

2.1.4 The Atmosphere: Water Vapor and Cloud Liquid Water

In the microwave regime, the atmosphere of the Earth ranges from near-total opacity
to total transparency. The surface signal is transmitted up to 480 GHz at the poles
because of the dry atmosphere (Wang et al., 2017). At low frequencies (<15GHz) the
atmosphere can be considered transparent even in the presence of clouds. However, the
microwave spectrum also contains absorption lines due to atmospheric gases. Emission and
absorption take place when molecules transition from one discrete energy level to another.
These energy levels depend on the electronic, vibrational and rotational energy. Figure 2.7
shows these absorption lines due to the gases water vapor (at 22.235GHz and 183.31GHz)
and oxygen (50GHz to 70GHz and 118.75GHz). Because of line broadening, most notably
pressure broadening due to molecular collisions, these lines have a finite width. The line
shape can be formally described (Ben-Reuven, 1965; Van Vleck andWeisskopf, 1945) and is
a function of both temperature and pressure. Other constituents of the atmosphere such as
nitrogen dioxide absorb in the microwave frequency range, too, but are negligible compared
to water vapor and oxygen. The absorption coefficient by gases is given as the sum of
the absorption coefficients of the individual transitions for the different atmospheric gases.
This is valid as long as spectral lines do not significantly overlap, i. e., the radiation from
different transitions is incoherent (Waters, 1976). In addition to absorption by gases, there
is also interaction of the electromagnetic radiation with hydrometeors as present in clouds,
fog or rain. The scattering and absorption efficiency depends on the dielectric spectrum
and we can therefore order it depending on the type of hydrometeor: water particles
exhibit strong scattering and absorption, while ice particles are weak absorbers. In the
microwave spectrum below 100GHz the description of atmospheric attenuation in case of
no precipitation can be reduced to the most important components: the absorption of
water vapor αV, oxygen αO and liquid water in clouds αL. The total absorption coefficient
is thus given as κa = αV +αO +αL. The vertically integrated oxygen absorption is nearly
constant over the globe (Wentz and Meissner, 2000). We will therefore focus on water vapor
and cloud liquid water and describe their interactions with the electromagnetic radiation
in the atmosphere in the following. We will consider a non-precipitating atmosphere only,
therefore we do not need Mie theory to describe scattering by rain drops. Because oriented,
non-spherical hydrometeors are not considered in the following the transmittance Υ(θ, f)

does not depend on the polarization.
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Figure 2.7: Absorption coefficients κa of water vapor (blue line), oxygen (green line) and their sum
at sea level under conditions resembling the dry and cold Arctic atmosphere (pressure is 1013hPa,
temperature is −18 ◦C and water vapor density is 1 gm−3). The coefficients are computed based
on Rosenkranz (2017). The vertical dashed blue lines indicate the water vapor rotation lines at
22.235GHz and 183.31GHz while the vertical green lines indicate the oxygen absorption bands
around 60GHz and at 118.75GHz.

Water vapor Water is a polar molecule and due to its low symmetry it has three
independent moments of inertia. In the microwave regime, the interaction of the elec-
tromagnetic field of the incident wave with the electric dipole of the polar water vapor
molecule results in two significant rotation lines at 22.235GHz (the hyperfine components
of this line due to spin interactions are described in Bluyssen et al., 1967) and 183.31GHz.
In the near- and mid-infrared the rotational modes combine with the vibrational ones and
result in closely packed absorption lines, the vibration-rotation band. Within the rota-
tional and vibrational-rotational bands, and between, in the windows, we find the residual
absorption, the so called water vapor continuum. The underlying causes of the continuum
are still under debate (Shine et al., 2012). While it is of less importance within the strongly
absorbing rotational bands, it is the dominant source of absorption in the windows.

In the atmospheric column of unit cross section, the mass of water vapor is given by
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the integrated or total water vapor (TWV) which is formally defined as

TWV =

∫︂ ∞

0
ρv(z)dz, (2.32)

where the water vapor density ρv is integrated over the altitude z.
The absorption coefficient αV is a function of water vapor density. Based on radiosonde

measurements and expressions from Liebe (1985), Wentz and Meissner (2000) parameterize
αV as a second-order polynomial function of TWV with frequency-dependent coefficients.

Cloud liquid water path Similar to the integrated water vapor we define cloud liquid
water path LWP as the amount of liquid water present in the atmospheric column of unit
area. For a cloud of height H we get

LWP =

∫︂ H

0
mL(z)dz, (2.33)

where mL is the cloud liquid water content. In clouds, drops are small and the attenuation
is independent of the drop-size distribution and proportional to the total water content per
unit volume (Goldstein, 1951). This is because the scattering coefficient is proportional to
the radius of the drop r to the power of six (Rayleigh scattering, see Equation 2.28), while
the absorption cross section is a function of r3 so that attenuation in clouds is caused
almost entirely by absorption for sufficiently small drops. Wentz and Meissner (2000)
parameterize the vertically integrated absorption coefficient αL as a linear function of liquid
water path (LWP) and mean cloud temperature using frequency-dependent coefficients.

2.1.5 The Surface: Open Ocean, Sea Ice, and Snow

The surface in Figure 2.3 acts both as emitter and as a scatterer of downwelling atmo-
spheric radiation. Different material properties such as temperature and density determine
the dielectric properties. These then dictate absorption, emission and scattering within
the media and at boundaries.

Open Ocean Microwave emission from open water depends mainly on surface temper-
ature and surface roughness related to wave and foam formation. The permittivity of the
sea water is a function of temperature T and salinity S (Debye, 1929) and the dielectric
loss term is higher than for fresh water due to the free charge carriers (dissolved salts).
Several parameterizations of the sea water’s permittivity exist (Stogryn, 1971; Klein and
Swi, 1977). Here, we use the formulation by Meissner and Wentz (2004) with a double
Debye relaxation frequency law

ϵ(T, S) =
ϵs(T, S)− ϵ1(T, S)

1 + iν/ν1(T, S)
+

ϵ1(T, S)− ϵ∞(T, S)

1 + iν/ν2(T, S)
+ ϵ∞(T, S)− i

σ(T, S)

2πϵ0ν
, (2.34)
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where ν is the radiation frequency (in GHz), ν1 and ν2 (the relaxation frequencies), as
well as ϵ1 and ϵ∞ are fit parameters (expressions given in Meissner and Wentz, 2004 and
Meissner and Wentz, 2012); and σ is the conductivity of sea water.

In case of calm waters the ocean surface is specular and its reflectivity can be described
by the Fresnel equations (Equation 2.25). The emission is highly polarized. Wind roughens
the ocean surface and has a threefold effect on the surface emissions (Wentz and Meissner,
2000). Depending on the wavelength, ocean waves can change the zenith angle locally (if
their wavelength is large compared to the radiated one) or lead to diffraction in case of
wavelengths which are small compared to the radiated microwaves. In addition, the sea
foam as a mixture of air and water changes the dielectric properties. In this thesis, the
parameterization of Wentz and Meissner (2000) is used, which is based on a geometrical
optics model, accounts for diffraction effects and includes a factor to account for the foam
effect on the reflectivity.

Sea Ice In contrast to the ocean, where the major contribution to the radiation is
emitted in the upper micrometers, in the radiometry of sea ice, each layer of the water-
ice-snow system contributes to the radiation. Penetration depths can be on the order of
centimeters to meters (Mathews, 2007). Therefore, vertical profiles of temperature and
permittivity influence the observed microwave signal. To calculate the emitted radiation,
the propagation of a wave in a dense media needs to be considered. This includes reflections
at (possibly rough) interfaces and multiple scatterings. In dense media the assumption
about independent scattering is not valid and the scatterers are correlated (Tsang and
Kong, 2008). Multiple reflection can either be treated coherently, by adding electric fields,
or incoherently, arising from inconsistent phase relations of the scattered waves. Incoherent
reflections can be described by adding power components directly.

One approach to model radiative transfer in sea ice is the use of stacked planar layers
as done by the MEMLS_ice model (Mätzler and Wegmuller, 1987; Tonboe et al., 2006) or
the Snow Microwave Radiative Transfer (SMRT) model (Picard et al., 2018) where each
layer has its own dielectric and physical properties. Then the radiative transfer across the
layers is solved using numerical techniques like six-flux theory (Emslie and Aronson, 1973)
or the discrete ordinate and eigenvalue method (Picard et al., 2013).

The relative permittivity of sea ice is an effective one (mentioned already in Sec-
tion 2.1.3) that can be derived by mixing the permittivity of air, ice and brine with ice as
the background medium which contains inclusions of brine and air. The real part of the
permittivity of freshwater ice can be considered constant with a value of 3.17 (Hallikainen
and Winebrenner, 1992). The imaginary part was parameterized by Hufford (1991): it
increases with temperature and frequency and is of the order of <10−2. In brine, salin-
ities can exceed 200ppt (Hallikainen and Winebrenner, 1992) and the parameterization
derived for seawater (Equation 2.34) has to be modified (typical salinities for ocean water
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Figure 2.8: Effective permittivity of sea ice calculated for different brine inclusion shapes following
Polder and van Santeen (1946). Aspect ratios (ratio of the two axis) smaller one indicate oblate
spheroids and higher values prolate spheroids. An aspect ratio of unity, spherical inclusions, yield
the lowest effective values. The permittivity of brine is 6.83 + 42i calculated from a brine volume
fraction of 0.06 and a temperature of −4 ◦C. The background permittivity of ice is set to 3.17.

are on the order of 35ppt). The permittivity of brine is expressed as an empirical function
of temperature and brine volume content (Stogryn and Desargant, 1985). Both real and
imaginary part are of the order of 10 to 100 and increase with temperature. Brine pockets
are typically narrow and long. The dielectric mixture is not linear but depends on the
inclusions shape according to Polder and van Santeen (1946). In that model the effective
permittivity is calculated assuming ellipsoidal inclusions characterized by depolarization
factors. For spheroid inclusions the permittivity shows a minimum in case of spherical
inclusions and increases toward prolate and oblate shapes, see Figure 2.8. Polder and van
Santeen (1946) assumes the ellipsoids are randomly orientated. In real sea ice we might
encounter spatial anisotropy, for example because of aligned congelation growth and verti-
cally oriented brine channels (Tucker et al., 1992). Other models exist to compute effective
permittivities, e. g., by Garnett and Larmor (1904), the coherent potential approximation
(Kerner, 1956) or even exact formalism like the strong-contrast expansion (Torquato and
Kim, 2021), which enable to model spatial anisotropies.

In sea ice, volume scattering effects of the brine pockets and the air bubbles are impor-
tant. Due to the high brine content and the strong contrast between the permittivity of
brine and ice, brine pockets can be considered the dominant scatterers in first-year ice. In
multiyear ice with low salinity scattering takes mainly place due to the air inclusions. The
microstructure may be described by an autocorrelation function in terms of an exponen-
tial correlation length. From air bubble diameters measured by Shokr and Sinha (1994),
Rostosky et al. (2020) estimate an exponential correlation length of 0.28mm for multiyear
ice. Rostosky et al. (2020) assume the value 0.15mm for first-year ice11. In this thesis the
MEMLS_ice model which applies the improved Born parameterization (Mätzler, 1998,

11This is confirmed by Rasmus Tonboe, who derived similar values from thin ice slices, personal commu-
nication, May 2022.
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more details on model parameter choices in Section 2.1.3) is used to simulate microwave
emissions from layers of sea ice and snow.

Because of the dielectric contrast of air and ice, the polarization difference, given by
difference between vertically and horizontally polarized brightness temperature, is usually
non-zero, especially when observing close to the Brewster angle. Also, brightness temper-
atures of sea ice are higher than of open ocean in the range of 1GHz to 100GHz: the open
ocean is radiometrically colder than ice.

Snow Snow is a dense stratified medium as well and needs to be treated similarly to sea
ice, including multiple scattering, effective permittivities, and reflections at interfaces. Dry
snow is a mixture of air and ice with the air as background medium. The permittivity of dry
snow is a function of density, verified by experimental results (Tiuri et al., 1984, e.g.), and
its real part can vary from about 1.2 to 2.8 while the imaginary part is on the order of 10−4

to 10−2 (Tsang et al., 2000). At intermediate densities (larger 450 kgm−3) the assumption
about the background medium no longer holds and existing theories become inaccurate
(Picard et al., 2022). Also, structural anisotropy, that is a preferential orientation of the
nonspherical ice particles in snow, further influences the effective permittivities (Leinss
et al., 2016).

Wet snow is a mixture of air, ice and water. Because of the high dielectric loss term
of liquid water compared to the one of dry snow, the spectral behavior of the wet snow
mixture is dominated by the dispersion behavior of water (Hallikainen et al., 1986). Again,
different dielectric mixing models can be considered when dealing with wet snow, some
are presented in Hallikainen et al. (1986). Brine-wetted snow will be treated along the
same lines in this thesis.

Because snow is a dense medium the particles do not scatter independently. One ap-
proach to describe absorption and scattering in snow is the improved Born approximation
(Mätzler, 1998) which is used in this thesis. Here, the microstructure is characterized
by the exponential correlation length, that varies depending on the snow type (Mätzler,
2002). For terrestrial Arctic snow, exponential correlation lengths have been determined
from computer tomography to be of the order of 0.055mm to 0.390mm (Proksch et al.,
2015). At very low frequencies (particle size << wavelength) scattering can be neglected
(Tsang et al., 2000).

We have now discussed the microscopic models of different constituents of the ocean,
the snow-covered sea ice, and atmosphere that determine the satellite signal. In combina-
tion these models form a forward model F that simulates satellite brightness temperatures
from a set of geophysical parameters. Thus, by inverting such a forward model we can
draw conclusions about the geophysical state of atmosphere and surface at the time of the
satellite observation. The inversion method will be discussed in the next Section.
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2.2 Inverse Methods: Optimal Estimation

For retrieving physical state parameters expressed as x from satellite-measured brightness
temperatures TB, we invert the forward model F

TB = F (x) (2.35)

using an optimal estimation method. The description of the inversion scheme in this
section is adopted from Rückert et al. (2023a).

Inverting the forward model leads to retrieved parameters that are physically consistent
in model space, e. g., ice type fractions add up to the total sea ice concentration. Here, we
use an optimal estimation method for the inversion that additionally retrieves an estimate
of the uncertainty for each parameter.

The inversion method is a Bayesian approach based on Rodgers (2000) using the con-
ditional probabilities

P (x|y) = P (y|x)P (x)
P (y) , (2.36)

where P (x|y) is the probability of a state x (state vector, here: vector of geophysical
quantities including sea ice concentration and total water vapor) given measurements y
(measurement vector, here: brightness temperatures of different frequencies and polariza-
tions), P (y|x) is the conditional probability density of y given x, and P (y) and P (x) are
the prior probability densities of the measurement and state, respectively.

The general idea is to find the set of parameters that, when mapped to brightness
temperatures through the forward model, will give the best match when compared to the
measured brightness temperatures, under some constraints imposed by a priori knowledge
about probable states. The metric that defines the ‘best match’ is given by a cost function
and the optimal estimation method finds the state that maximizes P (x|y) by minimizing
the cost function χ2

χ2(y,x,Se,Sa,xa) = (y − F (x))⊺ S−1
e (y − F (x)) + (xa − x)⊺S−1

a (xa − x), (2.37)

where Se is the measurement uncertainty covariance matrix of the input brightness tem-
peratures. A priori information are included by xa as the a priori state, i. e., the most
likely state prior to the measurements, e. g., the mean of a climatology. The differences of
the state to the a priori state is weighted by Sa as the covariance matrix of the a priori
values. F is the forward model introduced in Equation 2.35. All other quantities will be
discussed in more detail in Chapter 5. The maximum a posteriori solution is given by x̂
as (Rodgers, 2000)

x̂ = Ŝ(S−1
a xa + K⊺S−1

e y) (2.38)
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with the associated uncertainty

Ŝ = (K⊺S−1
e K + S−1

a )−1, (2.39)

where K is the Jacobian at x̂ of the forward model F . For Equation 2.38 to be fully
valid, we have assumed that the forward model is only moderately non-linear and that the
parameter distributions are Gaussian. The degree of nonlinearity, c2, can be determined
by (Rodgers, 2000)

c2 = δy⊺S−1
e δy, (2.40)

where δy is given by δy = F (x̂)−F (x)−K(x̂−x) and x is given by values one standard
deviation away from x̂ using Ŝ to determine the standard deviation. c2 < 1 indicates cases
where the problem is nearly linear. The assumption of Gaussian parameter distributions
is valid for most of the parameters but, e. g., liquid water path and sea ice concentration
may differ in their distributions from a Gaussian. In cases of non-Gaussian probability
density functions (PDFs) (prior and posterior) it is not clear whether the maximum a
posteriori solution is appropriate (or whether, e. g., the expected value solution is better
suited)12.

Iterative Procedure

For the non-linear forward model the maximum a posteriori solution is found iteratively,
depicted in Figure 2.9. In order to find the minimum of the cost function Equation 2.37
we implemented automatic differentiation (Revels et al., 2016), which allows efficient com-
puting of Jacobians. For minimizing we use the Levenberg-Marquard algorithm where
the step of the iteration from xi to xi+1 is controlled by the parameter γi that is either
reduced or increased with each step13 depending on the difference of the cost functions
(Rodgers, 2000):

xi+1 = xi + [(1 + γi)S−1
a + Ki

⊺S−1
e Ki]

−1{K⊺
i S−1

e [y − F (xi)]− S−1
a [xi − xa]}. (2.41)

We further constrain our parameter space to physically meaningful values (e. g., only
positive values of TWV or sea ice concentration (SIC)). If, during the iteration, such
nonphysical state vectors are obtained, we re-start using a different start guess (e. g.,
small but positive values of TWV or SIC). To define a convergence criterion we follow
Rodgers (2000) and test whether d2 = (xi − xi+1)

⊺Ŝ−1
(xi − xi+1) is less than the number

of retrieval parameters.

12A possible workaround is to transform the quantities with non-Gaussian distributions to ones that do
follow a Gaussian PDF.

13The start value is γ0 = 10−5, and it is either reduced by a factor of 10 or increased by a factor of 100.
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Figure 2.9: Scheme of optimal estimation method.

Computational Architecture

Model and inversion are implemented using the programming language Julia (Bezanson
et al., 2017) allowing for fast computations needed in satellite retrievals. The modules of
the retrieval are depicted in Figure 2.10. The different parts of the retrieval are connected
with well-defined in- and outputs. This way, it is possible to change the frequency channels
used in the method and to even retrieve additional quantities, if appropriate satellite
observations are provided. One example is retrieving ice thickness by adding observations
at 1.4GHz as done in Scarlat et al. (2020).
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2.3 Evaluating Satellite Retrievals:
The Curse of Remote Sensing

The “curse of remote sensing” is a term from Ulaby and Long (2014). In order to evaluate
a satellite retrieval we want to compare it to the ground truth. However, obtaining an
in-situ measurement on a satellite footprint scale is a challenge by itself and the precision
of the ground truth already limits the possibilities of validating a retrieval algorithm. Spa-
tial diversity and temporal variability add to this “curse of remote sensing”. In addition
we have a representativeness uncertainty: The integrated retrieval presented here uses all
frequency channels simultaneously. This requires that all channels measure the same area
on ground. As input to the retrieval we therefore use effective observations in terms of re-
sampled brightness temperatures where the higher-resolution data is spatially averaged to
match the coarser resolution of the lower-resolution frequency channels. For the Advanced
Microwave Scanning Radiometer - Earth Observing System (AMSR-E) (2002-2011) this is
the Level 2A product (Ashcro and Wentz, 2019) and in case of the Advanced Microwave
Scanning Radiometer 2 (AMSR2) we use the Level 1R product (Maeda et al., 2016) (more
details on the products follow in Section 5.2.1). In both cases the higher-resolution data
is spatially resampled based on the Backus-Gilbert method.

In addition there are uncertainties when the retrieval output from geolocated satellite
swath data is resampled to a uniform projected grid, for example to get daily gridded
values. Several subtleties need to be considered here:

• non-uniform sampling due to the polar orbit, i. e, more satellite overpasses close to
the pole and a gap at the so-called pole hole,

• different overpass times of the several overpasses per day,

• the swath geometry and the target grid geometry,

• the satellite footprint size,

• the resampling procedure.

In general the decision for the resampling depends on the aim or research question. For
a visualization of Arctic wide data for a quick look or qualitative assessment as done
in Section 5.6.5 this decision will be of little importance. For, e. g., ice-edge detection,
however, the resampling choices might affect the outcome. The same holds for quantitative
comparisons against reference datasets, here, we also need to consider possible differences
in land masking.

In this thesis we use the Gaussian resampling method that is characterized by a number
of neighbors that are considered within a search radius. The data points are then weighted
by a Gaussian with a provided σ using the pyresample soware package (Hoese et al.,
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2023). As an example, Figure 2.11a) shows the available number of satellite observations
per grid cell for the EASE grid (Brodzik et al., 2012) at 25 km resolution on January
10, 2020. The sampling density is a lot higher close to the pole hole. The weighted
standard deviation of the retrieval output for TWV shown in Figure 2.11b), calculated
by Gaussian resampling with a σ of 5 km, a radius of 12.5 km and 12 neighbors, is a
measure for the sampling uncertainty (σsmoothing). The median sampling uncertainty for
this day is 0.14 kgm−2 and it is largest in areas with little data points and at the ice edge
(seen for example in Fram strait). We will later see that σsmoothing is on average small
compared to the retrieval uncertainty (which can be on the order of 4 kgm−2 over sea ice),
see Section 5.6.5.

Figure 2.11: The number of satellite observations by the sensor AMSR-2 per grid cell of 25
× 25 km2 in one day (here exemplary January 10, 2020) is shown in the left panel. The right
panel shows the smoothing uncertainty of the variable total water vapor (TWV) resulting from
resampling satellite swath data to gridded (25 × 25 km2) daily values.
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Chapter 3

Sea Ice Emissivity:
Concept and Measurements

In this chapter we give a short theoretical introduction into the concept of emissivity and
provide an overview of studies reporting values from measurement campaigns. We want
to stress the importance of underlying assumptions that might effect intercomparisons
of emissivity measurements. We believe a thorough understanding is necessary in order
to successfully use these observational data in (developing) satellite retrievals as many
satellite retrievals are based on empirically derived relationships between the geophysical
parameter and the microwave emissions at different frequencies or polarizations or com-
binations of them. The second part of this chapter is a case study from a measurement
campaign in summer 2022 where surface emissivities were estimated from ship-borne ra-
diometer measurements which has been submitted for publication (Rückert et al., 2023d).

3.1 The Concept of Sea Ice Emissivity

The microwave signatures of sea ice have been measured and accounted for in studies in
the past decades (e.g. Wilheit et al., 1971; Gloersen et al., 1973; Mätzler et al., 1984;
Hollinger et al., 1984; Grenfell and Lohanick, 1985; Comiso, 1986). One main quantity
that is commonly reported is the directional spectral emissivity, formally defined as e =

Ireal/Iblackbody, where Ireal is the spectral intensity of the thermal emission by a real surface
at a certain observation angle (depending on observation angle and wavelength but also
on the body’s temperature and composition) and Iblackbody is the spectral intensity of a
black-body at the same temperature, wavelength and observation angle. In the Rayleigh-
Jeans approximation (see Equation 2.2), this is equivalent to defining an emissivity for a
given frequency and polarization as

e(θ, φ) =
TB(θ, φ)

T
, (3.1)
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where θ and φ are the zenith and azimuth angles, respectively, to account for the direction-
ality. T is the physical temperature of the body. This definition considers a semi-infinite
homogeneous and isothermal medium (Ulaby and Long, 2014). There is another way to
define emissivity using arguments from radiative transfer. Consider the case of a nonscat-
tering medium m with a physical temperature profile T (z) at the specular boundary to
another medium, here let us assume it to be the atmosphere. Along the lines of Equa-
tion 2.18 we can define the ‘upwelling’ brightness temperature within m, TB,m(θm), that
will be incident upon the boundary at z = 0 from below at some incidence angle θm:

TB,m(θm) = sec(θm)
∫︂ 0

−∞
κa(z

′)T (z′) exp
(︃
−
∫︂ 0

z′
κa sec(θm)dz′′

)︃
dz′. (3.2)

Note that the right-hand side is not specific for one polarization, as the emission within
the medium is randomly polarized. At the boundary however, Fresnel equations (Equa-
tion 2.25) dictate the fraction per polarization p that is transmitted (T p

B,t) under zenith
angle θ which is given by

T p
B,t(θ) = (1− |ρp|2)TB,m(θm). (3.3)

Under the assumption of a uniform temperature profile T (z) = T and a semi-infinite
medium, that is,

exp
(︃
−
∫︂ 0

−∞
κa(z

′′) sec(θm)dz′′
)︃

= 0, (3.4)

Equation 3.2 simplifies to TB,m(θm) = T and we can identify the term (1 − |ρp|2) in
Equation 3.3 as emissivity e. Note that here, we have assumed a specular boundary of a
semi-infinite isothermal medium and no scattering within the medium. We shall later see
the implications of these assumptions.

3.1.1 Measurements of Sea Ice Emissivity: Literature Review

Microwave emissions have been measured from various platforms, including on-ice stations,
ships, aircra and satellites. Studies on sea ice emissivity oen report emissivity values
calculated from the measured brightness temperatures and auxiliary measurements. The
exact calculations differ due to several reasons. First of all, the downwelling atmospheric
radiation that is reflected by the surface contributes to the measured radiation. Some
studies assume specular reflection as surface scattering while others consider the surface
to be diffuse. Mätzler (2005) pointed out that the difference between specular and Lam-
bertian surface scattering is minimal near 55◦, but that the emissivity is overestimated
when one uses that assumption near nadir1. Depending on the measurement platform,
the measured radiation has a component related to upwelling atmospheric radiation in
addition and is affected by the transmittance of the atmospheric path between surface

1The statement is independent on frequency but derived assuming a zenith opacity below 0.5.
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and radiometer. Second, Equation 3.1 is only an approximation and contains the physical
temperature. As described in Section 2.1, in the radiometry of sea ice and snow, each layer
of the snow-ice-water system emits radiation and contributes to the observed brightness
temperatures by a certain temperature- and frequency-dependent amount. Especially in
winter, strong temperature gradients in snow and ice exist because of the cold atmosphere
and the comparably warm ocean. Thus the unique physical temperature in Equation 3.1
is not well defined and all measurement campaigns that will be discussed in the following
use assumptions to derive an effective temperature (or effective emissivity). In addition
to these implications following from the assumption of an isothermal medium in the def-
inition of emissivity, subtleties arise from assuming the medium to be semi-infinite. In
reality, the ice is not necessarily opaque enough to ‘shield’ all ocean emissions, especially
for low frequencies. Therefore emissivity should not be understood as material property
in sea ice remote sensing but as an ancillary, effective quantity.

Table 3.1 contains data from measurement campaigns, including the assumptions used
to calculate the effective emissivity. This compilation is not complete but provides the
grounds to discuss the impact of different (implicit) assumptions used to derive a surface
emissivity. Here, we focus on the three assumptions mentioned above: atmospheric con-
tribution and reflections (surface scattering) and the effective temperature. Table 3.1 only
lists studies that actually calculate emissivity. We also exclude studies from the Baltic
Sea (like Hewison and English, 1999) to constrain the analysis to the Arctic. Also note
that Table 3.1 includes only those data presented in the corresponding publications that
refer to the emissivity calculations, not all the available measurements from the associated
campaigns.

When comparing the reports on emissivity presented in Table 3.1 we find different
assumptions with respect to the atmospheric contributions and the assumed scattering.
For example, Livingstone et al. (1987b) do not account for atmospheric contributions at
19GHz, Wilheit et al. (1971) assume Lambertian surface scattering, while the derivation of
emissivity by Haggerty and Curry (2001) implies specular reflection; and all three studies
derive emissivity from aircra measurements at similar angles. The significance of these
differences need a careful assessment. First, atmospheric contributions are less significant
for low frequencies than for high frequencies (recall Section 2.1.4). When observing at low
frequencies, different assumptions about the negligibility of the atmospheric contributions
cause less deviations in e, which may be insignificant, compared to observations at high
frequencies. Second, the difference between Lambertian surface and specular reflections
is smallest at certain observation angles (Mätzler, 2005). When observing at these angles
different assumptions about the specularity of the surface scattering cause less deviations
in e, which may be insignificant, than at other angles.

Some of the differences in the assumptions are simply a consequence of the measure-
ment setup: It is clear, for example, that the upwelling atmospheric radiation may be
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neglected for surface-based measurements but that this likely does not hold for satellite
measurements, at least not for all frequencies. We note that there are also different as-
sumptions with regard to the effective temperature: the temperature T of the target is
approximated in different ways, and sometimes effective temperatures or the snow-ice in-
terface temperature are taken into account rather than surface temperatures. The impact
of this assumption of course depends on the snow and ice conditions, and as many cam-
paigns are conducted in summer, the temperature gradients and, hence, the deviations in
e caused by this assumption are likely small. Still, Haggerty and Curry (2001) discuss the
uncertainties in deriving e and conclude that, potentially, the largest uncertainty stems
from the isothermal assumption. The magnitude of this uncertainty on e depends on
the temperature gradients and on the assumed emitting layer temperature, which in turn
depends on frequency.

We can easily come up with a simplified yet plausible situation in which an emissivity
was calculated using the snow-ice interface temperature which we call esi and that esi shall
be of the order of 0.9. If someone would now consider this quantity to calculate brightness
temperatures using surface temperatures which might differ by 10K from the snow-ice
interface temperature (which, in case of a winter snowpack, is a realistic assumption), the
brightness temperatures resulting from the two different temperatures would differ by 9K.

For certain frequencies (see for example brightness temperature (TB) measurements
at 243GHz in the next section) and under certain circumstances, this difference can be as
high as the difference in TB between ice and open ocean. The situation is less drastic for
many sea ice concentration (SIC) algorithms that are oen based on ratios of TB (more
on that in Chapter 4) and the situation outlined above would result in little change in the
retrieved SIC. For example, we estimate the change of SIC by the so-called NASA-TEAM
algorithm, which will be introduced later in Section 4.1.2, to be of the order of 1%.

We want to conclude by stressing the importance of carefully examining these assump-
tions when using literature values of emissivity. The high natural variability of (multiyear)
ice emissivities (Eppler et al., 1992) complicates interpretations of measurement data even
further. Single values of emissivity fall short of the reality and there is the need for re-
porting distributions instead. This is of particular importance for developing new and
improving existing satellite retrieval algorithms over sea ice. For satellite retrievals the
challenges of highly variable emissivities can be partly mitigated, for example by using
dynamic tie points (Lavergne et al., 2019). Another approach is to use a physical model
to simulate surface emissions instead of (semi-)empirical emissivity values. This is aimed
for in Chapter 5.
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3.2 Results from Expedition PS131 of R/V Polarstern

The following section is based on the submitted manuscript titled “Measuring microwave
sea ice and ocean brightness temperature and emissivity between 22 and 243 GHz by
ship-based radiometers with rotatable mirrors” (Rückert et al., 2023d). Janna Rückert
contributed to conceptualization, data curation and methodology of this study, wrote the
first dra of the paper; and did the data analysis and interpretation with the contribution
of all authors. Passive and Active Microwave TRAnsfer (PAMTRA) simulations and the
retrieval of atmospheric total water vapor (TWV) were performed by Andreas Walbröl,
the sky camera data was analyzed by Nils Risse.

Introduction

In the following we present an instrumentation setup allowing for atmospheric and surface
measurements. Two mirrors fixed to the stand of two Microwave Radiometers (MWRs)
operated on the research vessel Polarstern in summer 2022, enabled alternating surface
and atmosphere observations. The measurements were performed in the marginal sea
ice zone during the cruise ATlantic WAter pathways to the ICE in the Nansen Basin
and Fram Strait (ATWAICE) (Kanzow, 2023). The mirror construction allowed us to
observe the surface hourly at different zenith angles. Measurements during ATWAICE
provided the possibility to measure emissivities in varying ocean and ice conditions in a
wide frequency range from 22 to 243GHz, including measurements of horizontal variability
during transects. This is particularly important for satellite retrievals as satellite footprints
are of the order of kilometers.

In this manuscript, we first describe the calculation of surface emissivities and the
principal instrumentation setup. We then show results from the surface brightness tem-
perature (TB) measurements. We finally estimate surface emissivities using additional
surface observations by thermal infrared imagery and estimations of downwelling atmo-
spheric radiation.

3.2.1 Calculation of Surface Emissivities

When observing a surface target with a radiometer close to the surface, the brightness
temperature TB is related to the physical target temperature T and an emission coefficient
e (hereaer called emissivity) via

TB = eT + (1− e)TB,down, (3.5)

where TB,down is the downwelling radiation emitted by the atmosphere. In principle, e is a
function of frequency and is determined by the dielectric properties of the surface material
and the interface properties, e. g., roughness, between the surface and the atmosphere.
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Because the microwave radiation can be emitted from within the snow-ice-water system,
vertical gradients of the temperature and the microstructure influence TB. In our case,
we assume an isothermal target. This is a reasonable assumption during summer which
is supported by the low temperature gradients measured during the ice stations (see next
section). Therefore, we use the surface temperature Ts as T here. Thus, e is given by

e =
(TB − TB,down)

(Ts − TB,down)
, (3.6)

where the additional quantities TB,down and the surface temperature Ts are required and
must be estimated by auxiliary observations. For Equation 3.6 to be valid, the interaction
of the radiation with the atmosphere between the radiometer and the target (i. e., the
surface) must be negligible.

3.2.2 Campaign and Measurement Setup

Expedition PS131 ATWAICE

The expedition PS131 of Polarstern named ATWAICE (Kanzow, 2023) took place from
28 June to 17 August 2022, both starting and ending in Bremerhaven (Figure 3.1). The
multidisciplinary study of the marginal ice zone began on 11 July 2022. The measurement
program included several transects from the ice-free ocean across the marginal ice zone
into the pack ice. In the pack ice, three ice floe stations with atmosphere, ice, and ocean
measurements were established and revisited one week aer their first visits. From 23 to 26
July, Polarstern passed through compact ice to the Aurora vent field around 82◦58′N with
higher ice thicknesses. Aerward, the three ice station floes were each revisited for the
third and final time. On 3 August, Polarstern headed toward East Greenland and entered
fast ice (less than 1m ice thickness). On 7 August, Polarstern moved south and reached
Scoresby Sund, Greenland, near 70◦N on 9 August. We ended our MWR measurements
on 12 August.

Various sea ice and atmospheric conditions were sampled during the cruise (Figure 3.2).
The sea ice concentration varies mostly from 60 to 100% as derived from visual observations
within one nautical mile from Polarstern following the Ice Watch observation protocol
(Hutchings et al., 2020) between 11 July and 9 August available at https://icewatch.met
.no/. These values might not be representative for the sea ice concentration near the
ship viewed by the radiometers. Open melt ponds were observed all the time, with the
highest area fractions above 50% on the fast ice. The median air temperatures measured
on board Polarstern at about 29m above sea level from 11 July to 21 August is 0.4 ◦C
with a minimum of −1.7 ◦C (4 August) and maximum of 10.7 ◦C (July 18) when moist
and warm air reached the Fram Strait.

https://icewatch.met.no/
https://icewatch.met.no/
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Figure 3.1: Polarstern track (red line) during ATWAICE. Shown in the background is the sea
ice concentration product on July 18, 2022, operationally available at www.seaice.uni-bremen.de
(ASI algorithm; Spreen et al., 2008).
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Figure 3.2: Time series of sea ice concentration (SIC), air temperature (T air, secondary axis),
fair weather intervals, and occurrence of ice stations from 12 July to 12 August 2022. The sea ice
concentration is estimated in steps of 10% until 9 August 2022.
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Instrumentation

The measurements described here were conducted as part of the WAter vapor, cloud Liquid
water, and Surface Emissivity over the Arctic marginal ice zone in summer (WALSEMA)
project embedded within the Transregional Collaborative Research Centre TRR-172 ’Arc-
tiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback
Mechanisms (AC)3’ (Wendisch et al., 2023).

Microwave Radiometers The two microwave radiometers Humidity And Temperature
PROfiler (HATPRO; Rose et al., 2005) and Microwave Radar/radiometer for Arctic Clouds
- Passive (MiRAC-P; Mech et al., 2019) were installed on Polarstern’s top deck (‘Peildeck’)
on starboard (see Figure 3.3). HATPRO measures TBs at seven channels between 22 and
31GHz under vertical polarization with the 22.24GHz channel being close to the water
absorption line, and at seven channels in the 58GHz oxygen absorption complex under
horizontal polarization. MiRAC-P utilizes six channels along the 183GHz water vapor
line with a vertical polarization and two window channels at 243 and 340GHz with a
horizontal polarization. Unfortunately, the receiver at 340GHz failed at the beginning of
the cruise. Both MWRs measure with 1 s integration time. The instruments’ specifications
are listed in Table 3.2. An absolute calibration with liquid nitrogen was performed twice
during the cruise (7 and 30 July 2022). The radiometers pointed zenith for 45 minutes per
hour to derive temperature and humidity profiles, TWV, and liquid water path (LWP),
and toward the mirrors for about 15 minutes per hour.

Mirrors Fixed to the stands of the MWRs, aluminum plates with a size of 0.55m2

were installed as rotatable mirrors (see Figure 3.4). This mirror setup was developed
for this cruise and deployed for the first time. It redirects upwelling radiation from 53◦

zenith angle, i. e., the typical angle of operational satellite microwave imagers, to the
MWR receivers. Ship motions resulted in a few degree deviations from this target zenith
angle. We routinely manually dried the mirror surface in foggy conditions due to the
lack of preventive measures like heating. However, the presence of liquid droplets creates
potential uncertainty. The mirror was rotated manually five times during the cruise to
scan various zenith angles. However, these scans are inconclusive due to heterogeneous ice
surfaces, such as melt ponds and leads, and not presented here.

Auxiliary Measurements A visual (VIS) camera (GoPro HERO 10) and an infrared
(IR) camera (InfraTec VarioCAM HD, 7.5 to 14µm) observing the surface as well as a
sky camera (VIS and IR) were complementing the microwave measurements and provide
context for the interpretation of the data. The surface-facing cameras were installed next
to the radiometers on the deck (see Figure 3.3) and took images every 5 s. An intertial
motion unit (IMU) measuring roll and pitch angles was installed on top of the IR camera.
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Table 3.2: The HATPRO and MiRAC-P frequency, polarization (Pol.), beamwidth, and
footprint geometry. The footprint geometry is calculated for 53◦ zenith angle, 22m in-
strument height, and without ship motion.

Instrument Frequency (GHz) Pol. Beamwidth (◦) Footprint (m2)
HATPRO 22.24, 23.04, 23.84, 25.44, 26.24, 27.84, 31.4 V 3.7–3.3 4.0×2.4–3.6×2.2
HATPRO 51.26, 52.28, 53.86, 54.94, 56.66, 57.3, 58.0 H 2.5–2.2 2.7×1.6–2.4×1.4
MiRAC-P 183.31±0.6, ±1.5, ±2.5, ±3.5, ±5.0, ±7.5 V 1.3 1.4×0.8
MiRAC-P 243 H 1.25 1.4×0.8
MiRAC-P 340a H 1.1 1.1×0.7

aThe 340GHz receiver was malfunctioning.

A

B
C D

Figure 3.3: (A) Sky camera, (B) infrared surface camera with visual surface camera on top, (C)
MiRAC-P, and (D) HATPRO on board Polarstern.

The resulting angles measured with the IMU were used to project the IR data to the
ground. Missing IMU data due to instrument or recording issues were filled using linear
interpolations.

Additionally, on-ice measurements of the ice and surface conditions conducted during
twelve ice stations are available. Here, ice cores were taken to measure vertical profiles of
density, temperature, and salinity in the sea ice (Rückert et al., 2023e) and (Rückert et al.,
2023c). The surface scattering layer was described using traditional snow pit methods. The
microwave radiometer footprint was sampled on 24 July, 31 July, and 6 August. Results
of most of the measurements are given in the cruise report (Kanzow, 2023). In summary,
the spatial variability of some of the surface and ice parameters, e. g., the diameters of the
crystals making up the uppermost layer or the ice thickness in some cases, was high and
could change significantly within a few meters.
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Figure 3.4: Mirror setup. Left: The receiver of the radiometer is positioned at x=0m with an
elevation angle of 40◦. Because of the mirror alignment, this results in a zenith angle of 53◦. The
red lines are the path of rays of the microwave radiation with the center and the outer rays obtained
from the beam width. Right: projected footprints of HATPRO (left ellipse) and MiRAC-P (right
ellipse) on the surface.

3.2.3 Results and Discussion

Surface Observations: Brightness Temperatures

Before looking at the overall statistics of the measured surface TBs during the ship cruise,
we first focus on two case studies, which help to introduce and interpret the MWR ob-
servations. In addition, we show observations from July 19, 2022, focusing on TBs at
243GHz. The two cases of MWR surface observations under different atmospheric and
sea ice conditions on July 18 and August 8, 2022, are shown in Figures 3.5 and 3.6, re-
spectively. Small gaps in the time series correspond to internal instrument calibrations.
In addition, IR and VIS imagery at three times are also shown and calculated MWR foot-
prints are marked by ellipses in the IR imagery. These ellipses might be slightly misplaced
because of uncertainties in the timestamp and slightly changing zenith angles due to ship
motion. However, we still expect them to be within the black rectangle shown in the
IR imagery. In the following, we refer to the observations in the different channels using
the observed frequencies, which always implies a specific channel-dependent polarization
(listed in Table 3.2).

Case 1: July 18, 2022 On July 18, 2022 (Figure 3.5), Polarstern was moving slowly
with a mean speed of 0.25ms−1 and we can see small ice floes driing in and out of
the footprint. The distance from the start (at 80◦49.48′N, 9◦9.96′E) to the endpoint
of the measurements is about 0.2 km. The sea ice temperatures are around 0 ◦C and
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ocean temperatures are slightly colder. On this day, a warm air intrusion occurred in the
measurement area and air temperatures were well above freezing with an average of 7.0 ◦C
during the surface observation. The atmospheric HATPRO measurements right before
and aer the surface observation yield TWV values of 16.4 and 16.1 kgm−2, respectively.

Figure 3.5a and b show the HATPRO TBs at 22 to 31GHz and at frequencies in
the 58GHz oxygen absorption complex, respectively. TBs at 22 to 31GHz show lower
values (about 160K) over open ocean than over sea ice (about 250K). In addition to the
surface-driven variability of the TBs resulting in TB changes of up to 90K, small periodic
oscillations of the order of a few Kelvin are visible at these frequencies.

At 51.26 and 52.28GHz, TBs over open ocean are about 220 and 240K, respectively,
and about 265K over sea ice. Qualitatively, their behavior is similar to the 22 to 31GHz
range. At frequencies between 54.94 to 58GHz, an opposite behavior can be seen with
slightly higher (about 3K) TBs over the ocean than over the sea ice, with TBs ranging
between 273 to 278K. No changes with changing surface conditions are observed at
53.86GHz, showing almost constant TBs of about 273K (with a standard deviation below
1K).

Figure 3.5c and d show the TBs measured by the MiRAC-P radiometer at frequencies
in the 183GHz water vapor line and at 243GHz, respectively. Due to instrument settings,
the measurement period ended about 2 minutes earlier than the HATPRO measurements.
TBs in the 183GHz water vapor line change little (about 1K) during the observation
period and are around 277K. At the 243GHz window channel, TBs show lower values
(about 264K) over open ocean than over sea ice (about 269K).

We can conclude that we find a clear surface signal from ice and ocean in the TBs
of the frequencies for which the atmosphere is rather transparent, i. e., where TB,down in
Equation 3.5 is low (in this case 22 to 31GHz, 51.26 and 52.28GHz). Lower TBs occur over
the highly reflective ocean compared to the highly emissive ice for the vertically-polarized
TBs between 22 to 31GHz and horizontally-polarized TBs at 51.26 and 52.28GHz. The
small-scale oscillations correspond to changing zenith angles due to periodic ship motions.
However, at frequencies in the oxygen absorption complex where the atmosphere is rather
opaque (54.94 to 58GHz), an opposite behavior can be seen with higher TBs over the
ocean and lower TBs over the sea ice. For these frequencies, the reflected atmospheric
signal TB,down originates only from the lowest few kilometers of the atmosphere. Due to
the warm air intrusion, the lower atmosphere was very warm on this day. Therefore, a
distinct reflected atmospheric signal can be found for the TBs over the ocean, which is
more reflective than the sea ice.

We observe no apparent changes in TB with changing surface conditions at frequencies
in the 183GHz water vapor line (vertical polarization). Here, the surface and atmospheric
contributions cannot easily be disentangled. The atmospheric water vapor content is
relatively high. Thus, atmospheric downwelling TB is of the same order as the surface
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temperatures. Therefore, the measured TBs are insensitive to changes in emissivity of
different surface types (see Equation 3.5).

At the 243GHz window channel, the surface signal is again visible: here, the contri-
bution by TB,down is lower than at frequencies along the 183GHz water vapor line and
thus differences in ice and ocean emissivities can be detected. We find higher TBs (by
about 5K) over ice than over open ocean. Still, atmospheric emissions are an order of
magnitude larger than at 22 to 31GHz and thus significantly decreases the sensitivity to
surface emissivity changes. We attribute the dip seen around 17:20 UTC in the TBs at
243GHz to a fraction of open ocean within the footprint. Because HATPRO has a larger
footprint, the signal of open ocean within the footprint is less pronounced here. Since the
footprints do not overlap, the decrease in TBs is not observed simultaneously.

Case 2: August 8, 2022 During the second case on August 8, 2022, Polarstern traveled
through an area with small ice floes (around 76◦14.11′ N and 15◦37.36′ W; Figure 3.6),
covering a distance of about 3.3 km with a mean speed of 3.4ms−1. Ice and ocean surfaces
had similar temperatures (below 0 ◦C). On that day, the general ice conditions are different
from the first case as we can also observe the formation of new ice, e. g., around 5:43 UTC,
which is slightly visible in the VIS and IR images. Air temperatures were close to but
below 0 ◦C. Atmospheric HATPRO measurements right before and aer yield TWV values
of 10.7 to 10.9 kgm−2.

The TBs at the frequencies between 22 and 31GHz (Figure 3.6a) and at 51.26 to
52.28GHz (Figure 3.6b) change more rapidly than in the first case. Due to the faster
speed of the vessel on that day, surface conditions also changed more rapidly. Here, the
TBs show a qualitatively similar behavior compared to the case on July 18 with high
TBs over sea ice (for example 240 to 260K for frequencies between 22 and 31GHz, and
240 and 250K for 51.26 and 52.28GHz around 5:37:20 UTC) and lower TBs over open
ocean (around 155K for frequencies between 22 and 31GHz, and 220 and 235K for 51.26
and 52.28GHz). Around 5:42 UTC over new ice, TB values higher than over open ocean
are detected. At frequencies between 53.86 to 58GHz, no distinct changes with changing
surface conditions are observed with slightly lower TBs at 53.86GHz of 270K and TBs
ranging between 271 to 275K for the other frequencies that vary little during the time
period (standard deviations below 1K).

The TBs at the four lower frequencies of the 183GHz water vapor line (Figure 3.6c)
are around 271K and also vary little during the observation period (standard deviations
below 0.5K). However, the TBs at 190.81GHz (and to some extent also at 188.31GHz)
do vary with changing surface types. Here, we observe the opposite of what has been seen
in the 22 and 31GHz channels: lower TB values over ice at 190.81GHz (for example 261K
at 5:37:20 UTC, indicated by B in Figure 3.6) compared to the TBs over ocean (around
267K). At the 243GHz window channel, the same behavior can be found as well: TBs
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over ice (246K at 5:37:20 UTC) are about 10K lower than over ocean (around 256K).
Interestingly, the young ice (indicated by C in Figure 3.6) shows another signature, where
the TBs at 243GHz are up to 263K and thus higher than the ones observed over ocean.
Such higher TBs can also be observed at earlier times during the observation period, when
the VIS imagery also suggests that new ice could have been present.

Again, we conclude that distinct surface signals can be observed in the TBs of the fre-
quencies between 22 to 31GHz and 51.26 to 52.28GHz. Here, also different TB signatures
of ice and ocean surfaces are seen at 190.81GHz (and to a certain extent at 188.31GHz)
because of the lower atmospheric moisture content on 9 August compared to July 18. The
influence of the surface is also clearly visible at 243GHz. TBs at 243GHz are lower over
ice than over ocean, except for the young ice, where they are higher, suggesting differences
in emissivity between different ice types.

Additional Case: July 19, 2022 In the two cases, we observe higher and lower
horizontally polarized TBs over ice than over ocean at 243GHz. But we also encountered
cases when the TBs were the same: In Figure 3.7 ice and ocean are not distinguishable
at all at 243GHz. Figure 3.7 shows the TB measurements around 80◦57.38′N, 8◦41.01′E
on July 19, 2022, 01:13 to 01:22 UTC when the vessel was traveling with a mean speed of
0.2ms−1. Atmospheric HATPRO measurements right before and aer yield TWV values
of 17.5 to 17.7 kgm−2. The averaged air temperature during the observation period is
2.9 ◦C. The bright spots in IR imagery are seabirds. Here, ocean and ice have similar
physical temperatures (Figure 3.7f). We assume that for this case, the emissivities of
ice and ocean are alike at 243GHz, which could explain why there is no signal in TB at
243GHz of the floe around 01:19 UTC, which is visible in the TBs of the 22 and 31GHz
channels (Figure 3.7a).

The different behavior of TBs at 243GHz in the three cases is attributed to the in-
terplay of TB,down (which is, for example, lower on August 8 compared to July 18), and
different ice temperatures and emissivities. For example, we do not expect surface melt
on August 8 in contrast to July 18, and the presence of liquid water strongly affects the
dielectric permittivity and, in turn, the emissivity of the ice surface.

Brightness Temperature Statistics Before analyzing the surface emissivities in more
detail, we examine the statistics of all measured surface TBs during the campaign. The
distribution of the surface TBs of all measurements during the cruise is shown for the 22
to 31GHz channels in Figure 3.8 and for the 243GHz channel in Figure 3.9 as density
plots.

The surface signal is most evident for the vertically polarized TBs between 22 to
31GHz. The prominent peaks around 160K correspond to open water, while the peaks
around 260K correspond to observations of the ice. At the frequencies along the 183GHz



Sea Ice Emissivity: Concept and Measurements 59

17:15 17:20 17:25
2022-Jul-18

175

200

225

250

275
TB

 (K
)

a)

A B C

22.24 GHz
23.04 GHz

23.84 GHz
25.44 GHz

26.24 GHz
27.84 GHz

31.4 GHz

17:15 17:20 17:25
2022-Jul-18

220

240

260

280

TB
 (K

)

b)

51.26 GHz
52.28 GHz

53.86 GHz
54.94 GHz

56.66 GHz
57.3 GHz

58 GHz

17:15 17:20 17:25
2022-Jul-18

276

277

278

TB
 (K

)

c)

183.91 GHz
184.81 GHz
185.81 GHz
186.81 GHz
188.31 GHz
190.81 GHz

17:15 17:20 17:25
Date (UTC) 2022-Jul-18

264

266

268

270

TB
 (K

)

d)

243.00 GHz

e) A    2022-07-18 17:14:58 B    2022-07-18 17:17:58 C    2022-07-18 17:22:28

f) A    2022-07-18 17:15:02 B    2022-07-18 17:18:02 C    2022-07-18 17:22:32

270

271

272

TB
 in

fra
re

d 
(K

)

Figure 3.5: HATPRO and MiRAC-P TBs on July 18, 2022 from 17:13 to 17:25 UTC for a) 22.24
to 31.4GHz (vertical polarization), b) 51.26 to 58GHz (horizontal polarization), c) 183.31GHz
(vertical polarization) and d) 243GHz (horizontal polarization) measured at 53◦ zenith angle. The
dashed vertical lines indicate the times of the e) visual and f) infrared camera images A, B, and C.
The calculated footprints of the radiometers are indicated by the green ellipses in the IR imagery
within the black rectangle.
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Figure 3.6: Same as Figure 3.5 but for August 8, 2022, 5:30 to 5:47 UTC.
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Figure 3.7: Same as Figure 3.5 but for July 19, 2022, 01:13 to 01:22 UTC.
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Figure 3.8: All surface TB observations during ATWAICE at frequencies between 22 to 31GHz at
a 53◦ zenith angle (vertical polarization). The total number of measurements is 492,021 (equivalent
to about 137 hours). The data is shown as probability density using kernel density estimation with
a Gaussian kernel.

water vapor line and in the 58GHz oxygen absorption complex, the downwelling TB of
the atmosphere is higher and the distinction between ice and open ocean is less clear
(not shown). At 243GHz (Figure 3.9, horizontal polarization), we do not see the bimodal
structure as for the 22 to 31GHz channels. At this frequency and polarization, the influ-
ence of the atmospheric moisture is higher, and ice and ocean appear to have less distinct
emission signatures.

In summary, these examples show that the general idea of our measurement setup is
working: the mirrors allow observations of the surface as we can identify different surface
types in the measurements. We can attribute differences in the TBs at different frequencies
to varying sensitivities to atmospheric parameters like water vapor. In addition, surface
emissivities depending on the surface type influence the TBs and thus we continue by
estimating surface emissivities.

Surface Emissivity e

Due to the short atmospheric pathway (about 37m), we neglect atmospheric radiation
and atmospheric absorption between the surface and the radiometer in our study as also
done in Tucker III et al. (1991) or NORSEX (1983) and use Equation 3.6 to derive surface
emissivities. This assumption is neither fully valid for the 183GHz water vapor line and
the 58GHz oxygen absorption complex nor in the case of low-level fog for all frequencies.
Therefore, to reduce the uncertainty in calculating e, we consider clear-sky cases only
in the following and constrain our estimates to the channels between 22 to 31GHz and
243GHz. The selection criteria are (i) observation periods in sea ice areas and (ii) clear-
sky. We distinguish clear-sky conditions by analyzing the red-blue-ratio (e.g., Long et al.,
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Figure 3.9: Same as Figure 3.8 but for 243 GHz, horizontal polarization. The total number of
measurements is 617,746.

2006) captured by the sky camera and categorize pixels with a red-blue-ratio exceeding
0.7 as cloudy. In addition, we exclude conditions when atmospheric downwelling TBs are
unsteady by rejecting observations if the standard deviations of the zenith observations
in the 15 minutes before the surface observation are above the assumed uncertainties
in TB,down (see next paragraph). The hereby selected times are indicated in Figure 3.2.
The mean air temperature during the selected periods was 2.9 ◦C (with minimum and
maximum values of -1.0 and 9.2 ◦C, respectively).

Estimation of TB,down Due to the mirror position, it was not possible to directly measure
the downwelling TBs under a zenith angle of 53◦ (see Figure 3.4). When we assume
specular reflections, these TBs would equal TB,down in Equation 3.5. Therefore, we estimate
them using an empirical relation for the measured TBs of the radiometers viewing in
zenith direction measured directly before and aer the surface observations. To derive an
empirical relation, we use the radiosondes launched at least twice a day (12:00 and 00:00
UTC) as model input to the Passive and Active Microwave TRAnsfer tool (PAMTRA;
Mech et al., 2020) to calculate the downwelling TBs at zenith angles of 0◦ (TB,down,0◦)
and 53◦ (TB,down). The scatter plots and fitted linear least-squares relations are shown in
Figure 3.10. TB,down(t) at time t is then given as TB,down(t) = a1 · TB,down,0◦(t) + a2, with
the coefficients a1 and a2 given by the regression (annotated in Figure 3.10). TB,down,0◦(t)

is derived from linearly interpolating measured TB,down,0◦ before and aer the surface
observations.

Based on the scatter plots and the measurement uncertainty of the radiometers as well
as on the standard deviations of the atmospheric observations within 15 min before the
surface observations (on the order of 0.15K around 22.24GHz and 0.6K for 243GHz), the
overall uncertainty of TB,down is estimated to be 1K for the frequencies around 22.24GHz
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and 3K for 243GHz.

Estimation of Ts Using the opening angles of the IR camera and the MWRs, we esti-
mate a footprint position and size within the IR measurements. Note that the elliptical
footprints differ depending on the frequency. We have to account for uncertainties orig-
inating from a dri in the timestamps recorded by the IR camera and uncertainties of
the measured zenith angle affecting the projection of the IR imagery. The timestamp was
manually corrected by comparing the IR imagery to the VIS images that provide a GPS-
derived timestamp. Still, to consider these uncertainties, we use a rectangular box here
(larger than the calculated elliptical footprints, shown as a black outline in Figure. 3.5
and 3.6) and estimate the uncertainty of the surface temperature using the variability of
Ts within that rectangle. Because the cruise was conducted in the melting season, the IR
temperatures of ocean, ice, and melt pond are similar. The standard deviation within our
defined rectangle is usually below 1K.

The thermal IR measured TBs averaged within the rectangular footprint are then con-
verted to physical surface temperatures using an IR emissivity of 0.996 (Thielke, 2023).
The uncertainty of the IR emissivity adds to the overall uncertainty of Ts, which we esti-
mate to be 1.5K. Every 5 s, a thermal IR image is taken, and for the following calculation
we select the coinciding TB measurements.

Estimation of Emissivities and their Uncertainties The uncertainty of the de-
rived emissivities ∆e can be estimated using a Gaussian propagation of uncertainty. The
resulting expression is given by

∆e =
1

Ts − TB,down

√︄
(∆TB)2 +

(TB,down − TB)2

(Ts − TB,down)2
(∆Ts)2 +

(Tb − Ts)2

(Ts − TB,down)2
(∆TB,down)2

(3.7)
Equation 3.7 contains the individual uncertainties of Ts, ∆Ts, estimated to be 1.5K, of
TB,down, ∆TB,down, which are 1 and 3K between 22 to 31GHz and 243GHz, respectively,
and the uncertainty of the radiometer TB measurements, ∆TB, estimated to be 0.5K.
Also, ∆e is proportional to (Ts−TB,down)

−1. That means ∆e is high when the downwelling
TB,down is close to the surface temperature Ts. This is of importance at 243GHz, where
TB,down and Ts are of the same order of magnitude. Therefore, we exclude calculated values
of e with uncertainties higher than 0.025 in the following. For the remaining data, the
resulting calculated average uncertainties are 0.005 between 22 to 31GHz and 0.022 for
243GHz. The difference between specular and Lambertian reflections is minimal near our
observation angle (Mätzler, 2005), so our assumption about specular reflections in deriving
TB,down hardly contributes to our uncertainty estimates. To support the interpretation
of the derived surface emissivities, we extracted the RGB values from the VIS camera
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Figure 3.10: Scatterplots of simulated TBs of different frequencies under a zenith angle of 53◦
and of 0◦. Input to the simulations with PAMTRA are the radiosonde data from the ATWAICE
campaign. The number of simulations is 124. Annotated in the plots are the coefficients from a
linear least-squares regression and the mean absolute difference between the data and predicted
values.
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observation closest in time and within an area containing the radiometer footprints. A
statistical analysis of emissivity and RGB values provides reasonable results, despite high
co-location uncertainties.

Figure 3.11a shows a scatter plot and histograms with kernel density estimates of the
ratio of red (R) to blue (B) from the VIS camera and the emissivities at 22.24GHz. The
le, low emissivity peak of e corresponds to open ocean (low R to B values) and the peak
at the higher emissivities to ice surfaces (high R to B value). The calculated emissivities
for the other frequencies between 22 and 31GHz are shown in Figure 3.12. The maximum
of the ocean emissivity shis with increasing frequencies (from 0.51 to 0.55), while the
maximum emissivity of ice lies between 0.95 and 0.96. We oen observe values between the
two peaks that we attribute to different surface types being present within the footprint.

Figure 3.11b shows the derived emissivities at 243GHz. For this frequency, the dis-
tinction between different surface types is less pronounced. Here, we attribute the second
peak around 0.78 to the ocean and the higher values above 0.8 to ice and mixed surface
types. These higher values correspond for example to the sea ice observed on July 18
(Figure 3.5) and to the young ice observed on August 8 (Figure 3.6). Note that for the
young, dark-looking ice we do not expect high R to B values. In addition, we can observe
a small and broad peak around 0.67. These are emissivities of ice as well, observed e. g.,
on August 8 (corresponding to the low TBs in Figure 3.6d).

The widths of the modal peaks for the different surface types can be attributed to
a variety of causes. In addition to the natural variability of emissivity for different ice
types and the induced uncertainties, we might observe mixed surface types (ice and open
water) in the footprint, as discussed before. Furthermore, varying zenith angles (e. g.,
by ship movement) contribute to a high variability of e over open ocean and, likely to a
lesser degree, also over ice. Table 3.3 summarizes the estimated emissivities by listing the
maximum values of the surface modes and their widths. The values are found by fitting
bi- and trimodal distributions, given as sum of normal distributions, to the data, i. e., the
values are means and standard deviations of the fitted Gaussian distributions.

3.2.4 Conclusions and Outlook

The presented mirror construction is a low-cost addition for ship-based, upward-viewing
MWRs that complements the atmospheric measurements by allowing for surface obser-
vations in the microwave spectrum along a ship track. In particular, for the TBs of the
frequencies between 22 and 31GHz, different surface types are clearly distinguishable.
Such measurements are very beneficial since they can be used to describe the spatial vari-
ability of TBs and, thus, the spatial variability of surface emissivity at these frequencies for
a larger area, i. e., a satellite footprint. In contrast to on-ice MWR surface measurements,
the along-track observations can resolve the spatial variability of the surface conditions,
including small-scale features like leads and melt ponds. Especially in summer and in
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Table 3.3: Calculated emissivities e at 53◦ zenith angle for different surface types and
their variability σe, given by the width of Gaussian functions fitted to the multimodal
distribution of the data

Frequency (GHz) Polarization ocean e ice e

22.24 V 0.508± 0.012 0.952± 0.016
23.04 V 0.512± 0.012 0.953± 0.016
23.84 V 0.514± 0.011 0.947± 0.017
25.44 V 0.521± 0.010 0.956± 0.013
26.24 V 0.526± 0.010 0.958± 0.011
27.84 V 0.533± 0.010 0.958± 0.010
31.4 V 0.550± 0.010 0.959± 0.011
243.0 H 0.783± 0.010 0.668± 0.032 (ice 1)

0.825± 0.036 (ice 2)
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Figure 3.11: Bivariate and marginal histograms with kernel density estimates (blue line) of the
red (R) to blue (B) ratio of the RGB values from the visual camera and the calculated microwave
emissivities e in a) for 22.43GHz (vertical polarization) and in b) for 243GHz (horizontal polar-
ization). The shown cases have been manually selected for clear-sky situations and uncertainties
in e smaller than 0.025, resulting in 3,730 (a) and 1,100 (b) measurements. The R to B ratio has
been calculated for the MWR footprint area. The dashed red lines are Gaussian functions fitted
to the data.
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Figure 3.12: Kernel density estimate of the distribution of emissivities (e) calculated for the
frequencies between 22 and 31GHz for manually selected times with clear sky (N=3730).

the marginal ice zone, these small-scale features, which the satellite footprints cannot re-
solve, pose a great challenge for microwave satellite retrievals, in particular regarding the
description of the surface emissivity. Therefore, our measurements help to improve the un-
derstanding of surface emissivity variability on a satellite footprint scale. Our data might
help to further characterize surface contributions to the satellite signals also at 243GHz
where little in-situ data is currently available. This is also of interest for upcoming satel-
lite missions like the Metop-SG Ice Cloud Imager which will use high frequencies, i. e.,
183GHz and above, for improved atmospheric sounding. In addition, our TB data and
the complementing in-situ ice observations can be used in further modeling studies. Under-
standing the wide range of calculated emissivities at 243GHz over ice requires additional
measurements and more detailed analysis. Here, observations at both polarizations would
be helpful, in particular for measurements close to the Brewster angle where difference
between the polarizations are potentially large. Analyzing the zenith-angle dependence
of the emitted radiation was not feasible because it was impossible to separate the angle
dependence from the changing surfaces in the field of view. In the future, this is an option
for ocean surfaces or cases with less spatial surface heterogeneity.

Calculating emissivities is challenged by a variety of uncertainties. Besides surface
temperature uncertainties, the highest ones stem from the atmosphere. Under foggy con-
ditions, the atmosphere between the radiometer and the ground cannot be neglected. Also,
the reflected atmospheric radiation needs to be considered, which could not be directly
measured. To circumvent this limitation, we estimated the TB,down at a zenith angle of 53◦

using a regression method based on the zenith atmospheric observations of the MWRs.
This estimate of TB,down is thus also related to some uncertainties.

Despite these constraints, the measurement setup allowed us to measure microwave
emissions of ice and ocean surfaces and their variability on a spatial scale that resembles a
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satellite footprint. For the frequency range between 22 to 31GHz, vertical polarization, we
find that open water emissivities are between 0.508 and 0.550 (increasing with frequency).
The widths of the modal peaks in the emissivity distributions serve as a measure of the
variability and are between 0.010 and 0.012. Over sea ice, emissivity values range from
0.947 to 0.959 and the variabilities from 0.010 to 0.017. In this frequency range the
uncertainty of e is estimated to be 0.005 and thus lower than the variability derived from
the distribution. At 243GHz, horizontal polarization, the modal peaks in the emissivity
distribution are not as strictly separated as at the low frequencies. We attribute the modal
peak around around 0.783 with a variability of 0.010 to open water. The other two broader
modes correspond to sea ice, with one at a lower emissivity around 0.668 and one at a
higher emissivity around 0.825. The variabilities of the modes are 0.032 and 0.036.

In the future, the measurement design will be improved to quickly switch between sur-
face and atmospheric scans under varying zenith angles. This data and observations from
upcoming measurement campaigns will thus greatly help improve and develop satellite
retrieval algorithms, particularly for microwave frequencies higher than 183GHz that will
become operational on future satellite missions.



70 3.2 Results from Expedition PS131 of R/V Polarstern



Chapter 4

Influence of Surface Properties
on Satellite Retrievals of
Sea Ice Concentration

Now that we have established some of the challenges of characterizing the surface emis-
sions of Arctic sea ice and snow, we present an example of how the surface conditions
influence satellite retrievals of sea ice concentration. The case study, published as “Sea ice
concentration satellite retrievals influenced by surface changes due to warm air intrusions:
A case study from the MOSAiC expedition” (Rückert et al., 2023b), illustrates the inter-
play of atmospheric events and subsequent surface changes and the sensitivity of retrieval
algorithms to such effects. Philip Rostosky and Janna Rückert contributed equally to this
study. Janna Rückert contributed to concept and design, as well as analysis and interpre-
tation of the data with a focus on the satellite data. Philip Rostosky’s contributions about
on-site modeling and the ground-based radiometer measurements are added to this thesis
for completeness in the Appendix B. The main contributor of the following sections is
Janna Rückert, except for the paragraphs “Snow Accumulation and Metamorphism” and
“Floe Perspective: Microwave Emission Modeling” in Section 4.1.3 where Philip Rostosky
is the main contributor.

4.1 A Case Study from the MOSAiC Expedition

4.1.1 Introduction

Sea ice concentration retrievals Retrievals of sea ice concentration (SIC) using pas-
sive microwave sensors take advantage of the different emissions of ice and ocean measured
as brightness temperatures by the satellite. Microwave emission from open water depends
mainly on surface temperature and surface roughness related to wave and foam forma-
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tion. The microwave emission of the snow-ice system, on the other hand, depends on snow
and sea ice properties such as density, temperature, salinity, stratification and microstruc-
ture. Retrieval algorithms are either (i) based on polarization difference, (ii) combine
different frequencies at the same polarization, or (iii) use both different polarizations and
frequencies. Overviews and intercomparisons of different retrieval algorithms are given,
for example, in Andersen et al. (2006), Andersen et al. (2007), Ivanova et al. (2015) and
Kern et al. (2022). In this case study, involving two moist and warm air intrusions in April
2020, we have investigate the performance of common SIC retrievals of type (i) and (iii).

Warm air intrusions and surface glazing Moist warm air intrusions transporting
water vapor poleward play an important role in the Arctic climate system. They increase
the downward longwave radiation flux and the skin temperature and thus contribute to
Arctic warming in winter (Woods et al., 2013; Hao et al., 2019). There is evidence for
an increase in the frequency of extreme warming events, atmospheric rivers and cyclones
in the central Arctic in winter related to an increase in meridional heat and moisture
transport (Woods and Caballero, 2016; Graham et al., 2017; Rinke et al., 2017; Hao et al.,
2019; Henderson et al., 2021; Valkonen et al., 2021; Zhang et al., 2023). We refer to these
events as warm air intrusions in the following, acknowledging that for specific events they
can be different, e. g., in terms of moisture. Warm air intrusions and associated wind and
temperature changes can alter the SIC by ice advection, breaking the ice and opening leads,
or, to a lesser degree, by melting the ice (mainly in connection with upwelling of warmer,
e. g., Atlantic, water along the ice margins but also by direct melting of the ice surface).
However, warm air intrusions can also significantly influence the atmosphere and the
surface in ways that alter satellite-measured microwave brightness temperature (TB) (Liu
and Curry, 2003). These alterations can cause spurious changes in SIC products based on
TB (Tonboe et al., 2003), i. e., they can cause wrong ice concentration retrievals in some
cases. One possible effect on the snow surface is surface glazing. By glazing we mean
the formation of a thin ice layer or crust on top of the snow due to melt or precipitation
(Stroeve et al., 2022) or other mechanisms, e. g., winds, as observed in Antarctica (Scambos
et al., 2012). Onstott et al. (1987) found that a crust reduces emissivity at 37GHz and
94GHz significantly because of scattering within this layer. Smith (1996) and Comiso et al.
(1997) conjectured that ice layers in the snow can be a reason for an underestimation
of ice concentration, referring to Mätzler et al. (1984). Mätzler et al. (1984) showed
that ice layers introduce interfaces with different refractive indices, affecting especially
the horizontally polarized TB close to the Brewster angle as described by the Fresnel
equations, and therefore alter the polarization difference. Rees et al. (2010) also observed
this effect due to ice lenses on snow on land in the Arctic.
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Multidisciplinary drifting Observatory for the Study of Arctic Climate Changes
in occurrences of surface glazing events thus have the potential to introduce biases in (re-
gional) SIC trends if they are not accounted for. Opportunities to study and quantify the
impact of surface glazing in the central Arctic are rare, but the Multidisciplinary dri-
ing Observatory for the Study of Arctic Climate (MOSAiC) expedition (Nicolaus et al.,
2022; Shupe et al., 2022; Rabe et al., 2022) provided such a unique setting. To study
and increase the understanding of the various processes that lead to the strong recent
changes in the Arctic climate, MOSAiC was conducted for a full year from October 2019
to September 2020. The research icebreaker R/V Polarstern (Knust, 2017) was moored
to a sea ice floe and dried with it. During the campaign ship-based, ground-based, and
airborne measurements of the ocean, sea ice, atmosphere, biogeochemistry and ecosystem
in the vicinity of the ship were collected.

The area within about 2 km of Polarstern — named the Central Observatory (CO) —
was studied intensively. At the start of the expedition the CO was on second-year ice with
low ice salinities in the upper layers. Due to new ice formation during winter, a mixture
of dominating second- and first-year ice prevailed on the scale of satellite footprint.

Warm air intrusions in April 2020 Aer a long period of cold winter conditions,
two warm and moist air intrusions in April 2020 dramatically warmed the CO (Shupe
et al., 2022). During these warm air intrusions, air temperatures increased by up to
30K at the MOSAiC site, getting close to and even above 0 ◦C. The atmospheric events
included record-breaking total water vapor (Rinke et al., 2021) and high cloud liquid
water path, increased wind speeds and precipitation, as well as changes in the aerosol
regime (Dada et al., 2022) and triggered surface snow metamorphism, i. e., transformation
processes altering the snow microstructure. Of particular interest here is the large-scale
surface glazing, observed at the MOSAiC CO, which can affect the microwave emissions
as described above. Before, during, and aer the warm air intrusions the actual SIC in the
vicinity of MOSAiC was high (>95%). Single leads opened during the events but nothing
major in comparison to the periods before and aer as confirmed by optical (Moderate
Resolution Imaging Spectroradiometer (MODIS)) and radar (Sentinel-1) satellite data, by
observations from the expedition participants, and by helicopter-borne thermal infrared
imagery (Thielke et al., 2022). The latter gives a value for lead fraction, i. e., fraction of
open water and thin (<30 cm) young ice, which was on the order of 1.5% over the CO
on April 23, about three days aer the intrusions. Still the warm air intrusion events
affected satellite products of SIC based on microwave radiometry. In conjunction with the
warming events, and lasting for several days aer them, most satellite products showed a
(wrong) decrease in SIC and inter-product variability increased.

In this study, we examined differences between several satellite ice concentration prod-
ucts during the April 2020 warm air intrusions. To explain the differences, we investigated
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the effect of these events on microwave TB. We present the suite of such observations at
Polarstern by satellite at the frequencies 6.9GHz,19GHz and 89GHz. The observations of
the ground-based radiometers on the ice floe measuring at the same frequencies taken at
the Remote Sensing Site during MOSAiC are presented in the Appendix B. We used in-situ
snow and ice observations and microwave emission modeling to explore the impacts of glaz-
ing and snow metamorphism on TB and, consequently, on SIC retrievals. The results are
structured by the different scales of the observations, from a satellite view (Section 4.1.3)
via a floe-wide perspective (Section 4.1.3) to a specific on-ice site (Appendix B).

4.1.2 Data

Sea ice concentration: satellite products

In this section we compare SIC around Polarstern based on different algorithms developed
for satellite passive microwave remote sensing using different frequencies and polarization
combinations. The datasets used are described in more detail in the following subsections.
Table 4.1 provides an overview including the frequency channels that are used to compute
SIC and the grid spacing. All products are available daily. The co-location procedure is the
same for all products. In order to account for dri we use Polarstern’s position resampled
to hourly values and then choose the closest grid point in the satellite product for each
hour. We then averaged over the whole day. Note that the ARTIST Sea Ice (ASI) SIC
product has a higher spatial resolution compared to the others. It can thus be considered
more representative of the local ice conditions.

ASI SIC algorithm

The ASI algorithm exploits the high spatial resolution of near 90GHz channels and was
initially developed for Special Sensor Microwave Imager (SSM/I) sensors (Svendsen et al.,
1987; Kaleschke et al., 2001). It was later adapted for the Advanced Microwave Scanning
Radiometer - Earth Observing System (AMSR-E) and Advanced Microwave Scanning
Radiometer 2 (AMSR2) sensors (Spreen et al., 2008; Melsheimer, 2019). The polarization
difference (PD), described as

PD = TBV− TBH, (4.1)

where V denotes vertical polarization and H horizontal polarization, at 89GHz (called
PD(89) in the following) is larger over open ocean than over sea ice. This difference is
used by the algorithm to distinguish between these two surface types. The SIC is retrieved
by a third-order polynomial of PD where the coefficients are determined by the tie points,
i. e., typical values of PD over water and consolidated ice (100% ice concentration). To
correct for weather influences over open ocean, weather filters are applied. Here, we used
the dataset operationally available on a 6.25 km grid at https://seaice.uni-bremen.de and

https://seaice.uni-bremen.de
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https://meereisportal.de.

NASA Team algorithm

The NASA Team algorithm (Cavalieri et al., 1984,9) uses vertically and horizontally
polarized TB channels to calculate the polarization ratio, PR = PD/(TBV + TBH),
of 19.35GHz, called PR(19) in the following, and the spectral gradient ratio, GR =

(TB37V−TB19V)/(TB37V+TB19V), between TB19.35V and TB37V, which is called
GR(37/19) in the following. These two ratios are then compared in a scatter plot where
they form clusters. These clusters can be identified as being correspondent to three surface
types (first-year ice, multiyear ice and ice-free ocean), and for each type three constant
tie points are determined (for each frequency channel). Values between the tie points
are then interpreted as mixtures of surface types. Weather filters are applied addition-
ally to correct for weather influence over open ocean. We used the NASA Team SIC
operational product provided as part of the National Oceanic and Atmospheric Adminis-
tration (NOAA)/National Snow and Ice Data Center (NSIDC) Climate Data Record of
Passive Microwave Sea Ice Concentration, Version 4 (Meier et al., 2021).

NSIDC climate data record

The NSIDC provides SIC estimates as a Climate Data Record (CDR) starting in 1978
(Meier et al., 2021). Here, SIC is computed both by NASA Team (see above) and the
Bootstrap algorithm (Comiso, 1986; Comiso et al., 2017). The Bootstrap algorithm is
based on relationships of TB combinations of 19V and 37V, and 37V and 37H. Clusters of
pure surface types are determined in TB scatter plots of these combinations. Tie points
are derived daily based on these clusters. Additionally, weather filters are applied. Then,
the higher concentration value from the two algorithms is chosen for each grid cell. We
used the NSIDC CDR operational product provided by the NOAA/NSIDC Climate Data
Record of Passive Microwave Sea Ice Concentration, Version 4 (Meier et al., 2021).

OSI SAF climate data record

OSI SAF global sea ice concentration interim climate data record (OSI SAF iCDR), release
2, provides daily SIC, starting in 2016 and using data from the SSMIS sensors from NOAA
CLASS (EUMETSAT Ocean and Sea Ice Satellite Application Facility, 2017). This SIC
dataset, OSI-430-b, is based on a dynamic algorithm (Lavergne et al., 2019), generalizing
the Bristol algorithm (Smith, 1996). TB at 19V, 37V and 37H span a 3-D space. Within
this space, clusters or shapes close to lines for closed-ice and water are existent. The
algorithm then projects the TB data on an optimized plane. This projection is found
using daily updated training datasets, one for fully ice-covered and one for open water
areas. The unit vector of this plane is found by principal component analysis (direction

https://meereisportal.de
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Table 4.1: Summary of sea ice concentration products used

Algorithm/product Frequencies Grid spacing Sensor
ASI 89V, 89H 6.25 km AMSR2

NSIDC NASA Team 19.35V, 19.35H, 37V 25 km SSMIS
NSIDC CDR 19.35V, 19.35H, 37V, 37H 25 km SSMIS

OSI SAF iCDR 19.35V, 37V, 37H 25 km SSMIS

of highest variance in brightness temperature) and is then rotated to maximize accuracy.
The final SIC is then calculated by a weighted linear combination of SIC computed from an
algorithm dynamically tuned to perform better over open water and one dynamically tuned
to perform better over high-concentration ice conditions, both applied in the respectively
optimized planes in TB space. The TB are corrected using the European Centre for
Medium-range Weather Forecasts (ECMWF) ERA-Interim reanalysis data to account for
atmospheric influences due to water vapor, wind speed and near-surface air temperature,
with a weather filter (open-water filter) applied aer the correction.

Tie points and truncation

All presented satellite products rely on tie points that are average representations of certain
ice conditions, e. g., 100% SIC. Naturally, this procedure leads to retrievals varying around
100%, including cases with SIC above 100%. The effects of truncating the data at 100%
SIC, as done in all presented products (only the OSI SAF iCDR provides additionally
non-truncated ‘raw‘ data to the users), are discussed in more detail in Kern et al. (2019).
They concluded that the NSIDC CDR (note that they used version 3 while we analyzed
version 4) systematically overestimates SIC (the non-truncated distribution has a modal
value larger than 100%). This overestimation will be of relevance later when we discuss
the sensitivity of the presented products to the warm air intrusions.

Space-borne microwave radiometry: brightness temperatures

We investigate TB measured by the scanning radiometer AMSR2 on the GCOM-W1
spacecra from the Japan Aerospace Exploration Agency, launched May 18, 2012. AMSR2
orbits the Earth at an altitude of 700 km in a near-polar, sun-synchronous sub-recurrent
orbit with a swath width of 1450 km. The dual-polarized sensor has instantaneous fields
of view ranging from 62 km × 35 km at 6.9GHz to 5 km × 3 km at 89GHz. We used
the swath data, both ascending and descending, of the Level 1R product matched to the
resolution of 6.9GHz (Maeda et al., 2016), corresponding to an instantaneous field of
view (FOV) of 62 km×35 km. This product matches antenna patterns so that the TB
for all frequencies have the same field of view, facilitating comparisons between different
frequencies. For every overflight of Polarstern we chose the measurement closest to the
vessel’s hourly position. There are between five and seven overflights per day. We show
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daily averaged values of TB at 6.9GHz, 18.7GHz, 36.5GHz and 89GHz in Section 4.1.3.

Snow data

Detailed snow measurements were performed during MOSAiC. In this study, we ana-
lyzed 132 SnowMicroPen (SMP) profiles (Macfarlane et al., 2021) taken between April
08 and April 27 to support our interpretation of the observed satellite signals. From the
raw SnowMicroPen (SMP) observations (penetration resistance) snow density and specific
surface area (SSA) were estimated using empirical models (Proksch et al., 2015; King
et al., 2020). From density and SSA, the exponential correlation length was calculated
(see Appendix Text S3), a parameter describing the microstructure of the snow which is
used in common snow microwave emission models (Tonboe et al., 2006).

Supporting data

Met Tower temperature For atmospheric temperature, we used the 2m air temper-
ature recorded from the 10 m meteorological mast (Met Tower) installed on the CO ice
floe (Cox et al., 2021).

Precipitation To illustrate the timing of precipitation, we used data from the Vaisala
Present Weather Detector 22 (PWD22) precipitation gauge, an optical device that was
installed on the deck of Polarstern and operated by the US Department of Energy At-
mospheric Radiation Measurement program (Shi, 2019). Here, we used 1-minute mean
precipitation rates. This product was also used as reference product in an intercomparison
of different snow precipitation sensors by Wagner et al. (2022).

Total water vapor from radiosondes The Level 2 dataset of balloon-borne radioson-
des from the MOSAiC expedition (Maturilli et al., 2021) was used to calculate total water
vapor (TWV) from the measured temperature, pressure and relative humidity profiles
from the Polarstern helicopter deck (at about 10m height) to about 30 km altitude using
the formula for vapor pressure over liquid water below 0 ◦C by Hyland and Wexler (1983)
as in Walbröl et al. (2022). During the warm air intrusions, the radiosondes were launched
more oen, up to seven times a day, while during the other periods they were launched
four times a day.

Liquid water path from HATPRO radiometer We used liquid water path (LWP)
retrieved from the ground-based Humidity and Temperature Profiler (HATPRO) mi-
crowave radiometer operated in zenith mode onboard Polarstern as input parameter to
model the atmosphere. The retrieved LWP is based on the retrieval algorithm as described
in Nomokonova et al. (2019) using the vertically polarized TB measurements between
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22.24GHz and 31.4GHz. The radiometer has a temporal resolution of 1 second. More
information on this dataset can be found in Walbröl et al. (2022).

Reanalysis ERA5 From ECMWF fih generation reanalysis ERA5 (Hersbach et al.,
2020) we used longwave and shortwave radiation from the grid cell closest to Polarstern
for the SNOWPACK model simulations (Section 4.1.3).

Terrestrial laser scanner TLS Supporting information about the snow surface to-
pography was derived from terrestrial laser scanner (TLS) data taken on April 17 and
April 22 (Clemens-Sewall et al., 2022b). The TLS uses a scanning, 1550nm laser, to
generate a three-dimensional point cloud of the snow and ice surface at centimeter-scale
resolution. See Deems et al. (2013) for a review of TLS applications to snow depth mea-
surements. Wind-blown snow particles were filtered out of TLS data using the FlakeOut
method (Clemens-Sewall et al., 2022a). From the measured topography and its changes,
we deduced the changing snow thicknesses and effective incidence angles (i. e., the inci-
dent angle of the tilted surface with respect to the radiometer) within the footprints of the
ground-based radiometers. The TLS data also include the backscatter reflectance of the
surface at 1550nm. Glaze ice areas are identifiable in this dataset, because surface glazing
reduces the backscatter reflectance (glazing increases forward scattering and absorption).

4.1.3 Results

In the following we describe the temporal development of the retrieved SIC and satellite-
measured microwave TB, first on a large scale and then locally around Polarstern. For
the local analysis, we further describe the floe by using the SMP measurements as model
input to analyze the evolution of TB. In a second step we change the perspective to an
even smaller scale and study the data obtained by the ground-based radiometers. We then
discuss the integration of the observations from the different scales. Finally, these steps
allow us to develop an interpretation of the satellite signal and the resulting differences in
SIC estimates.

Figure 4.1 shows the temporal evolution of TWV from ERA5 over 4 days. The first
intrusion, reaching the ship around April 16, originated in northwestern Russia and passed
the Barents Sea, while the second one around April 19 was approaching from the North
Atlantic, illustrating the large area exposed to the warm air intrusions.

Satellite perspective

The two warm air intrusions were large scale events (Figure 4.1) and thus also visible at
large scale in the satellite data. The large scale becomes evident when examining spatial
maps of SIC (Figure 4.2). In this figure we show the mean SIC based on different satellite
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Figure 4.1: Total columnar water vapor during two warm air intrusion events. Shown are hourly
values for total water vapor (TWV) from the reanalysis ERA5. The left panels show TWV one day
prior to the events (upper panel) and in-between the two events (lower panel). The right panels
show TWV at the time of the first (upper panel) and second (lower panel) warm air intrusion.
Dates are month/day/year. The red diamond indicates the position of Polarstern at the day.

retrieval products for four consecutive days both prior and aer the two events and the
difference between the two time periods. Note that the SIC from ASI (first row) has
a much higher spatial resolution (6.25 km grid spacing compared to 25 km for all other
products, see Table 4.1). In all products except for the NSIDC CDR, decreases of SIC
are visible in the Central Arctic to different extents (black ovals in Figure 4.2) as well as
in the marginal ice zone. The strongest effect is observed for the ASI product, followed
by NASA Team. Deviations between different products increased aer the events for all
products.

The MOSAiC measurements of total water vapor, liquid water path and 2m air tem-
perature at Polarstern allowed us to examine the effect of these warm intrusions locally.
For both warm air intrusions, the rising temperatures (up to0 ◦C) coincided with increased
amounts of TWV (up to 13.4mm) and LWP (up to around 0.47mm) as shown in Fig-
ure 4.3. In our field observations, no dramatic decrease in ice concentration was observed
and SIC was high (>95%), as described earlier in Section 4.1.1. These findings are also
confirmed by SIC derived from satellite thermal infrared data (MODIS instrument, only
available for clear sky; not shown). A significant drop in SIC cannot be seen in optical
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Figure 4.2: Sea ice concentration from different satellite retrievals before and after two warm
intrusion events. Shown are 4-day averages of sea ice concentration (SIC) prior (first column) and
after (second column) the intrusions. The third column shows the difference between the second
and first column. Blue colors denote a reduction in SIC after the events. The black oval in the
third column marks a region where the different satellite products deviate from each other after
the events. Polarstern’s drift track is shown by a black line.
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Figure 4.3: Sea ice concentration and meteorological conditions during the April 2020 warm
air intrusion events. Upper: sea ice concentration (SIC) from four different operational satellite
products co-located with Polarstern. Shown are daily averages at 12:00 UTC on the respective day
with the shaded area indicating the standard deviation which is larger zero if the drift of Polarstern
covered several grid cells. Lower: air temperature at 2m (black) from the Met Tower, total water
vapor (TWV, dark blue) from radiosondes, liquid water path (LWP, light blue) from the HATPRO
microwave radiometer (resampled to hourly values), and 1-minute precipitation rates (grey) from
the precipitation gauge (PWD22) installed on deck.

(MODIS) and radar (Sentinel-1) satellite data (not shown) either, where lead formations
can be observed during the events but nothing major in comparison to the periods before
and aer. During the clear-sky day on April 17, temperatures dropped and clear-sky con-
ditions with a high longwave radiation loss prevailed (Rinke et al., 2021). Images from the
Panomax webcam onboard the ship (https://www.mosaic-panorama.org/) reveal a lead
opening close to the ship on that day.

In considering the SIC estimates from different products collocated to MOSAiC, we
observe for the high-resolution ASI algorithm based on 89GHz a drop in SIC between
the two warm air intrusions corresponding to the clear sky day on April 17 and a strong
decline aer the second event (Figure 4.3). The SIC from NASA Team and OSI SAF iCDR
shows less variability during the intrusions but decreases in both cases to 92% on April
22 and does not recover thereaer. The NSIDC CDR, on the other hand, shows 100%
SIC aer the intrusions. This algorithm includes both NASA Team and the Bootstrap
algorithm (Section 4.1.2) with the latter compensating for the decrease observed in SIC
from NASA Team as discussed later. Before the events, all algorithms showed high SIC
around 100%. Similar to the large scale view (Figure 4.2), the spread between different
products increased aer the events. Using the NSIDC CDR data as reference, we observe
SIC differences of around 8% for OSI SAF iCDR and for NASA Team. Compared to
the higher-resolution ASI product the differences are as high as 34% which cannot be
explained by the smaller footprint.

https://www.mosaic-panorama.org/
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Figure 4.4: Effect of warm air intrusion on satellite-measured brightness temperatures. Shown are
a) the air temperature at 2m; b) the co-located satellite measurement of brightness temperatures
(TB) and c) polarization differences (PD) around Polarstern (daily averages); and (d) the gradient
ratio of 36.5GHz and 18.7GHz and polarization ratio of 18.7GHz as defined in Section 4.1.2.
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Although Tjernström et al. (2015) observed that warm air advections can cause rapid
ice melt, and that dynamic effects can decrease SIC up to 3% in the high SIC domain
(Schreiber and Serreze, 2020; Aue et al., 2022), here the low SIC values at MOSAiC re-
trieved by some algorithms are underestimating the actual sea ice concentration. To under-
stand this underestimation, we analyzed daily satellite AMSR2 TB data (Figure 4.4 (b)).
The signature of the warming events is clearly visible in the TB time series at these frequen-
cies. The higher frequencies (i. e., 36.5GHz and 89GHz) follow the 2m air temperature
evolution (Figure 4.4 (a)) more closely. All frequencies show an increased PD aer the
events as can be seen in the Figure 4.4 (c). Again, the higher frequencies show a larger
increase. The PD increase on April 22 compared to the mean of April 10-13 ranges from
a few Kelvin (approximately 3K) for 6.9GHz up to around 9K and 11K for 89GHz and
36.5GHz, respectively. A smaller increase in PD at 89GHz of a few Kelvin (approximately
4K) is already visible around April 17 between the two warm air intrusions. During the
second warm air intrusion, PD for 89GHz initially decreases, again coinciding with rising
TWV and LWP values. Aer this second event the rise in PD can be observed at all
frequencies but most strongly at the higher frequencies. Figure 4.4 (d) illustrates that
both the gradient ratio and the polarization ratio show higher values aer the intrusions
(aer April 20). The gradient ratio shows even higher values during the intrusions.

Especially ASI and NASA Team make use of polarization differences and polarization
ratios, respectively. For such SIC estimates the changes in these quantities result in (too)
low retrieved SIC values as shown in Figures 4.2 and 4.3. The decrease of SIC in the high-
resolution ASI product on April 17 is possibly real, related to the lead opening described
above. Directly relating the effect of these TB changes to SIC from OSI SAF iCDR is
not as straightforward due to the complex retrieval method. We note, however, that this
algorithm is based on the three-dimensional diagram in TB space of 19V, 37V and 37H,
so that strong changes in these frequencies relative to each other, as observed, will affect
the retrieval. The OSI SAF iCDR product provides two uncertainty estimates: algorithm
uncertainty and ‘representativeness‘ uncertainty, i. e., uncertainty due to resampling and
mismatch of footprints at different channels (Lavergne et al., 2019). Here, the sum of these
two uncertainties (given as one standard deviation) increases from below 2% before the
events to up to 5.6% on April 21 (not shown) for the co-located data shown in Figure 4.3,
i. e., the uncertainty estimates identify a potential problem in the retrieved SIC. In this
case, the higher uncertainty is caused by a higher representativeness uncertainty.

For the NSIDC CDR the higher value of the SIC estimates from the Bootstrap algo-
rithm and NASA Team is chosen. The SIC estimate from NASA Team exhibits a decrease
as described above, thus the Bootstrap algorithm is responsible for the low sensitivity of
the NSIDC CDR SIC estimate to the warm air intrusions. For high ice concentration
values as in this case, the Bootstrap algorithm is based on 37V and 37H. However, as
described in Section 4.1.2 and discussed by Kern et al. (2019), the fact we do not observe
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a decrease here, although the relationship of 37V and 37H is changed, might be due to an
overestimation and consequent truncation at 100% of the values derived by the Bootstrap
algorithm.

Direct atmospheric influence

In the few days aer the warm air intrusions, the 2m air temperature and TWV were
on average higher than before, while LWP was as low as during the first 2 weeks of April
(Figure 4.3). Previous studies (Oelke, 1997; Andersen et al., 2007) demonstrated that
atmospheric events can also increase retrieved SIC, although we observed a decrease in
our case. Emissions from water vapor or liquid water path contributing to the satellite
signal are in general not polarized (Ulaby and Long, 2014) and would thus not increase
PD. Scattered radiation, e. g., by ice particles in clouds, may have a polarized component.
However, Troitsky et al. (2003) observed values of PD and duration of periods with polar-
ization differences that are too small to explain the development of PD that we observed
here. Also, compared to the surface emissions, the contribution of the atmosphere is small
at the low frequencies 6.9 and 19GHz and thus is not not the most likely candidate for
the PD increase. Factors other than direct atmospheric effects must explain the increase
in PD. We thus focus on explanations related to changed surface emission.

Snow accumulation and metamorphism

Wagner et al. (2022) described a significant snowfall event from April 16 to April 21 ac-
companying the warm air intrusions. Snowfall events could have had an increasing effect
on PD due to atmospheric scattering, but we observed the increase after the snowfall. A
detailed analysis suggests that much of the fresh snowfall during this event may have been
lost into leads (Clemens-Sewall et al., 2023). According to snow buoy measurements (Nico-
laus et al., 2021), the average snow depth on a regional scale around the MOSAiC floe was
around 20 cm until April 20 and 24 cm aerwards (not shown here). If snow accumulates
on level ice, we would expect the fresher snow (less dense with refractive index between
that of air and ice) to decrease the PD as described by the Fresnel equations and also
reported in Hwang et al. (2007) and Tonboe (2010). For the large-scale area, this snowfall
cannot explain the microwave signal. The surface conditions at the Remote Sensing Site
on the MOSAiC floe were not representative of the larger area, mainly because the instru-
ments themselves posed obstacles that caused artificial snow accumulation. Thus, for the
ground-based radiometers the snowfall is relevant to the interpretation (Section B.1).

For understanding and modeling the observed microwave emission, temperature pro-
files of the snow are important. Here we have used temperature profiles from simulations
with the SNOWPACK model (Bartelt and Lehning, 2002; Lehning et al., 2002b,0; Wever
et al., 2019). The model was initialized with a snow pit from April 08 and driven with
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Figure 4.5: Snow temperature profile from a SNOWPACK simulation initialized with 20 cm of
snow. Dates are month/day-hour in 2020.

MET tower 2m air temperature and 10m wind speed. Longwave and shortwave radiation
was obtained from ERA-5 reanalysis data (Hersbach et al., 2020). In these simulations,
snowfall was omitted. At the time the simulations were performed, radiation measure-
ments from MOSAiC were not available. However, we generally found a good agreement
between our simulated snow temperature profiles and temperature measurements from
snowpits (average difference <2K) and concluded that the performance of the model is
sufficient for the purpose of this study. For simulating the brightness temperature of the
snow/ice system of the MOSAiC floe, density and correlation length from the SMP profiles
were used (Appendix Text S3 and Text S4) together with the temperature profiles from
the SNOWPACK simulations. To match the varying snow height of the SMP profiles,
simulations with a snowpack of 10 cm to 30 cm in 5 cm steps were performed.

Figure 4.5 shows the simulated snow temperature for a 20 cm deep snowpack. Overall,
the snow temperature increased by more than 10K. Aer the events, the snow tempera-
ture remains higher at the lower part of the snowpack for several days. These data serve
as input for the microwave emission modeling presented in Section 4.1.3.

The changes of the snow microstructure caused by the warm air intrusions are evident
when one examines the SMP profiles shown in Figure 4.6. A shi towards lower density
and SSA and higher correlation length aer the warm air intrusions is visible in the data,
suggesting that the warm air intrusions led to snow metamorphism. The strong and
even inverted temperature gradient affects the migration of water vapor (deposition and
sublimation) in the snow, and we would expect larger snow structures (i. e., depth hoar)
resulting in lower SSA, which is indeed visible in the data. The changes in density are
mainly in the upper layers (5 cm) of the snow, which indicates that at least a thin layer
of fresh snow accumulated on top of the snow.

The change in increased correlation length affects the scattering strength of the snow:
in general higher correlation lengths lead to stronger scattering. On the other hand,
higher snow temperatures (Figure 4.5) increase emissions. To understand how these sur-
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Figure 4.6: Histogram of average density, specific surface area (SSA) and correlation length of
132 SnowMicroPen profiles. The data are color-coded for the period of April 08–15 (blue) before
the warm air intrusions and the period of April 21–27 (red) after the intrusions, and are normalized
to 1.

face changes affect TB in more detail we therefore modeled the microwave emissions as
indicated in the following section.

Floe perspective: microwave emission modeling

We further adopted the floe-wide perspective by using a statistical approach in modeling
the TB. If we assume that the SMP measurements are representative of the CO (at a
length scale of approximately 2 km) in terms of statistical distributions of the measured
quantities, we should be able to simulate the effect of the warm air intrusions on the
microwave signature. The following simulations were performed with the sea ice version of
the Microwave Emission Model for Layered Snowpacks (MEMLS) (Wiesmann and Mätzler,
1999; Tonboe et al., 2006). Details about the model setup and initialization are given in
the Appendix (Text S3 and Text S4). The simulations were not tweaked to match the
satellite observations because we do not consider an atmosphere in our simulations. For
the simulations, we assumed a second-year ice floe (Table B.2), while on satellite scale, the
ice was a mixture of second-year ice and first-year ice. In addition, the snow height might
be different on the MOSAiC floe, compared to the surrounding larger area. Consequently,
the absolute values presented in the following can differ from what the satellites observe.
The focus of the analysis is mainly on a qualitative level.

Brightness temperatures from modeling In Figure 4.7 we show the modeled polar-
ization ratio of 18.7GHz (PR(19)), the gradient ratio of 36.5GHz and 18.7GHz at vertical
polarization (GR(37/19)) and the polarization difference at 89GHz (PD(89)) before and
aer the warming events. The model output for the individual frequencies is shown in
Figure B.6. In general, the model output shows a clear increase of TB for all frequencies
(at both polarizations) except for 36.5GHz, where the situation is reversed (Appendix
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Text S4). Qualitatively, an increase is also seen in the satellite data (Figure 4.4) for all
frequencies but the horizontally polarized TB at 18.7GHz and 36.5GHz.

When examining the ratios that are used in many SIC algorithms, the polarization ratio
at 18.7GHz remains mostly unchanged in the simulations (upper panels in Figure 4.7).
GR(37/19) increases noticeably compared to the values prior to the warming events, and
PD at 89GHz shows only a slight increase. From a satellite perspective we observe an
increase in all three quantities (Figure 4.8), which differs from what we observe in the
model. Understanding the pronounced rise in satellite-measured PD, which causes the
strong drop in SIC from the ASI algorithm, is key for potentially improving such PD-
based SIC algorithms. As discussed earlier, the change in PD(89) cannot be explained by
variability in downwelling radiation due to cloud cover and thus must be due to changes
in the snow surface which, however, are not captured by the quantities derived from SMP
profiles (density, SSA and correlation length). In the following, we propose an explanation
for the observed changes in brightness temperature including a thin glaze ice layer in our
simulations.

Model experiment floe: simulation of a glaze ice layer Visual observations during
the expedition and also the TLS reflectance data (Appendix Text S2, Figures B.3 and B.4)
suggest the development of a glaze ice layer, which formed in some spots of the ice floe
during the first warming event, and almost everywhere during the second one. Glaze ice
layers at the top of the snowpack can have a strong impact on the microwave emission
of the snow (Smith, 1996; Mätzler et al., 1984; Grenfell and Putkonen, 2008; Rees et al.,
2010). Studies on the effect of such ice layers at the surface of the snowpack have shown
that, close to the Brewster angle (AMSR2 has an incident angle of 55◦), they usually have
a minor impact on vertically polarized TB, but strongly influence horizontally polarized
TB (Rees et al., 2010) due to the high dielectric contrast between the snow and the ice
layer. Thus, algorithms utilizing polarization differences or ratios (e. g., ASI and NASA-
Team) will be influenced by the presence of such layers. How strong a certain frequency
is impacted depends generally on the thickness of the ice layer (Montpetit et al., 2013).
When we include such an ice layer in the SMP-based modeling, the modeled data (bot-
tom panels in Figure 4.7) show relative changes (increase in PR(19) and PD(89)) that are
qualitatively comparable to the ones observed from satellite (Figure 4.8). GR(37/19) is
hardly affected because it is based on vertically polarized TB, while PD at 37GHz also
shows a strong increase (not shown). As described in the Appendix, Text S3 and Text S4,
several assumptions and simplifications had to be considered in the model setup. There-
fore, we do not expect to match the satellite observations and do not analyze quantitative
changes in detail. We believe that the strength of our modeling results lies in the qualita-
tive understanding they provide of what has caused the observed changes in the satellite
observations.
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Figure 4.7: Histogram of simulated polarization ratio, gradient ratio and polarization difference
for 84 SnowMicroPen profiles. The data for polarization ratio, PR(19), gradient ratio, GR(37/19),
and polarization difference, PD(89), are color-coded for the period of April 08–15 (blue) before the
warm air intrusions and the period of April 21–27 (red) after the intrusions, and are normalized
to 1. In the bottom panels, a thin ice layer (2mm) was added on top of the snow (red, hatched)
to simulate the effect of surface glazing after the second warming wave.

Figure 4.8: Statistics for polarization ratio, gradient ratio and polarization difference derived
from satellite observations. The mean (x) and standard deviation (error bars) for polarization
ratio, PR(19), gradient ratio, GR(37/19) and polarization difference, PD(89), are color-coded for
the period of April 08–15 (blue) before the warm air intrusions and the period of April 21–27 (red)
after the intrusions, matching the modeled periods in Figure 4.7. Values are derived from AMSR2
brightness temperature data co-located to Polarstern (Figure 4.4).
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Site perspective: ground-based radiometers

The site perspective is discussed in the Appendix B.

4.1.4 Discussion

The effects of the warm air intrusions on SIC retrievals are manifold, but we believe
that we have identified dominant mechanisms for the case study presented here. First,
the changed temperature gradients in the snow and snow metamorphism (increase in
correlation length) influence SIC estimates that rely on the gradient ratio GR(37/19).
While the polarization ratio is considered largely independent of physical temperature
(Cavalieri et al., 1984; Comiso et al., 1997; Tonboe et al., 2006), such independence is
not necessarily the case for the gradient ratio due to different penetration depths (and
temperature-dependent permittivities) at 18.7GHz and 36.5GHz. Comiso et al. (1997)
argued that the effect should be small unless the snow cover emits a sizable fraction of
the measured TB. We assume the latter to be the case for 36.5GHz. Thus we attribute
the increase in GR(37/19) to the changed snow temperature (gradient) which is not fully
compensated by snow metamorphism, i. e., grain coarsening, which decreases GR(37/19).
GR(37/19) can also be influenced by changes in snow height (due to increased scattering
at 36.5GHz), but observations from buoys deployed around the MOSAiC floe show that
the (average) snow depth only changed by less than 5 cm during the investigated period
(not shown).

Second, we attribute the strong increase of satellite-measured PD aer the warm air
events to a glaze ice layer on top of the snow surface that was present on a large scale.
Such glazing was observed in the field, and model results suggest that it can explain the
observed satellite microwave TB. The alteration of TB because of the glazing causes a
decrease in SIC in some SIC products that we investigated in this study, significantly for
the algorithms that mainly rely on PD(89), as ASI does, or on PR(19) as NASA Team
does. We hypothesize that the increase in PD at 36.5GHzalso caused the decrease in
SIC by the OSI SAF algorithm that uses the TB space spanned by both polarizations at
36.5GHz. The dual algorithm approach of the NSIDC CDR largely mitigates the glazing
impact in this case, as the Bootstrap algorithm gives a high value for SIC. This algorithm
is also based on both polarizations at 36.5GHzbut no decrease in SIC is observed aer
the warming events. A possible explanation here is an overestimation and subsequent
truncation of SIC to 100%. While this effect is an advantage for the case presented here,
this approach might also overestimate SIC in other situations. For example, the Northeast
Water polynya that opened at the Greenland coast aer the events (middle column, first
three rows in Figure 4.2), is hardly visible in the NSIDC CDR product.

We note a stronger response of the microwave emissions to the warming events at higher
frequencies that have smaller penetration depths into the snow than at lower frequencies.
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A thin ice crust also has a greater effect at these frequencies while the wavelengths of
the lower frequencies are large compared to the thickness of the crust. SIC retrievals
using vertical polarization or ones that are based on lower frequencies like 6.9GHz are less
affected.

Hypothesizing that such glazing events should increase in a warming Arctic, as not
only warm air intrusions but also rain on snow events can cause them (Stroeve et al.,
2022), we find that algorithms based on low frequencies/vertical polarization could be a
more robust choice for the future. In the study by Rees et al. (2010) about an ice crust on
snow on land 6.9GHz also showed the least response to the ice crust. As a difference to
our case, PD at 19GHz was affected most in their study, which is likely due to a different
thickness of the ice crust and different snow conditions.

Modeling snow and ice microwave emission remains a challenge especially at satellite-
footprint scale, even if a large amount of observational data is available. The challenge is
partly due to the local heterogeneity which makes matching radiometer observations and
ground-based observations difficult. For example, we did not only observe differences in
the snow cover between the ground-based radiometer footprints at the same site but also
within one footprint (Figure B.5). We overcame this problem by using the vast amount
of snow profiles from the SMP measurements in combination with modeling, providing a
statistical description of expected surface TB (Figure 4.7). If, however, the radiometers
measure snow conditions that are not representative of the surroundings (due to snow
accumulation), then comparisons to these TB measurements are impeded. The statistical
description might be more comparable to a satellite observation in the case of negligible
atmospheric effects. We cannot be certain, however, that the SMP data are representative
of a satellite footprint on the order of tens of kilometers. Also, certain parameters, such as
surface roughness that are important for emission modeling of satellite observations, were
not directly available. Coherence effects, that depend on frequency and layer thickness,
are another source of uncertainty. Nevertheless, the temporal evolution of the ground-
based radiometer measurements can be reproduced by a microwave emission model if the
glaze ice layer is included. Similarly, including a glaze layer allowed us to qualitatively
model relative changes as observed from space using the SMP measurements as input.
This study is one of the few existing cases where a spurious change in satellite SIC can be
fully explained by the observed surface changes from ground-based measurements (snow
and ice physics and radiometers). We are confident that adopting the three perspectives
from the different scales (satellite, floe, site) allowed for a plausible interpretation of the
observations.
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4.1.5 Conclusion

Arctic amplification, i. e., the more rapid and stronger increase of temperatures in the
Arctic compared to low latitudes (Serreze and Barry, 2011; Screen and Simmonds, 2010;
Comiso and Hall, 2014; Wendisch et al., 2017,0), can lead to an increased occurrence of
warm air intrusions above the ice cover (Graham et al., 2017). As shown in this study, they
can affect TB measured by satellite microwave radiometers and cause uncertainties and
errors in the derived SIC products. In our case, the warm air intrusions led to a large-scale
spurious strong decrease in SIC and an increase in the deviations between different SIC
products in the central Arctic. These deviations lasted for several days. Only one product
was minimally affected. It, however, has the tendency to always produce high SIC values,
which was the correct solution in this case.

Here we have offered an interpretation of the satellite signals based on observations
from the MOSAiC expedition and by microwave emission modeling, taking into account
atmospheric effects as well as surface snow metamorphism. As an explanation for the
changed microwave emissions during and aer the warming events, we propose the forma-
tion of a large-scale glaze ice layer, which persists even days aer the warm air intrusion.

Many recent SIC studies (Lu et al., 2022) focus on how the atmosphere influences
TB and thus SIC retrievals. In our case, the surface changes are highly relevant and
should be included in future evaluations of SIC retrieval algorithms. Ivanova et al. (2015)
conjectured that near 90GHz algorithms might be less sensitive to changes within the snow
compared to the lower frequencies because of the small penetration depth. However, as
shown in this study, certain surface effects like glazing can have a strong influence on these
algorithms. Identifying similar events, their scale in time and space and their frequencies
of occurrence can provide additional insights to quantify whether this effect is significant
on longer temporal and spatial scales and for climate data records. Inter-comparison
studies of SIC algorithms could also benefit from an evaluation of the performance of
the algorithm during events like warm air intrusions or rain-on-snow events, which can
lead to the formation of a glaze ice layer. In the future, due to a projected increase in
warm air intrusions, the relevance of their effects on sea ice climate records from satellites
and the distinction between actual influence of climate warming on sea ice, as described
for example by Merkouriadi et al. (2020), and retrieval uncertainties will become more
important. The effects of warm air intrusions need to be considered in the estimation of
product uncertainties, possibly by using dynamic uncertainty estimates, i. e., uncertainties
that are neither constant nor dependent only on SIC. An example is the OSI SAF iCDR
product which provides estimates that show an increased uncertainty aer the events,
even though the higher uncertainty is caused, in this case, by a higher representativeness
uncertainty. As a follow-up from this study, Rostosky and Spreen (2023) assessed the
relevance of warm air intrusions for climate data records and found that several algorithms
underestimate SIC during and aer warm air intrusions.



92 4.1 A Case Study from the MOSAiC Expedition

Multi-frequency methods exploiting the synergy of the robustness of 6.9GHz and the
high spatial resolution of 89GHz are a promising approach for future retrievals. Upcoming
satellite missions like the Copernicus Imaging Microwave Radiometer (Donlon, 2020) will
provide measurements at 6.9GHz at a much higher spatial resolution (around 15 km)
than current satellite sensors, which makes it well suited for SIC retrievals at higher
spatial resolution (5 km at 37GHz) and higher accuracy (using 6.9GHz) than what is
available today. One multi-frequency method for a multi-parameter retrieval including
SIC is introduced in the next Chapter.



Chapter 5

Multi-parameter Retrieval

This chapter is based on Rückert et al. (2023a). Janna Rückert contributed by concep-
tualizing this work, developing the methodology, curating the data and writing the first
dra of the paper. In addition the chapter contains unpublished extended comparisons
against ground truth and reference data, namely the Sections 5.6.4 and most of 5.6.5.

5.1 Introduction

We build upon works of Melsheimer et al. (2008); Scarlat et al. (2017); Scarlat (2018);
Scarlat et al. (2020) to further develop an integrated retrieval of atmospheric and surface
variables in the Arctic. Scarlat et al. (2017,0) took results from Mathew et al. (2008) to
derive an effective emissivity and emitting layer temperature of the sea ice for the sur-
face component of a forward model. We refer to this emissivity as empirical emissivity
in the following. This model is inverted by an optimal estimation method to simultane-
ously retrieve several geophysical parameters, namely total water vapor (TWV), liquid
water path (LWP), sea ice concentration (SIC), multiyear ice fraction (MYIF), surface
temperature, and wind speed (WSP) (over open ocean), from brightness temperatures
measured at six frequencies ranging from 6.9GHz to 89GHz. When studying the derived
atmospheric quantities from this method, we note a bias for TWV when compared to
radiosonde measurements during field campaigns over sea ice, which is strongly reduced
over open ocean (Crewell et al., 2021). This can also be seen in Figure 5.1 where satellite-
retrieved values of TWV are compared to radiometer observations onboard the research
vessel Polarstern during the Multidisciplinary driing Observatory for the Study of Arc-
tic Climate (MOSAiC) expedition 2019–2020. Also, this approach shows unrealistic high
values of liquid water path over first-year ice, and thus a false gradient when the ice type
changes from predominately first-year to multiyear, illustrated in Figure 5.2.

We attribute these issues in retrieved TWV to the assumed fixed surface emissivities
(that are distinguished by ice type), especially at the high-frequency channels, which carry
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Figure 5.1: Scatter plot of retrieved total
water vapor using the model with empiri-
cal emissivities vs. MOSAiC measurements
described in Section 5.2. Included in the
plot are bias, mean absolute error (mae) and
the coefficient of determination given by the
squared Pearson correlation coefficient r2.

Figure 5.2: Map of retrieved liquid water
path (daily gridded data) using the model
with empirical emissivities for January 10,
2020. The 0.5 contour line of retrieved mul-
tiyear ice fraction is shown in addition.

most of the information about the atmospheric state. At these frequencies in particular,
both scattering and emission in the snow play a role, but also the vertical temperature
profiles in both snow and ice which depend on the depth of the insulating snow. These
aspects lead to a high variability in surface emissions that is not well represented by a
mere distinction in surface emissions based on sea ice type. In order to better represent
these highly-variable surface emissions in the forward model, we exchange the empirical
parameterization with the Microwave Emission Model for Layered Snowpacks (MEMLS)
extended to sea ice, called MEMLS_ice model (Wiesmann and Mätzler, 1999; Mätzler and
Wiesmann, 1999; Tonboe et al., 2006; Tonboe, 2010) and include snow depth and snow-
ice interface temperature as new retrieval parameters. The MEMLS_ice emission model
uses a stack of planar homogeneous layers characterized by the physical snow and sea
ice quantities relevant for scattering and absorption, like the layer thickness, correlation
length, a measure of scatter size and distribution, density, salinity, and temperature.

First, an idealized layer input to MEMLS_ice is established based on literature and
campaign data for the layer parameters. The sensitivity to the model layer choices is
analyzed and used as uncertainty estimate in the inversion method. To showcase the
impact of the physical ice emission model we make use of the extensive datasets collected
during the year-long MOSAiC expedition. Here, we study the brightness temperatures
simulated by the new forward model using ground truth input from MOSAiC and compare
them to satellite observations. Then, the model is inverted and the retrieval output is
analyzed. Finally, we apply the retrieval on Arctic-wide available satellite data to generate
daily maps of all retrieved quantities.
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Table 5.1: Satellite sensors used in the analysis

Name platform available time span product level spatial resolution
AMSR-E AQUA May 2, 2002 - December 4, 2011 2A 75 km×43 km
AMSR2 GCOM-W1 May 17, 2012 - today 1R 62 km×35 km

5.2 Data

5.2.1 Satellite Brightness Temperatures

We use brightness temperatures measured by the radiometers Advanced Microwave Scan-
ning Radiometer - Earth Observing System (AMSR-E), onboard of the spacecra AQUA
and functioning from May 2, 2002 until December 4, 2011 and Advanced Microwave
Scanning Radiometer 2 (AMSR2), the microwave scanning radiometer on the GCOM-
W1 spacecra from the Japan Aerospace Exploration Agency, launched May 18, 2012,
see Table 5.1. Both sensors are conically-scanning multifrequency total-power microwave
radiometer and they both detect horizontally and vertically-polarized brightness temper-
atures at 6.925, 10.65, 18.7, 23.8, 36.5, and 89.0GHz at a constant angle of 55◦. AMSR2
additionally measures at 7.3GHz for radio-frequency interference detection.

AMSR-E has an instantaneous field of view (IFOV) ranging from 75 km×43 km at
6.9GHz to 6 km×4 km at 89GHz and a swath width of 1445 km. Its near-polar, sun-
synchronous sub-recurrent circular orbit is at an altitude of about 705 km.

AMSR2 has an IFOV ranging from 62 km×35 km at 6.9GHz to 5 km×3 km at 89GHz
and a swath width of 1450 km. Its near-polar, sun-synchronous sub-recurrent circular orbit
is at an altitude of about 700 km.

In case of AMSR-E, we use the Level 2A product with geolocated brightness tem-
peratures at different frequencies that are resampled to a common resolution. In case of
AMSR2, we use the swath data, both ascending and descending, of the Level 1R product
matched to the resolution of 6.9GHz (Maeda et al., 2016), corresponding to an IFOV of
62 km×35 km. This product is resampled using the antenna gain patterns for each channel
so that the brightness temperatures for all frequencies have the same field of view. We use
the land mask contained in the product to mask out land observations. In this analysis, we
also use data of overpasses over the icebreaker Polarstern (Knust, 2017) during MOSAiC.
For every overpass, the satellite measurement closest to the vessel’s hourly position is taken
and used in Section 5.4.1. There are up to seven overpasses of Polarstern per day. Addi-
tionally, we use daily gridded Level 1B AMSR2 data projected onto a polar stereographic
grid with a nominal resolution of 25 km to derive a climatology in Section 5.5.
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5.2.2 Reanalysis Data

From the European Centre for Medium-Range Weather Forecasts (ECMWF) fih genera-
tion reanalysis ERA5 (Hersbach et al., 2020) we obtain climatological mean values further
described in Section 5.5.

5.2.3 ASCAT/AMSR2: Multiyear Ice Fraction

For a climatology of multiyear ice fraction, i. e., the fraction of sea ice that survived one
melting season, we use the operationally available product from https://seaice.uni-bremen
.de/ based on ASCAT scatterometer and microwave AMSR2 radiometer data (Ye et al.,
2016b,0).

5.2.4 Merged Warren-AMSR2 Climatology: Snow Depth

For a climatology of snow depth, we use a merged product described in Hendricks and
Paul (2022) of monthly snow depth data based on merging the Warren snow climatology
(Warren et al., 1999) and daily snow depth over first-year sea ice from AMSR2 data
(Rostosky et al., 2018).

5.2.5 Round Robin Data Package

The Round Robin Data Package (RRDP; Pedersen et al. (2021)) is a collection of co-
located sea ice measurements from buoys, flight campaigns, melt pond satellite retrievals,
100% and 0% sea ice concentration reference areas, and satellite measurements of mi-
crowave brightness temperatures and backscatter produced and maintained by ESA’s Cli-
mate Change Initiative project. We use the RRDP Version 3.

5.2.6 Utqiaġvik ARM Site: Liquid Water Path

A long-term LWP ground-based dataset is available from the U.S. Department of Energy’s
Atmospheric Radiation Measurement (ARM) program. The ARM site near Utqiaġvik,
Alaska, is located at 8m altitude at the coast, 71.323◦N and−156.609◦E. From the ground-
based TB measurements of two-channel microwave radiometers, LWP is retrieved using a
complementary combination of two retrieval techniques described in Turner et al. (2007).
Data is available from 2002, covering the entire AMSR time series, at a temporal resolution
of about one second (Zhang, 2023).

5.2.7 MOSAiC Datasets

The datasets used in this Chapter as ground truth are described in the following. Note
that they have different spatial extents, but we assume that the data is representative of

https://seaice.uni-bremen.de/
https://seaice.uni-bremen.de/
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the satellite footprint. Therefore, we also use estimations of uncertainties of the ground
truth datasets in Section 5.4.1.

In Chapter 4 a case study from the MOSAiC expedition has been presented already.
Here, we again make use of the extensive measurements during that campaign. Figure 5.3
shows the dri track of MOSAiC from September 2019 – September 2020, which covered
different Arctic regions.

Figure 5.3: MOSAiC expedition track from September 2019 – September 2020. The darker red
line shows the time period October – April. The maps shows the daily sea ice concentration (SIC)
from the operationally available ARTIST Sea Ice (ASI) SIC product (described in Section 4.1.3).

A compilation of the datasets where the different measured geophysical parameters are
co-located to satellite overpasses has been made publicly available under Rückert (2023).
The different variables available within that compilation are described in the following
and in Section 5.4.1.

HATPRO Radiometer: Total Water Vapor and Liquid Water Path We use
TWV and LWP retrieved from the ground-based low frequency Humidity and Temperature
Profiler (HATPRO) microwave radiometer operated onboard the research vessel Polarstern
during MOSAiC. More information on this data can be found in Walbröl et al. (2022).
Here, we are using only data that was not flagged as bad data in the quality check.

SIMBA Buoys: Snow depth and snow-ice interface temperature For snow depth
and snow-ice interface temperature measurements during the MOSAiC campaign, we use
data from 19 Snow and Ice Mass Balance Apparatus (SIMBA) buoys, which are ther-
mistor string type ice mass balance buoys that were deployed in proximity to Polarstern
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(distributed network and the Central Observatory (CO)) (Lei et al., 2021). Note that not
all buoys were operational at the same time but that we have data from at least ten buoys
at different locations within the CO at the same time during our period of interest.

TerraSAR-X ScanSAR Images: Sea Ice Concentration and Multiyear Ice Frac-
tion We use 49 classified scenes for November 2019 – March 2020 from Guo et al. (2023)
based on X-band TerraSAR-X scanning synthetic aperture radar images in a 70 km ×70 km
square around the CO. We resampled the data to daily values by linear interpolation and
fill missing values with the mean of the whole time series. The SIC is estimated using the
fraction of classified lead ice (representing openings, i. e., an upper bound for the open
water fraction), while the multiyear ice fraction is estimated to be the sum of the fractions
of the deformed and heavily deformed ice classes.

Polarstern: Wind Speed and Sea Surface Temperature Measurements of wind
speed and sea surface temperature are provided by the vessel’s synoptical reports
(Schmithüsen et al., 2021a,0,0).

Infrared Thermometer: Surface Temperature For the snow-air interface tempera-
ture, we use skin temperature calculated based on infrared thermometer data measured at
the Met City location within the CO and from three additional stations in the distributed
network (with average distances to the vessel between 10 and 23 km) (Herrmannsdörfer
et al., 2023; Cox et al., 2023a,0,0,0).

5.3 Methodology: Forward Model

Let us recall from Chapter 2.1 what the upwelling, p-polarized (either horizontal or verti-
cal) brightness temperatures, T p

B,sat, which a satellite observes at an incidence angle θ for
a given frequency f , are composed of:

T p
B,sat(θ, f) = TB,up(θ, f) + Υ(θ, f)(T p

B,Ω(θ, f) + T p
B,surf(θ, f)), (5.1)

where TB,up is the upwelling emission of the atmosphere, Υ is the total transmittance
(see Equation 2.30), T p

B,Ω is the downwelling, p-polarized radiation scattered upward by
the surface and T p

B,surf is the radiation emitted by the surface. These expressions allow
us to separate the terms into an atmospheric part (TB,up and Υ), a surface contribution
T p
B,surf(θ, f) and a term containing both as T p

B,Ω contains atmospheric downwelling radia-
tion as well as the surface reflectivity.

We consider the surface contribution as a linear combination of sea ice and open ocean
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(OW) weighted by SIC as also done in Scarlat et al. (2017,0):

T p
B,Ω(θ, f) + T p

B,surf(θ, f) = SIC · TB,ice + (1− SIC) · TB,OW, (5.2)

with TB,ice being the brightness temperatures of the sea ice surface and TB,OW being the
brightness temperatures of the ocean surface. Both terms include the reflected downwelling
radiation of the atmosphere by the respective surfaces. Along the same lines we may now
also split the forward model in terms describing the atmosphere, the ice surface and the
ocean surface. We model the atmosphere and ocean following Wentz and Meissner (2000)
with recent improvements (Meissner and Wentz, 2004,0). The surface temperature is given
by the weighted mixture of sea surface temperature and snow-air interface temperature.
We now focus on modeling TB,ice in the following Section.

Surface Model

Our aim is to construct a surface model setup that (i) covers the most important quan-
tities influencing the brightness temperatures in order to simulate plausible brightness
temperatures, polarization differences and their variabilities and (ii) reflects a realistic
snowpack including its temperature gradients by using model parameters from literature.
Our chosen setup is characterized by four input variables: the snow-air interface tempera-
ture Tsa, the snow-ice interface temperature Tsi, the ice type (either first-year ice (FYI) or
multiyear ice (MYI)) and the snow depth (SND). We use the MEMLS_ice model to sim-
ulate brightness temperatures at the top of multiple stacked planar layers of ice and snow.
MEMLS_ice calculates the radiative transfer in a multi-layer media, including internal
reflections (Fresnel equations) and scattering. Absorption and scattering coefficients are
hereby derived from six-flux theory, taking all space directions into account. The model
is described in Wiesmann and Mätzler (1999); Mätzler and Wiesmann (1999) and was
extended to include sea ice by Tonboe et al. (2006); Tonboe (2010).

The model input consists of downwelling brightness temperatures that are obtained
from the atmospheric model (see above), and parameters for each layer, namely thickness,
density, correlation length, liquid water content, salinity and temperature. The incidence
angle is set to the satellite incidence angle of 55◦. Snow and ice are highly variable both
temporally, e. g., due to snow metamorphism or ice growth, and spatially, for example
because of different ice types or horizontal inhomogeneity of the snow surface. In our
retrieval method we do not have enough degrees of freedom in our satellite measurements
to retrieve all snow and ice parameters that are needed as input for the MEMLS_ice
model so that it can produce a realistic output. Therefore we constrain some of them.
Using relations between these parameters (i.e. their co-variances) to reduce their effective
number is hindered by the high variability of the atmosphere that partly determines the
ice and snow structure during initial formation (Fuhrhop et al., 1998). It is therefore clear
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that our layer setup represents a simplified, idealized ice and snowpack.
We model snow and ice using four and five layers, respectively, in order to capture

temperature and salinity profiles as well as layering observed in snow on Arctic sea ice
(King et al., 2020; Merkouriadi et al., 2017). This is especially important as the radiation
from the surface is the result of emission, scattering and reflection within the snow and ice
pack, so that each layer contributes to the observed brightness temperatures (Hallikainen
and Winebrenner, 1992). For different frequencies the relative contributions vary and can
be related to ‘penetration depths’: low frequencies have higher penetration depths than
high frequencies influencing brightness temperature (TB) differences among them.

All fixed model parameters are shown in Table 5.2 and are chosen from literature or
observations as discussed below. To estimate the influence of these model parameters
on the model output (the top-of-atmosphere brightness temperatures) and to quantify the
uncertainty that we are introducing by not being able to account for the model parameters’
natural variability, we perform model simulations which are described in Section 5.4.2.
There we determine the TB sensitivity to the model parameters, which can be later used
in the optimal estimation scheme.

Temperatures The snow-air interface temperature and the snow-ice interface temper-
ature are free parameters and are retrieved in the final satellite product. They are treated
as independent parameters, i. e., we are not assuming thermal equilibrium within the snow
and ice. This allows us to model changing satellite brightness temperatures due to fast
temperature changes in the upper snow layers, which is of particular importance for the
higher frequency channel TBs. The temperature profile in the snow is assumed to be
linear. The same is true for the ice temperature profile, where we assume a temperature
of 271.35K for the ocean, the freezing point of seawater with a salinity around 35 ppt.

Snow Parameters While snow depth is a free parameter, the other parameters related
to the microphysical structure of snow, namely exponential correlation length and density,
are chosen in a way to resemble a layer of wind slab snow on top, a faceted layer in
the middle and a layer of depth hoar snow at the snow-ice interface, as it was observed
on Arctic sea ice (King et al., 2020; Merkouriadi et al., 2017). Note that in reality the
distributions and relative thicknesses might vary depending on the ice type and so does the
density. For example, higher bulk density of snow over second-year ice compared to FYI
has been observed (Merkouriadi et al., 2017). For simplicity and to avoid over-emphasizing
the ice type parameter, such a distinction is not made and the snowpack model parameters
are independent of the ice type.

For snow densities, we take average values from field measurements in April (King
et al., 2020). We note the high variability in both the density distributions and fractions
to the overall snow depth (e. g., King et al. (2020) find that the depth hoar layer for
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MYI makes up 50% of the snowpack but only 20% over FYI). We simplify by setting the
fractions of the three layer to one third, and we take average values of FYI and MYI. In our
model, wind slab and faceted snow has the highest density (327 kgm−3 and 314 kgm−3)
and depth hoar the lowest (250 kgm−3), yielding a bulk density of 297 kgm−3 in the range
of literature values (Warren et al., 1999). The snow permittivity of each layer in the model,
as a function of snow density, is calculated as a dielectric mixture of air and ice described
in Wiesmann and Mätzler (1999) following Mätzler (1998).

Over first-year ice, brine-wetted snow has been observed (Barber et al., 1995; Crocker,
1992; Geldsetzer et al., 2009) and its effect on satellite altimetry was discussed in Nandan
et al. (2017). The highest salinities are found in the bottom 4 cm to 8 cm of the snow
cover and range from 1 to over 20ppt (Barber et al., 1995; Geldsetzer et al., 2009). As
our implementation of the MEMLS_ice model does not include saline snow permittiv-
ity models, we implemented a dielectric mixture model (Maxwell Garnett (Garnett and
Larmor, 1906,9)) assuming ellipsoid brine inclusions in the snow. We set the axes frac-
tion of the inclusions to 0.072, corresponding to oblate spheroids (Denoth, 1980; Barber
et al., 1995). We only adapted the dielectric function, but not the scattering coefficients.
However, we also note that our model differs from the one derived in Geldsetzer et al.
(2009). They derive a semi-empirical model based on measurements at 50MHz. For the
same input, their model provides higher values for the real and imaginary part of the
permittivity ϵ and a resonant behavior of the imaginary part around 9GHz, which our
implementation does not show. However, our approach is comparable to the recent im-
plementation of saline snow in the Snow Microwave Radiative Transfer (SMRT) model
(option ‘saline_snow_permittivity_scharien’ in the snow module, Picard et al. (2018)).

In summary, our implementation of the dielectrics of brine-wetted snow is an interim
solution, as more research on dielectric properties of brine-wetted snow is needed to achieve
reliable parameterizations.

We might think of this layer in our model setup as an intermediate layer between ice
and snow to avoid high gradients in the refractive index, as nature is likely more continuous
than our model. Note that this conception is also limited as such an intermediate layer has
wavelength-dependent effects and might be coherent for large wavelengths. We choose an
upper limit of 6 cm for the saline snow layer over first-year ice with a salinity of 11.4ppt.
Over multiyear ice, we assume no brine in the snow.

The scattering in the snow strongly depends on the microstructure of the snow and
MEMLS_ice uses the exponential correlation length as corresponding parameter. Within
MEMLS_ice, different scattering mechanisms are parameterized. We model the scatterers
of the upper two layers as spheres and for the bottom layer, which we want to resemble
depth hoar, we choose shell scattering, described in Wiesmann and Mätzler (1999).

The correlation lengths are estimated based on SnowMicroPen MOSAiC measurements
from October-April (Macfarlane et al., 2021). Snow surface and snow bottom at the ice
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interface were automatically detected in the SnowMicroPen measurements and then the
snowpack was simply divided in three layers of equal thickness. Mean correlation lengths
for each layer were computed using the parameterization given in Proksch et al. (2015)
and were then averaged over the whole time series. The values fit to the ones given by
Mätzler (2002) for Alpine snow for the faceted and depth hoar snow type.

Ice Parameters Solid ice, liquid brine, and air bubbles make up the sea ice. As that
composition changes over time, for example due to desalination as result of expulsion of
brine, first-year and multiyear ice differ in their microwave emission signature. Thus, ice
type is the free parameter determining the microphysical parameters that are assumed for
the model ice layers. We are using two ice classes: first-year ice and multiyear ice.

Sea ice thickness defined as the distance from ice surface to ice bottom, is strongly
variable and ranges from a few centimeters (new ice/nilas) over 1meter to 3meter for
level first- and multiyear ice, to tens of meters for ridged ice. Here, we assume a 1m ice
layer for first-year ice and 2.5m for multiyear ice. Ridges can be up to tens of meters
and individual adjacent floes can strongly vary in their mean thicknesses (Hallikainen and
Winebrenner, 1992) but we argue that on a satellite footprint it is eligible to assume some
mean thickness. The main influence of ice thickness on the modeled TB is given by the
thickness-dependent temperature gradients. Due to the inclusion of the snow-ice interface
temperature Tsi as free parameter, this influence is partly reduced. The natural seasonal
dependence of sea ice thickness is currently not implemented and the used thicknesses can
be understood as some plausible mean winter value for first-year ice and multiyear ice
comparable to Kwok et al. (2020).

For the first-year ice density, we follow the literature value of around 916 kgm−3

(Alexandrov et al., 2010). Multiyear ice that survived one melting season usually con-
tains more air inclusions and has a lower density above sea level. The first 25 cm of the
ice in our setup can be considered freeboard with lower densities (here the upper ice layer
density is constant at 895 kgm−3), while the other layers are below sea level with values
comparable to first-year ice (Jutila et al., 2022).

Saline ice mainly impacts the dielectric loss term. Nakawo and Sinha (1981) observed
a quasi-stable value within a few weeks aer ice formation with top layer ice salinities of
around 11.4ppt, and we distribute the salinity in the ice with a C-shaped salinity profile
model for first-year ice (Weeks and Lee, 1962). Salinity in multiyear sea ice is much lower
than in first-year ice especially near the surface because of the summer melt processes
(Cox and Weeks, 1974). We choose a linear model to distribute salinity in multiyear ice
with 1ppt in the top layer and 4ppt in the bottom ice layer. The permittivity of the ice
layers are given by the dielectric mixture of ice, air, and brine. The permittivity of ice
is calculated following Mätzler and Wegmuller (1987) with the imaginary part given by
Hufford (1991). The permittivity of brine is calculated following Stogryn and Desargant
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(1985). The brine volume is calculated as expressed in Stogryn (1987). For first-year ice,
the permittivity of ice and brine is calculated with a dielectric mixture model (Maxwell
Garnett) assuming prolate spheroid inclusions with an axis fraction (i. e., the ratio of the
semi-major to the semi-minor axis) of five to resemble brine pockets (Light et al. (2003)
also treat brine pockets as prolate ellipsoids). For multiyear ice the effective permittivity
is calculated based on effective-medium theory of Polder and van Santeen (1946) assuming
spherical inclusions of air in ice.

The scattering mechanisms in ice are estimated by the improved Born approximation
and depend on the ice type: for first-year ice small brine pockets are the dominant scat-
terers, while for multiyear ice air bubbles scatter the radiation following Tonboe (2010).
Note that the parameterization for ice assumes scattering at spheres and calculates an
effective permittivity (for FYI done assuming randomly-oriented needles), even though
the dielectric mixture model assumes randomly-oriented ellipsoids for FYI. The assumed
correlation lengths are taken from Rostosky et al. (2020) based on ice core data, where
the FYI values are in agreement with values reported by Hallikainen and Winebrenner
(1992).

Additional Model Parameters As our model is designed for the winter season, wet-
ness (caused by meltwater in the ice or snowpack) is set to zero for all layers. Upper
ocean salinity is of importance only for frequencies lower than the ones used in this study
(Kilic et al., 2021). We use a value of 34ppt and calculate the ocean permittivity and
conductivity following Meissner and Wentz (2004).

We use the model without taking into account coherence effects. This is necessary to
avoid oscillations due to coherent reflections at the parallel layers as soon as one layer gets
smaller than 2 cm.

Additionally, the roughness of layer interfaces is not considered in our model. In
general, we expect that the high frequencies (in this case at 89GHz) are most challenging
to model in the MEMLS_ice model. This is due to the small wavelength which can
be of the order of, e. g., the brine inclusions or the interface roughness, so that other
scattering mechanisms (e. g., geometrical optics) might come into play which are not yet
parameterized.
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Table 5.2: Model setup as input to MEMLS_ice: Values for the layer parameters layer
thickness, d, correlation length, ζ, density, ρ, and salinity

d (cm) ζ (mm) ρ (kgm−3) salinity (ppt)
FYI MYI FYI MYI FYI MYI FYI MYI

Snow SND/3 0.13 314 0
SND/3 0.14 327 0
SND/6 0.22 250 0
SND/6 0.22 250 11.4 0

Sea ice 0.04 0.04 0.15 0.28 916 895 11.4 0.5
0.21 0.21 0.15 0.28 916 895 9 0.5
0.25 1.0 0.15 0.28 916 915 5 1.5
0.4 1.0 0.15 0.28 916 915 5 3
0.1 0.25 0.15 0.28 916 915 30 4
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5.4 Forward Model Evaluation

5.4.1 Brightness Temperature Observations

In order to evaluate the forward model, we use MOSAiC observations from October to
April as ground truth input to the model and compare the simulated brightness tem-
peratures with satellite observations. Additionally, we simulate the uncertainty of the
ground truth by running the model for each TB measurement 100 times, where the ground
truth values are taken from respective normal distributions with standard deviations (rep-
resenting spatial and/or temporal variability) given in Table 5.3. Figure 5.4 shows the
time series of measured and modeled brightness temperatures at the lowest and highest
frequency (6.9GHz and 89GHz), as well as their probability density distributions and
differences. For the other frequencies the reader is referred to Figure 5.5 in the Ap-
pendix. The standard deviations of the 100 simulations are shown as shaded areas around
the mean modeled TB in Figure 5.4. The temporal evolution is well represented in the
modeled data. We note less agreement in the horizontal polarization, where ∆TB shows
higher values and also the squared Pearson coefficient as a measure for the correlation
(r2) is lower (for example 0.61 compared to 0.92 for 6.9GHz). As the satellite measures
close to the Brewster angle, the surface reflection (mainly dependent on the difference of
the refractive indices of surface and air) is stronger for horizontally-polarized TBs and
this polarization is therefore more sensitive to changes in snow and ice properties which
are not fully represented in our model. Thus, we expected less agreement for horizontal
polarization.

In both polarizations, the differences between measurements and model are larger for
the higher frequencies. The excellent agreement for vertically-polarized TB at 6.9GHz is
due to its high correlation with Tsi. We also note changes over the season in the differ-
ences of modeled and measured TBs, especially at 89GHz where ∆TB is, e. g., lower in
March/April compared to November/December. One possible explanation is snow meta-
morphism: 89GHz is very sensitive to the upper snow layer microstructure, suggesting
that our model setup is more representative of a snowpack in the late winter season than
at the beginning of winter.

Similar correlations between modeled and measured TB are observed when using the
Round Robin Data Package dataset (Pedersen et al., 2021) as ground truth. Most param-
eters included in RRDP are used as given therein (SIC from the percentage of open water,
SND, TWV, LWP, WSP). We set sea surface temperature (SST) to 273.15K and make
an assumption about MYIF, which is set to one if the sea ice thickness variable in RRDP
is larger 1.5m, else it is set to zero. We calculate Tsa from 2m air temperature (T2m) in
RRDP, and Tsi is calculated from TBs at 6.9GHz with the corresponding fit over MYIF
(see Section 5.5).
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The results of the comparison between modeled TBs and satellite TBs are summarized
in the Appendix, Table C.1. Similar to the comparison using MOSAiC in situ data, we find
high correlations between modeled and satellite TBs, which are decreasing with increasing
frequency. Mean absolute error and bias are also again smaller for vertical polarization
than for horizontal.

Due to the overall good agreement between simulations and observations, and because
the observed biases show a seasonal dependence, we do not make a constant bias correction
of the forward model. Some of the deviations from measurements, however, cannot be
explained by the input uncertainties and are related to model (parameter) uncertainties.

Figure 5.4: Modeled and measured brightness temperatures at 6.9 GHz and 89 GHz both
vertically-polarized (left column) and horizontally-polarized (right column). First row shows
satellite-based measurements of brightness temperature co-located to Polarstern (dashed lines)
and modeled data using ground truth measurements as input (solid lines). The modeled data is
given with a 1-σ uncertainty estimate derived from the ground truth uncertainties, see Table 5.3.
In the center row, the distributions of modeled and measured brightness temperatures are plotted
as probability density plots. Squared correlation coefficient (r2) and mean absolute error (mae)
are shown as annotations in the figure. The last row displays the difference between measured and
modeled data, including uncertainty ribbon.
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Figure 5.5: Time series of brightness temperatures both vertically-polarized (left column) and
horizontally-polarized (right column): satellite-based measurements co-located to Polarstern (first
row), modeled data using ground truth measurements as input (second) and the difference between
measured and modeled data for the lower three frequencies (third row) and the higher three
frequencies (fourth row). The modeled data is given with a 1-σ uncertainty estimate derived
from the ground truth uncertainties, see Table 5.3.
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5.4.2 Uncertainty Analysis: Effective Measurement Uncertainty Se

We now evaluate the uncertainties of the forward model further. The outcome will then
serve as input to the inversion method (described in Chapter 2.2) for the satellite retrieval.
One important quantity of the inversion method is the covariance matrix Se which contains
measurement but also model uncertainties. Following Maahn et al. (2020), we denote
the forward model uncertainty as Sb and use an effective measurement uncertainty Se =

Sy+Sb, where Sy accounts for the radiometric noise (NE∆T). We assume Sy to be 1 K for
each frequency and polarization for Sy and no correlations. In order to get an estimation
of the variability lost by fixing the model parameters like snow density and for evaluating
the non-linearity of the model, we perform a sensitivity analysis to obtain Se. The effect
on TB of certain parameters depends also on the retrieval parameters. Thus we scan the
retrieval parameter space. For example, changes in ice salinity result in larger changes
of computed TB if the ice temperatures are high. Therefore, we vary Tsa from 238 K
to 270 K in steps of 1 K and snow depth from 0 cm to 40 cm in steps of 1 cm. The
snow-ice interface temperature is chosen from a normal distribution with 1 K standard
deviation around the value one obtains assuming thermal equilibrium (using ice and snow
conductivities of 2.1WK−1 m−1 and 0.31WK−1 m−1, respectively). The analysis is done
separately for first-year and multiyear ice.

We run 1000 simulations for each tuple of temperature, snow depth, and ice type, in
which almost all layer parameters (listed in Table 5.2) are randomly chosen out of normal
distributions that are truncated to constrain the parameter space to realistic values (Monte
Carlo method). The standard deviation σ as well as upper and lower bound of these dis-
tributions can be found in Table 5.4. The mean values are the ones given in Table 5.2. We
here focus on the surface emission model. Therefore, for estimating surface model uncer-
tainties, downwelling brightness temperatures reflected at the surface are fixed to typical
Arctic values for the six frequencies from 6.9 to 89 GHz (TD = (4, 5, 12, 22.5, 30, 70)K). In
the actual forward model and retrieval procedure downwelling brightness temperatures are
calculated by the atmospheric model. The standard deviation of the resulting brightness
temperatures is taken as a measure for the uncertainty that is introduced by fixing the
parameters as described above.

With this method we obtain a diagonal covariance matrix Sb. Note that, in principle,
the uncertainties may be correlated, resulting in nonzero off-diagonal terms in Se which
would effect the weighting of the different TB channels in the cost function (Equation 2.37).
Estimating these correlations is not straightforward, amongst others, a correlation may be
conditioned on assumed values for other parameters, as discussed in, e. g., Cimini et al.
(2018). For the time being, we therefore set the off-diagonal terms to zero, possibly
introducing a bias.

The standard deviation of the TBs of all simulations (for all tuples of ice type, tem-
perature, and snow depth) are plotted as violin plots in Figure 5.6 separated by ice type,
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Table 5.4: Table with parameter ranges used in the simulations to estimate model uncer-
tainty.Parameters are correlation length, ζ, density, ρ, salinity, and ice thickness dice. A
single value means that this is used for all layers, while an array indicates different values
for each layer starting from the upper layer. The snow salinity is not varied and for ice
salinity only the upper two ice layers are varied

Parameter σ lower bound upper bound
Snow ζ (mm) 0.06 0.05 0.35

ρ (kgm−3) [54,47,23] 180 420
Ice salinity (only FYI) (ppt) 4.2 [0, 0] [18, top layer value]

dice (FYI/MYI) (m) 0.25/0.8 0.1/1.5 2.5/10
ζ (FYI/MYI) (mm) 0.05 0.01 0.35

ρ (FYI/MYI)(kgm−3) 35.7/23 800/800 975/975

Figure 5.6: Sensitivity analysis for effective measurement covariance estimate. Shown are simu-
lated standard deviations of 1000 simulations for each temperature and snow depth combination,
separated by frequency, polarization and ice type. The violin plots show the 5th-95th percentile.

Table 5.5: Table with median of standard deviations (median σ) of simulated brightness
temperatures taken together for the whole temperature and snow depth range and both
ice types

Frequency (GHz) Median σ (K) (H/V)
6.93 3.949/1.182
10.65 3.782/1.389
18.7 3.77/2.177
23.8 3.766/2.865
36.5 4.468/4.81
89.0 5.869/7.034
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frequency and polarization. For each frequency, the median standard deviation (over both
ice types) is listed in Table 5.5 and is used in the effective measurement covariance matrix
Se in the inversion method to include the model uncertainties as described above. We can
see that for the low frequencies the uncertainty of modeled horizontally-polarized TB is
higher than for vertically-polarized TB while it is the other way around for 36.5 GHz and
89 GHz. For the low frequencies, this was expected due to the Brewster effect.

In general, the uncertainty at vertically-polarized TB increases with frequency and is
as high as 7 K for 89 GHz. Interestingly, the range of standard deviations is higher for
vertically-polarized TBs. Depending on the frequency and polarization, different parame-
ters are the dominant sources of uncertainty. For example, ice thickness and corresponding
uncertainties of Tsi, especially for large snow depth and high Tsa are important for vertical
polarization and low frequencies, while snow density plays a major role for low-frequency
horizontally-polarized TB. High frequencies like 89 GHz are especially sensitive to the
snow correlation length. The interplay of parameter uncertainties is captured by our ap-
proach, for example, changes in salinity have a larger impact at high temperatures. In
order to obtain reasonable results, a sensible choice of simulation ranges is key.

We observe about the same order of magnitude and frequency-dependence of the un-
certainties compared to the mean differences of brightness temperatures modeled from
ground truth vs. satellite measurements (described in the previous Section 5.4.1). Thus,
the deviations between model and measurements can partly be attributed to the parame-
ters of the model setup, i. e., better agreement could be obtained by adapting the model
parameters accordingly and in a plausible range. We note however that the modeled
uncertainties in this section for horizontally-polarized TB at 89 GHz are lower than the
observed deviations. It is likely that additional model constraints play a role, which were
not simulated here (e. g., scattering mechanisms, see next paragraph).

Additional Sources of Uncertainty The simulations serve both the understanding
and identification of cases with higher uncertainty as well as giving a quantitative mea-
sure to adapt the effective error covariance matrix by including Sb so that it reflects the
uncertainties of the model more accurately. However, it is important to keep in mind that
not all restrictions of the model were simulated in this approach. There are additional
sources of uncertainty. The most notable are:

• The number of layers (and thus the possibilities to resolve gradients of, e. g., tem-
perature).

• The scattering mechanism, i. e., the parameterization of the scattering coefficient, as
well as scattering anisotropy.

• The mixture model to calculate the effective permittivity of a composite material.
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• Snow wetness which is important if temperatures are high (we consider freezing
conditions only).

• Roughness of interfaces which we expect to have the largest effect on the highest
frequency at 89 GHz.

• Uncertainties of the atmospheric model, which was not specifically developed for the
polar atmosphere. Thus there are unknown model uncertainties. One known uncer-
tainty is the cloud temperature which is now estimated to be half-way between the
surface and freezing point temperature. From a simulation run of the MOSAiC time
series with cloud temperatures one time fixed at −30 ◦C and one time at 10 ◦C we
conclude that the low frequencies have very low sensitivity to the cloud temperature.
Here, we observe the largest effect for 89 GHz of the order of below 1 K.

5.5 Retrieval: A Priori Information

For the retrieval, the forward model that has now been introduced and evaluated is inverted
using an optimal estimation method. The method is described in detail in Chapter 2.2
and the a priori information that is needed is introduced in the following.

A Priori State xa

As a priori state, we use climatological monthly data based on different datasets, all on a
regular lat-lon grid of 0.25 degrees. In the retrieval, the values from the closest grid cell
are chosen and linear interpolations between subsequent months are performed. For LWP,
WSP, SST, SIC and TWV we use monthly mean values based on ERA5 reanalysis data
from 1990-2019. From that data, we also obtain T2m that is then converted to Tsa by a
seasonally varying regression given in Nielsen-Englyst et al. (2021). Snow depth (SND)
a priori estimates are based on the merged Warren-AMSR2 climatology (Section 5.2.4).
For multiyear ice fraction we use the multiyear ice satellite product based on microwave
radiometer and scatterometer data (Section 5.2.3) and compute monthly averages for the
years 2013-2022. The a priori snow-ice interface temperature of first-year ice is based
on monthly data of vertically-polarized TB at 6.9GHz (TB6V) from 2013-2022 of daily
AMSR2 data, which is modified for multiyear ice according to an empirical fit (Equation 16
in Tonboe et al. (2011)). Using the a priori multiyear ice fraction, a weighted average of
Tsi is calculated. Due to different time spans (30 years of ERA5, but 10 years of TB6V),
inconsistencies might arise. Thus, wherever Tsi is below Tsa, we assume an isothermal
snowpack with Tsi = Tsa as a priori estimate.
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A Priori Covariance Sa

For the time being, we assume no correlations yielding a diagonal covariance matrix. The
values that we use are given in Table 5.6 in the last column. The values are based on
Scarlat et al. (2017,0) and are chosen large enough for the new retrieval parameters to
allow deviations from the a priori state.

Temporal Variability The current implementation assumes no temporal, for ex-
ample seasonal, dependence of the variances and covariances. Future improvements of the
method might be achieved by taking the seasonality of the variances into account. For
example, water vapor has a low natural variability in winter that increases towards spring.

Correlations Currently, the method is biased towards no correlations between the
geophysical parameters as the off-diagonal entries of Sa are set to zero. One major chal-
lenge when introducing correlations is their dependence on the actual state. For example,
we expect higher correlations of temperature and water vapor over open ocean than over
sea ice, where the amount of water that can evaporate is limited. Implementing this in the
current optimization is not justified as we would introduce covariance matrices where the
entries would differ for every iteration. This is of particular importance for the marginal
ice zone.

Start guess

The start guess x0 is given by the a priori state vector, except for SIC, MYIF and Tsi.
The two ice parameters are computed using the NASA TEAM (Cavalieri et al., 1984,9)
algorithm with tie points originally developed for SSMI sensors (Comiso et al., 1997) using
the brightness temperatures at 36.5GHz and 18.7GHz. For Tsi we apply the fit given in
Equation 16 in Tonboe et al. (2011) using the vertically-polarized brightness temperature
at 6.9GHz as input.
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5.6 Retrieval Evaluation

In this section we evaluate the retrieval output with the help of observational data. We
start with an extensive comparison is performed using the MOSAiC datasets. Then,
we focus on three of the four protagonists, SIC, SND, and LWP, and compare them
to additional ground truth datasets. A special focus is put on water vapor, the fourth
protagonist, in the next chapter where we use campaign and land station data for further
evaluations. In a next step we analyze the Arctic-wide retrieval output. First, by looking at
spatial patterns of the retrieval output parameters, their uncertainties and the differences
between simulated and measured brightness temperatures for one day, and second we
compare monthly data to reference products from other satellite retrievals or reanalysis
for a qualitative assessment. Again, water vapor will not be treated here but instead in
more depth in Chapter 6.

5.6.1 MOSAiC Expedition

When we apply the inversion method on the co-located satellite data during MOSAiC,
we retrieve parameters as shown in Figure 5.7. For all cases, the convergence criterion is
met. The degree of nonlinearity given by Equation 2.40 is close to unity, except for the
warm air intrusions in April and in the end of April. The uncertainty estimate given by
Equation 2.39 is shown as the 1-σ shaded area around the maximum a posteriori solution
(blue line). It is clear that the method does not reproduce the a priori (shown as green
line) in most cases, but instead converges to a different value (most drastically visible for
snow depth). Most of the time, the observed values lie within the retrieval uncertainty.
Notable is the sensitivity to LWP, where many events with high LWP are detected by the
retrieval method.

The variability of Tsa is not captured well in the retrieval, and the values stay close
to the a priori. This is likely due to the lower weights on the high frequencies (high
values in the effective measurement covariance matrix Se) that are more sensitive to that
parameter. On the other hand, due to the high weight on 6.9GHz and strong correlation of
this channel with Tsi, the evolution of this quantity is well captured by the retrieval. The
short-term fluctuations in retrieved snow depth are not realistic. The constraints on SND
are rather loose so the method might use the snow depth parameter to counterbalance
deviations in simulated and measured TB but overall, the retrieved snow depth is a better
estimate than the a priori.

For total water vapor, the agreement is good. Special events like the two warm air
intrusions in April 2020 (visible as peaks in the time series), described in Kirbus et al.
(2023), are well represented in the retrieved data. Figure 5.8 shows the good correlation
(squared Pearson coefficient: 0.7) and low bias (0.18 kgm−2) between satellite retrieved
values of total water vapor and the ship-based measurements. In comparison to the previ-
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ously used version of the retrieval (using empirical emissivities (Scarlat et al., 2017)), we
note a reduction of bias and increase of correlation (see Figure 5.1).

5.6.2 Sea Ice Concentration: Round Robin Data Package

Using the confirmed scenes of 100% SIC in the Round Robin Data Package (RRDP)
(Section 5.2.5) from October-May (including observations from the predecessor AMSR-E
sensor) shows that our retrieval method has an accuracy and precision similar to or even
better than many other common sea ice concentration algorithms (Ivanova et al., 2015):
we retrieve 100% SIC with a mean bias of 0.4% and a standard deviation of 1.5%. The
sample size is 216,999. Note, however, that our method truncates SIC to 100% and
does not allow SIC values > 100%. That effects intercomparisons and evaluations of SIC
products as discussed in Kern et al. (2019) and mentioned in this thesis in Section 4.1.2.
For a fair comparison to other products, a systematic overestimation of our method would
need to be checked. Using all available data from the dataset (years 2007–2019) including
the melting season (without adapting the model or inversion method), we retrieve 100%
SIC with a mean bias of 1% and a standard deviation of 3.8%, i. e., decreasing accuracy
and precision compared to the winter only case. The sample size is 265,785.

The RRDP also contains confirmed scenes of ice-free ocean, i. e., 0% SIC. From
October-May, we retrieve 0% SIC with a mean bias of 1.7% and a standard deviation
of 2.5%. The sample size is 44,553. Using all available data from the dataset (year
2007–2019) North of 50◦N, including the melting season, we retrieve 0% SIC with a mean
bias of 1.5% and a standard deviation of 2.1%, i. e., increasing accuracy and precision
compared to the winter only case. The sample size is 79,640.

5.6.3 Snow Depth: Operation Ice Bridge

Here, we use Operation Ice Bridge snow depth observations as contained in the RRDP.
Note that the majority of flights is over multiyear ice. When we compare the probability
density functions (PDFs) of retrieved and observed snow depth values in Figure 5.9, we
observe a positive bias of around 6 cm for the retrieved snow depth. The width of the
retrieved and observed snow depth PDFs are similar. The retrieved PDF, however, shows
an indication of a bi-modal distribution not seen in the observations. The retrieved snow
depth PDF shows a clear improvement over the a priori snow depth. The sample size is
530.

5.6.4 Liquid Water Path: Utqiaġvik Land Station

We extend the comparison of our cloud protagonist beyond the MOSAiC measurements
using the LWP dataset from the ARM site in Utqiaġvik (see Section 5.2.6). We only take
measurements that pass the quality check as good data and compare them to satellite
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overpasses that we average within a 50 km radius. In order to account for the variability
of LWP within the footprint we compare the spatially averaged retrieval data to 10-minute
temporal averages of the ground-based observations.

The large number (over 15,500) of co-located data points enables a comparison of
the distributions. Figure 5.10 shows the relation of observation and retrieval in a kernel
density estimate plot. Most of the observations are over sea ice (high SIC). The mean
bias is −0.02 kgm−2 which is less than 10%. However, we observe a low correlation of 0.2.
The difference in the distributions is evident in Figure 5.11. While the observed LWP is
a heavily tailed distribution that can be described by a lognormal or Weibull distribution
(Huang et al., 2014), the distribution of the satellite observations are very different in the
third and fourth moment (skew and kurtosis) and show larger values for LWP when the
ground-based observations are actually very close to zero. Figure 5.12 reveals that this
overestimation of LWP is especially pronounced in November and December, while in May
the satellite retrieved values are lower than the ground-based observations.

We face again the curse of remote sensing because our satellite measurements are
taken over the (frozen) ocean1, while the ground-based measurements are taken over land
and might not be representative of the satellite footprint. In future comparisons this un-
certainty could be reduced by taking wind directions and related horizontal water vapor
transport into account. For now it remains an open question to what extent the assump-
tion of Gaussian PDFs in the inversion method (see Chapter 2) is a limiting factor in
the retrieval of quantities like LWP whose distributions are not adequately described by
Gaussians. Retrievals of liquid water path from space-based passive sensors in general still
carry large uncertainties (Devasthale et al., 2020). The one presented here is no exception.

1that is, we use the land mask contained in the satellite product to mask out land observations.
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Figure 5.7: MOSAiC time series of retrieved parameters (blue) with their uncertainties (shaded
areas), additionally the ground truth observations as described in Table 5.3 (grey line) and the a
priori data (green line) is shown. Note that we do not display the full observational datasets, but
only the part co-located with satellite measurements. The following seven quantities are displayed:
SIC: sea ice concentration; MYIF: multiyear ice fraction; Tsa: snow-air interface temperature; Tsi:
snow-ice interface temperature; SND: snow depth; TWV: total water vapor; LWP: liquid water
path.
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Figure 5.8: Scatter plot of retrieved total water vapor using the emission model vs. MOSAiC
measurements from the co-located dataset. Included in the plot are bias, mean absolute error
(mae) and the coefficient of determination given by the squared Pearson correlation coefficient,
i. e., r2.

Figure 5.9: Density plot of snow depth data. Shown are observations from Operation Ice Bridge
included in the Round Robin Data Package (grey), corresponding retrieved values (blue) and the
a priori values used in the retrieval (green).
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Figure 5.10: Kernel density estimate plot
of ground-based observation of liquid wa-
ter path (LWP) vs. co-located satellite re-
trieval of LWP at the Atmospheric Radia-
tion Measurement (ARM) program site near
Utqiaġvik. Inset is a histogram of the corre-
sponding retrieved values for sea ice concen-
tration (SIC).

Figure 5.11: Histograms of all co-located
observations of liquid water path (LWP)
from the ground (blue, radiometer) and from
space (orange) at the observation site near
Utqiaġvik. Statistical parameters (mean,
median, standard deviation, skewness, and
kurtosis) are given in the annotation for the
ground-based/satellite LWP distributions.

Figure 5.12: Letter-value plot of the difference between co-located satellite retrieval and ground-
based observation of liquid water path (LWP) at the observation site near Utqiaġvik ordered by
month. The line is displaying the median, and the data is grouped in boxes for each pair of adjacent
letter values (Hofmann et al., 2017). The width of the boxes is proportional to the number of points
in it.
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5.6.5 Arctic-wide Retrieval Evaluation

Daily Arctic-wide Retrieval

We run the retrieval on satellite swath data of a whole day and the retrieval parameter
are then resampled by Gaussian resampling using NSIDC’s Polar Stereographic Projection
(NSIDC, 2023) with a nominal gridded resolution of 12.5 km by 12.5 km to obtain maps
on a pan-Arctic scale. One example for January 10, 2020 is shown in Figure 5.13, one for
April 19, 2020 in Figure 5.14, the time when warm and moist air from the North Atlantic
intruded into the central Arctic (Kirbus et al., 2023). The convergence rate is above 98%.
The sea ice extent is well captured (compared to ERA5, see Figure C.1 in the Appendix).

The spatial distributions of multiyear ice fraction and snow depth are plausible, with
higher values in the Canadian Arctic. The distribution of snow-air interface temperatures
and snow-ice interface temperatures are within expected ranges.

Higher values of total water vapor and liquid water path over the open sea are observed
as we can expect it. In some areas, the artificial gradients of TWV and LWP with respect
to the ice type are still visible, but are a lot less pronounced than for the previously used
version of the retrieval (see Figure 5.2). The warm and moist air intrusion on April 19,
2020 is also well seen in the retrieved elongated filament of high values of LWP and TWV.
Some areas over first-year ice (e. g., Chukchi Sea around Bering Strait, Laptev Sea) exhibit
higher values than the reanalysis ERA5 as discussed later in Section 5.6.5.

Spatial Distributions of Uncertainties

When we investigate the retrieval uncertainty given by Ŝ (see Equation 2.39) with respect
to water vapor (Figure 5.15) we see clearly higher uncertainties over the sea ice (middle),
where the uncertainties over MYI are slightly lower than over FYI. Compared, however,
to the a priori uncertainty of 4.69 kgm−2 we see an improvement also over ice, seen as
values smaller than one in the ratio of retrieved to a priori uncertainty (Figure 5.15, right).
Such tests help in the identification of areas of higher uncertainties, in this example the
Russian Arctic with younger ice around 150◦E.

The distribution of uncertainties of SIC, SND, and LWP are shown in the Appendix C.2.
For SIC and LWP the retrieval uncertainties are again lowest over the open ocean, are
only slightly higher over MYI and highest over FYI. For SND the retrieval uncertainties
over ocean (where the retrieved SIC is below 15%) are masked out. Interestingly, there are
areas (in this examples the Kara Sea) with very low retrieval SND uncertainties (below
5 cm). Overall the biggest improvement (lowest values in the ratio of retrieved to a priori
uncertainty) is found for SIC. In the next section, the retrieval output will be compared
to reference datasets, which will help to further estimate uncertainties.
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Hitting the Boundary: Shortfall of the Retrieval

When investigating the Arctic-wide data, we found areas with very high snow depth
(50 cm), see for example Appendix, Figure C.3, marked by a red rectangle. Here, the
inversion method retrieves the upper limit of allowed snow depth. The deviations between
modeled and measured TB, see Figure 5.16, reveal an overestimation of TB by the model
in that area, especially in the higher frequency channels. This pattern is persistent over
the whole month.

In order to compensate for high TB, the inversion method increases SND which de-
creases modeled TB. Because the variance of SND in the covariance matrix Sa is high
(0.04m2), the method allows rather large deviations from the a priori SND. In the current
implementation there is an upper bound of 50 cm for SND. When we increase this upper
limit, even higher SND is retrieved and the overestimation of TB at 18.7GHz and 23.8GHz
vanishes for the vertical polarization and decreases for the horizontal polarization at these
frequencies as well as for both polarizations at 36.5GHz (not shown).

The high SND areas also correspond to low values for the atmospheric variables (low
TWV and LWP also decrease modeled TB).

The problem of the forward model to simulate the low observed TB suggests that it
does not fully cover the range of sea and ice conditions leading to certain TB, possibly
even beyond the parameter uncertainties discussed in Section 5.4.2. It is also possible
that the inversion method fails to find the correct minimum of the cost function. For a
small test sample of cases where the method retrieves these high values of SND, the degree
of nonlinearity is, however, mostly close to unity and other optimization techniques (for
example the Nelder-Mead method) did not find different minima for that test sample.
More research is needed to improve the model and inversion setup which will be further
discussed in Chapter 7.

For now, the retrieval runs where SND ‘hits’ the upper boundary are flagged as being
more uncertain and are excluded from the following analyses. For daily gridded data on
an Equal-Area Scalable Earth (EASE) grid with a spatial resolution of 25 km about 1.3%
of the data is hereby removed on average. However, in certain years and months, this
percentage is above 5%, namely in October to December 2002, in October to December
2004, February to April 2005 and October 2018. Further investigations of these particular
time periods and areas may help to refine the search for possible reasons of the shortfall
of the retrieval in these situations.
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Figure 5.13: Retrieved parameters, gridded and resampled from daily AMSR2 swath data from
January 10, 2020. Shown are sea ice concentration (SIC), multiyear ice concentration (MYIC)
obtained by multiplying the multiyear ice fraction with SIC, total water vapor (TWV), liquid water
path (LWP), the surface temperature as average (weighted by SIC) from the snow-air interface
temperature Tsa over ice and the sea surface temperature (SST) over open water, the snow-ice
interface temperature (Tsi, shown only in areas where SIC > 15%), as well as wind speed (WSP,
shown only in areas where SIC < 15%) and snow depth (SND, shown only in areas where SIC >
15%).
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Figure 5.14: Retrieved parameters, gridded and resampled from daily swath data as in Figure
5.13 but from April 19, 2020.
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Figure 5.15: Daily gridded map of retrieved total water vapor (left) for January 10, 2020, retrieved
uncertainties of TWV as one standard deviation (center) and the ratio of retrieved uncertainty to
the a priori uncertainty (right).

Figure 5.16: Daily gridded map of differences between modeled TB and measured TB
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Sea Ice Concentration, Snow Depth, and Liquid Water Path:
Pan-Arctic and Monthly

In this section we compare monthly maps of the retrieved parameters SIC, SND and LWP
to reference datasets described below for each parameter. For each parameter we show the
months October, January and April for the winter season 2018 – 20192. Maps of retrieved
MYIF, Tsi and Tsa can be found in the Appendix C.5.

The maps are produced from averaging the daily data on an EASE grid with a spatial
resolution of 25 km. The reference datasets are kept on their native grid for plotting but are
resampled to the EASE grid for calculating mean biases. Note that the reference datasets
themselves carry uncertainties, that, for example in the case of SND and LWP, are not even
fully assessed yet. While we believe that analyzing differences between reference datasets
and the multi-parameter retrieval output are a reasonable way to estimate uncertainties,
we do not claim that the reference datasets are the ground truth.

For TWV a more extensive comparison and evaluation is performed in Chapter 6.

Sea Ice Concentration As reference dataset we use the ASI sea ice concentration
product described in Chapter 4.1.2.

The comparison in Figure 5.17 shows spurious ice in the areas that are ice-free ocean in
ASI and lower estimates of SIC in the high ice concentration regime. For the open ocean
areas, averaged over grid cells with SIC less or equal to 15%, the retrieved SIC is between
6.3% (May) and 8.3% (January) higher than the ASI SIC with a low mean standard
deviation of the residuals, σres., of 1.4%. This is greater than the retrieval uncertainty
(not shown), which ranges between 3.4% (December) and 4.1% (May). Here, we believe
the ASI SIC product to be more reliable as we do not expect sea ice for example South
of Svalbard or even Iceland in October. Stricter constraints, implemented in terms of
lower variances of SIC in Sa (see Section 5.5), will likely improve the results. As this
thesis focuses on the ice-covered ocean, refining the retrieval over open ocean will not be
pursued further here.

Over sea ice, the differences are smaller but σres. is larger. The retrieved SIC is,
averaged over grid cells with SIC higher 15%, between 0.5% (bias October) and 1.8%
(bias March) lower than the ASI SIC with a mean σres. of 6.4%. Mean absolute deviations
are in the range of 3.1% (January) to 7.1% (October). Average retrieval uncertainties
range between 2.8% and 4.1%. Based on the comparison to ASI this uncertainty estimate
should be raised to a more conservative estimate of the retrieval uncertainty of the order
of at least 7%.

Snow As reference dataset for SND we use the snow depth product described by Kwok
et al. (2020) and available via Kwok (2020). It is based on differencing satellite lidar

2This time period was picked because of the availability of the snow depth data.
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Figure 5.17: In comparison, maps of monthly average of sea ice concentration (SIC) from the
multi-parameter retrieval (MPR, left) and from the reference ASI SIC satellite product (right).
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(ICESat-2) and radar (CryoSat-2) freeboards and the available product is bounded by the
gateways into the Pacific Ocean, the Canadian Arctic Archipelago, and the Greenland
(Fram Strait) and Barents Seas. The two datasets are shown in Figure 5.18. While there
is resemblance in spatial patterns between the two datasets, the retrieved SND is higher
than the reference data, especially in October.

The mean absolute deviation in October is 12 cm with a large range of differences (σres.

yields 9 cm). In October, the average retrieval uncertainty, averaged over grid cells with
SIC higher 15%, is highest amongst the months with 11 cm. The differences between the
retrieved SND and the reference data decrease over the months. In January the retrieved
SND is still higher than the reference but only by 6 cm (mean absolute error (mae)), and
the spread also decreased to a σres. of 6 cm. The values of the following months are similar.
Also the retrieval uncertainty reduces to about 7 cm for all months other than October.
This uncertainty estimate agrees with the comparison to the reference SND for January
to March but should be raised to a more conservative estimate of the retrieval uncertainty
of at least 10 cm for October to December.

We also note that the spatial distribution resembles the one from the MYIF, see
previous paragraph. This is physically plausible as MYI is present from the beginning
of the season and has more time to accumulate snow. However, some differences can be
found, for example higher snow depth values around Wrangel Island (at 180◦E between
Chukchi and East Siberian Sea) in April that also appear in the reference data but not in
the MYIF (see Section C.5).

Research is under way to evaluate the snow depth retrieval further and quantitatively.

Liquid Water Path From the European Centre for Medium-range Weather Forecasts
(ECMWF) fih generation reanalysis ERA5 (Hersbach et al., 2020) we use the total
column cloud liquid water variable as reference. From the hourly reanalysis data we
derive monthly averages shown in Figure 5.19.

Overall, both datasets show higher values of LWP over open ocean than over sea ice.
The order of magnitude (10−2 kgm−2) of the retrieval and reanalysis is the same for all
months but December, January, and February. In December, January and February, re-
trieved LWP is higher than the reanalysis over sea ice: mean December values over areas
with retrieved SIC larger 15% are 0.052 kgm−2 in the retrieval but only 0.009 kgm−2 in
the reanalysis. The standard deviation of LWP over sea ice is in general larger in the
retrieval data than in the reanalysis data, in several months even by an order of magni-
tude (October, February, and March, 10−2 kgm−2 versus 10−3 kgm−2). Thus, considering
monthly data, the retrieval LWP is spatially more heterogeneous over sea ice than the
reanalysis. Over ocean, the retrieval is mostly higher than the reanalysis with a mean
bias ranging between 0.033 kgm−2 (December) and 0.015 kgm−2 (February). The σres. is
about 0.013 kgm−2 for all months. Over ice, the deviations vary from month to month.
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Figure 5.18: Maps of monthly average of retrieved snow depth (SND; left) from the multi-
parameter retrieval (MPR) compared to the reference SND product based on lidar and radar
satellite data.



130 5.7 Summary and Conclusion

While the retrieval is higher than the reanalysis in some areas (mostly over FYI or in the
marginal ice zone (MIZ)) it is lower in other areas (mostly over MYI) in October and
November (mean absolute deviations over sea ice are 0.051 kgm−2 and 0.047 kgm−2, re-
spectively). In April the differences are smallest (mean absolute deviation of 0.015 kgm−2

with a σres. of 0.020 kgm−2) and in May the multi-parameter retrieval retrieves lower LWP
values over ice than the reanalysis provides (mean bias of −0.029 kgm−2).

Spatial differences are evident in the monthly averages in Figure 5.19 as well. For
example, the sea ice edge shows very high LWP values in our retrieval in October. This is
not visible in the reanalysis, indicating the MIZ or areas of ice growth might be challenging
for our method. In some cases these areas might indeed contain high LWP because here
the warm and moist air could be transported from the ocean onto colder sea ice where
condensation takes place and clouds form. In January, a patch of suspiciously high LWP
can be observed in the retrieved data around 80◦N between 150◦W and 180◦W. High LWP
is also observed in the Laptev Sea. Assuming that the true LWP is lower as indicated by
the reanalysis, we hypothesize that the challenging surface conditions (for example young
ice in the Laptev Sea) might affect the retrieval: If the sea ice is not sufficiently accurately
modeled for the frequencies sensitive to the atmosphere then the method might account
for differences in modeled and measured TB by changing the atmospheric LWP.

5.7 Summary and Conclusion

The combined atmosphere-snow-ice-ocean emission forward model together with optimal
estimation is used in a multi-parameter retrieval of snow, ice and atmospheric parame-
ters in the Arctic from satellite AMSR-E and AMSR2 microwave radiometer observations.
Instead of correcting the satellite measurements for weather influences, we make use of
the atmospheric information by using an integrated retrieval and retrieve both surface
and atmospheric parameters. The surface part of the forward model requires four input
variables, namely snow-air interface temperature Tsa, snow-ice interface temperature Tsi,
the ice type (either FYI or MYI), and snow depth. Data from the MOSAiC expedi-
tion provide valuable descriptions of the ground truth that can be used as model input.
Despite simplifications regarding model parameters, we can simulate realistic values of
brightness temperatures, and their variabilities, resembling the co-located satellite obser-
vations by using MOSAiC input data. To some extent, differences between forward model
and observation can be explained by surface model parameter choices, like snow density or
correlation length, as we can show in the simulation of the uncertainties of the model. In
addition, in the MOSAiC case, we observe a seasonal dependence of the bias with better
agreement towards spring.

The model is inverted using an optimal estimation method, which provides us with
a physically consistent set of nine geophysical parameters and their uncertainties. These
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Figure 5.19: Maps of monthly average of retrieved liquid water path (LWP, left) from the multi-
parameter retrieval (MPR) compared to the ERA5 reanalysis output (right).
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parameters include the protagonists of this thesis: SIC, SND, LWP, and TWV. Although
the degrees of freedom in the measurements are less than the number of retrieval pa-
rameters3, they are mostly in agreement compared to MOSAiC observations. The model
inversion by optimal estimation comes at acceptable computational costs, which enables
daily retrievals using all available satellite observations. Spatial patterns as well as the
seasonal development (Sections 5.6.1 and 5.6.5) of the retrieved parameters are plausi-
ble. This is now also true for the atmospheric parameters TWV and LWP in contrast
to the previous model that used constant, empirical emissivities for sea ice. Evaluating
the retrieval further is challenged by the sparse amount of available and suitable ground
observations and the unknown accuracies of reference datasets such as reanalysis products.
Based on the presented evaluations here, we conclude that the SIC retrieval performance
is comparable to operational satellite products (Section 5.6.2 and 5.6.5) but small concen-
trations of spurious sea ice over open ocean are found. The retrieval of SND is satisfactory
as comparisons against airborne data show (Section 5.6.3), but higher SND than in the
satellite reference product are seen in the beginning of winter. We would like to emphasize
the possibility of retrieving realistic values of LWP which has, to our knowledge, not been
done successfully over sea ice so far by microwave radiometry. The comparison to the
Mosaic data shows promising results as does the comparison to 20 years of ground-based
station data (Section 5.6.4) which, however, also reveals weaknesses of the retrieval that
require further analysis. LWP is overestimated in certain months and some areas are
persistently featuring high values of LWP over weeks, which is likely due to the surface
representation rather than actual atmospheric events. An extensive evaluation of TWV
will follow in the next chapter.

The retrieval output contains the deviation between measured and modeled bright-
ness temperatures as well as the retrieval uncertainties. The spatial distribution of these
residuals for the different frequencies and of the uncertainties of the different retrieval pa-
rameters are useful tools to identify regions where the retrieval is challenged, for example
over young ice (see Figure 5.15).

In summary, our improved method provides means to better monitor the Arctic from
space in the months October to May. It now allows the analysis of long-term spatio-
temporal winter trends for the time period of the AMSR-E and AMSR2 satellite sensors
(starting 2002) as done for TWV in Chapter 6. Our sea ice-atmosphere-ocean multi-
parameter retrieval has the advantage to provide a self-consistent set of retrieved parame-
ters that can be analyzed jointly compared to single parameter retrievals as today common
for most of the quantities we retrieve here.

3While the satellite radiometer measures at 12 channels (six frequencies, dual polarization), the number
of independent measurements distinguishable from noise is lower than 12 as shown in Scarlat (2018)



Chapter 6

Focus Water Vapor

6.1 Water Vapor Retrieval: Evaluation and Comparison

The previous chapter contained a quantitative evaluation of the retrieval output using
the Multidisciplinary driing Observatory for the Study of Arctic Climate (MOSAiC)
campaign data. Additionally, three of the four protagonists of this thesis (sea ice concen-
tration (SIC), snow depth (SND) and liquid water path (LWP)) were further evaluated
using reference datasets.In this chapter, we perform an evaluation of the retrieval of total
water vapor (TWV). In order to evaluate the retrieved TWV we compile campaign and ra-
diosonde station data and compare that data against the satellite product for the satellite
sensors Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E)
and Advanced Microwave Scanning Radiometer 2 (AMSR2), see Table 5.1. In addition we
compare the satellite retrieved data to the meteorological ECMWF Reanalysis v5 (ERA5).
The curse of remote sensing (see Section 2.3) befalls us here as well. When trying to match
satellite observations of large footprints on one hand and measurements that are almost
pointlike on the other, we have both a spatial and temporal mismatch. Our co-location
procedure usually contains a search radius and a time span before and aer the start of
the ground-based measurement. Only satellite observations within that time period and
area are considered, averaged and then compared to the ground truth. Observations from
warm air intrusions show that TWV can change by more than 100% within a few hours
(Crewell et al., 2021). Thus a perfect agreement cannot be expected. Still, we believe this
evaluation is necessary to extent the one from the MOSAiC campaign to other regions
and ice types.

Another indication of a good retrieval performance is the capture of anomalous warm
and moist air intrusions that deviate from the a priori background. This happened in
April during the MOSAiC campaign (see previous Section), in March during the aircra
HALO-(AC)3 campaign (Walbröl et al., 2023) and in July during the ATWAICE ship
campaign. These events are depicted in the retrieved data; in case of the ATWAICE
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campaign it happened when the ship was in the open ocean (about 50 km away from the
ice edge).

6.1.1 Retrieval Evaluation with Campaign Data

Figure 6.1: Location of campaign data used in the evaluation of the retrieved total water vapor.
The map shows the daily sea ice concentration (SIC) from the operationally available ASI product
(described in Section 4.1.3) on January 1, 2005.

Figure 6.1 shows where water vapor data was collected during campaigns which we use
in the retrieval evaluation. Three different measurement techniques are used: dropson-
des (HALO-(AC)3), ship-based radiometers (ATWAICE) and radiosoundings (all other
campaigns). Most of the data was collected in the Atlantic sector of the Arctic. We
now discuss the results of the evaluation for each campaign, first the winter campaigns in
chronological order starting with the most recent one and second the summer campaigns.

HALO-(AC)3 2022 campaign data - dropsondes: The HALO-(AC)3 campaign was
an aircra measurement program in the North Atlantic sector of the Arctic in March and
April 2022. A synoptic overview of the environmental conditions during the campaign
is given in Walbröl et al. (2023). Interestingly, the warm and moist air intrusions that
occurred during that time (four independent events from March 12–20) even caused rainfall
over sea ice northwest of Svalbard. Figure 6.2 shows retrieved TWV from two satellite
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swathes coinciding with aircra flights on March 12 and March 20. The moist air intrusion
is visible on March 12 as high TWV and LWP values compared to the dry conditions on
March 20.

For the TWV measurements by dropsondes (Mech et al., 2022) we co-locate satellite
data using a search radius of 50 km and a maximum time difference of 30 min. The
matched observations are shown in a scatter plot in Figure 6.2. Most of the observations
are over open ocean according to the retrieved SIC (dark scatter points). The cases over
sea ice (bright scatter points) are close to the one to one line. The overall correlation is
high (r2 = 0.91) and we observe a bias of 0.5 kgm−2.

MOSAiC 2019 – 2020 winter campaign data - radiometer: An extension of the
comparison shown in the previous chapter is shown in Figure 6.3. The difference to
the previous comparison (see Section 5.6.1) is the number of co-location events and the
search radius. While we limited the previous comparison to overpasses where simultaneous
ground truth measurements of all retrieval parameters were available, we now include all
co-location events. Also we now average all satellite data within a radius of 50 km (only the
closest observation was considered in the previous comparison) to be consistent with other
comparisons in this chapter. The ground-based measurements are still averaged within
±10 minutes of the overpass time. The SIC was high during the entire time with 99% ±
1% (mean and standard deviation of retrieved SIC). Similar to before we conclude that the
agreement is good (high correlation in terms of r2 of 0.78 and low bias of 0.26 kgm−2). We
can see that the distributions of TWV (Figure 6.3, right panel) agree well. Small deviations
of the distribution are seen in a slightly higher stander deviation of the retrieved data.

N-ICE 2015 campaign data - radiosondes: We use radiosonde data from the
Norwegian young sea ice cruise (N-ICE) 2015 which was conducted north of Svalbard in
the Atlantic sector of the Arctic in thin, first-year sea ice from January to June 2015
(Hudson et al., 2017; Cohen et al., 2017). TWV is calculated from the radiosonde data
using the saturation vapor pressure formulation by Hyland and Wexler (1983) and we
restrict our analysis to January until May. The co-location was done by taking the satellite
measurements within a distance of 50 km to the radiosonde launch position and a maximum
time difference of 30 min to the start of the radiosonde launch. Figure 6.4 shows the
agreement between total water vapor from radiosonde and satellite-derived TWV. The r2

value is 0.55 and we observe a bias of 0.36 kgm−2. The sea ice during N-ICE 2015 was
thin, young ice; during MOSAiC it was a second-year ice floe. Thus the good agreement
between retrieved and observed TWV can be achieved for different surface conditions.

Field experiments ACSYS 2003 and LOFZY 2005 - radiosondes: Here, we use
data from three campaigns collected by the Physical Meteorology Division of the Meteo-
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Figure 6.2: Top: Retrieved total water vapor (TWV) from one satellite swath over Fram strait,
gridded on the EASE grid with a resolution of 12.5 km. On the left is the coast of Greenland and
the island on the right is Svalbard. Left image shows data from March 12, 2022 during a warm
air intrusion event, right image a swath from March 20, 2022. The retrieved liquid water path
is shown as contour lines. The yellow line denotes the flight track of a coincident HALO-(AC)3
campaign flight. Bottom: Scatter plot of retrieved total water vapor vs. dropsonde measurements
from the HALO-(AC)3 campaign 2022. Included in the plot are bias, mean absolute error (mae)
and the coefficient of determination given by the square of the Pearson correlation coefficient r2.
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Figure 6.3: Left panel: Kernel density estimate plot of retrieved total water vapor (TWV) vs.
radiometer measurements from the MOSAiC campaign during October 2019–May 2020. Included
in the plot are bias, mean absolute error (mae) and the coefficient of determination given by the
square of the Pearson correlation coefficient r2. Right panel: Histograms of TWV from radiometer
(blue) and from the retrieval (orange) of all matched observations. Annotated are the statistical
parameters mean, median, standard deviation (std), skew and kurtosis for the ground-based ob-
servation (left value) and the satellite retrieval (right value).

rological Institute of the University of Hamburg:

(i) Arctic Climate System Study (ACSYS) 30.03.-21.04.2003 with R/V Aranda, Fram
Strait (Brümmer et al., 2012a)

(ii) ACSYS 30.03.-21.04.2003 with R/V Polarstern, Fram Strait (Brümmer et al., 2012a)

(iii) LOFoten ZYklonen (LOFZY) 26.02.-19.03.2005 with R/V Celtic Explorer, Norwe-
gian Sea (Brümmer et al., 2012b)

The data from the LOFZY campaign is independent, i. e., not used in weather forecast
or renalyses schemes. Whether the ACSYS data was assimilated remains unfortunately
unclear (personal communication with Gerd Müller, October 2023).

In case of no assimilation it is interesting to compare the performance of the satellite
retrieval to the reanalysis. In most cases the radiosonde data is automatically assimilated
and cannot be used for validating the reanalysis.

Along the lines of the comparison to the N-ICE 2015 data (last paragraph), the total
water vapor is calculated from the radiosonde data using the saturation vapor pressure
formulation by Hyland and Wexler (1983). We exclude soundings that did not reach
altitudes higher 5 km (similar to requirements in Durre et al. (2009)).

The co-location was done by taking the satellite measurements within a distance of
50 km to the radiosonde launch position and a maximum time difference of 30 min to the



138 6.1 Water Vapor Retrieval: Evaluation and Comparison

Figure 6.4: Scatter plot of retrieved total water vapor vs. measurements from the N-ICE cam-
paign 2015. Included in the plot are bias, mean absolute error (mae) and the coefficient of deter-
mination given by the square of the Pearson correlation coefficient r2.

start of the radiosonde launch. For the comparison to ERA5 reanalysis data, which is
available on an hourly basis, we choose the ERA5 data from the grid cell closest to the
radiosounding.

Figures 6.5a to 6.5c show the agreement between TWV from radiosoundings and
satellite-derived TWV (le panels) or TWV from the reanalysis ERA5 (right panels).
For the two datasets from the ACSYS campaign (Figures 6.5a and 6.5b), the r2 value is
0.84 in both cases and we observe negative biases between −0.78 kgm−2 to −0.88 kgm−2.
The co-located data to R/V Aranda corresponds to intermediate SIC conditions, while
the one to R/V Polarstern corresponds to high values of SIC. In both cases the reanalysis
performs better. Note that the number of data points is higher for the reanalysis and
that we do not know whether the soundings were assimilated into the reanalysis. The
field campaigns were in close proximity to Ny-Ålesund, Svalbard. Radiosoundings from
there are regularly assimilated into ERA5. Assuming a spatial correlation between TWV
at Ny-Ålesund and at the ship position, the high agreement of reanalysis and ship-based
observations is not surprising, even if the ship data was not assimilated.

In case of the LOFZY campaign (Figure 6.5c), the r2 value is high (0.9) and we
observe a small negative bias (−0.31 kgm−2). SIC is well below 0.2. Here, the reanalysis
performance is comparable which also holds when reducing the reanalysis data to a smaller
subset matching the size of the satellite data.
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(a) ACSYS campaign 2003 from R/V Aranda.

(b) ACSYS campaign 2003 from R/V Polarstern.

(c) LOFZY campaign 2005 from R/V Celtic Explorer.

Figure 6.5: Scatter plot of retrieved total water vapor vs. radiosonde measurements during the
different campaigns. Included in the plot are bias, mean absolute error (mae) and the coefficient
of determination given by the square of the Pearson correlation coefficient r2.
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Retrieval performance in summer - radiometer during MOSAiC 2020 and AT-
WAICE 2022: So far, we have focused our analysis on winter campaigns during the
non-melting season. Here, we want to briefly explore the retrieval performance in sum-
mer. During the ATlantic WAter pathways to the ICE in the Nansen Basin and Fram
Strait (ATWAICE) campaign, described in Chapter 3, water vapor was measured from
the ship-based radiometer Humidity and Temperature Profiler (HATPRO). For every
satellite overpass we average within 50 km. The ground-based measurements are averaged
to 10 minute intervals. The time series of TWV is shown in the Appendix, Figure D.1,
while there is no satellite overpass during the peak of the warm air intrusion around July
18, higher values around the maximum are depicted in the retrieved data.

Figure 6.6: Scatter plot of retrieved total water vapor vs. radiometer measurements from the
ATWAICE campaign 2022. For every overpass, the retrieval data was averaged within a 50 km
radius. Included in the plot are bias, mean absolute error (mae) and the coefficient of determination
given by the square of the Pearson correlation coefficient r2.

Figure 6.6 shows the agreement between TWV from radiometer and satellite-derived
TWV during the ATWAICE campaign. The r2 value is 0.83 and we observe a low bias
of (−0.06 kgm−2). SIC was varying between 0 and 100% as the ship was transecting the
marginal ice zone. Cases over ice only (SIC > 85%, reducing the sample size to 17) yield
a correlation of r2 = 0.91 and a bias of −0.38 kgm−2 (not shown).

The MOSAiC summer data from the HATPRO radiometer is co-located to satellite
retrieved data by taking the satellite overpasses within a distance of 50 km to the ship po-
sition. The ground-based measurements are averaged within ± 10 minutes of the overpass
time. Figure 6.7 shows the agreement between TWV from radiometer and satellite-derived
TWV during the MOSAiC campaign. We were mostly observing SIC higher 50%. The r2

value is 0.76 and we observe a low bias of 0.88 kgm−2. However the distributions reveal
differences (Figure 6.7, right panel). Especially the bi-modal nature of the distribution of
the ground-based observations (peaks around 9 kgm−2 and 15 kgm−2) is not visible in the
satellite retrieval.
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Figure 6.7: Left panel: Kernel density estimate plot of retrieved total water vapor (TWV) vs.
radiometer measurements from the MOSAiC campaign during June–September 2020. Included
in the plot are bias, mean absolute error (mae) and the coefficient of determination given by the
square of the Pearson correlation coefficient r2. Right panel: Histograms of TWV from radiometer
(blue) and from the retrieval (orange) of all matched observations. Annotated are the statistical
parameters mean, median, standard deviation (std), skew and kurtosis for the ground-based ob-
servation (left value) and the satellite retrieval (right value).

Based on these two campaigns we conclude that the retrieval performance in summer
is promising and that it is worthwhile to investigate the potential of this satellite retrieval
in the summer months further.
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6.1.2 Retrieval Evaluation with Radiosoundings from Land Stations

The Integrated Global Radiosonde Archive (IGRA) contains worldwide radiosonde ob-
servations (Durre et al., 2006,0). The archive also provides derived products such as
integrated water vapor (precipitable water). It is calculated following Durre et al. (2009).
We use Version 2.2 of the data and choose only Arctic stations that were close to the coast
in order to obtain retrieval data, which is only available over ocean (land data is masked
out). The chosen stations are listed in Table 6.1.

The co-location was done by taking the satellite measurements that are within a dis-
tance of 50 km to the radiosonde launch position and have a maximum time difference of
120 min to the start of the radiosonde launch. We allow larger temporal deviations here
than in the previous comparisons to campaign data to obtain a large number of co-location
events. This enables a comparison of water vapor distributions.

In the following we therefore do not go into details on single sites, discussing for
example orographic effects or comparability of the quality of radiosondes, but focus on the
statistical parameters instead.

Figure 6.8: Map of radiosonde stations used in the retrieval evaluation.
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Exemplary, we show the results of the comparison of satellite-derived TWV and
ground-based observation for four selected land stations in Figures 6.9 to Figures 6.12.
The other sites are shown in the Appendix D.2. Because of the high number of coinciding
overpasses we show the data as kernel density plot (le panels), illustrating correlations
and deviations; and the distributions as histograms (right panels), illustrating how the sta-
tistical parameters (mean, median, standard deviation, skewness, and kurtosis) of satellite
retrieval and ground-based measurements agree. In addition, the retrieved SIC is shown
in the le panel as histogram. For sites with little sea ice such as Jan Mayen, Ny-Ålesund
and Malye Karmakuly, Figures 6.9, D.2 and D.3, the agreement is excellent in terms of
correlation (r2 values of 0.94, 0.93 and 0.85, respectively) and in the shape of the distri-
butions (skew, kurtosis). However we do observe a positive bias of up to 1.12 kgm−2. We
observe correlation values between 0.50 and 0.75 for the sites with high sea ice concentra-
tion (Figures 6.10 to 6.12 and Appendix D.2), positive biases (between 0.23 kgm−2 and
2.28 kgm−2) and an overall good agreement in the distribution shape. The agreement in
the statistical parameters is comparable to the sites over open ocean; especially in terms
of the standard deviations of the distributions the agreement is good, see for example the
site Gmo Im. E. K. Fedorova 1, Figure 6.11. The medians can differ by up to 2.5 kgm−2

(Figure D.7) but for the sites Alert, Danmarkshaven, Gmo Im. E. K. Fedorov and Tiksi
that difference is below 1 kgm−2.

1Russian abbreviation, stands for Hydrometeorological observatory named aer Evgeny Konstantinovich
Fedorov.
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Figure 6.9: Total water vapor (TWV) from the radiosonde land station Jan Mayen in the Green-
land Sea compared to co-located satellite retrievals of TWV (average of data within up to 2 hours
after launch and within 50 km). Left panel: Kernel density estimate plot of all co-located val-
ues. Inset axes show histograms of co-located sea ice concentration (SIC) from the same satellite
retrieval and of the time difference (∆t) between the satellite overpass and the sounding. Anno-
tated in the plot are the number of matched observations, N, the square of the Pearson correlation
coefficient, r2, the mean absolute error, mae, and the bias. Right panel: Histograms of TWV
from radiosounding (blue) and from the retrieval (orange) of all matched observations. Annotated
are the statistical parameters mean, median, standard deviation (std), skew and kurtosis for the
ground-based observation (left value) and the satellite retrieval (right value).

Figure 6.10: As Figure 6.9 but for the site Alert on Ellesmere Island, Nunavut.
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Figure 6.11: As Figure 6.9 but for the site Gmo Im. E. K. Fedorova at Cape Chelyuskin, south
of Severnaya Zemlya archipelago between Kara and Laptev Sea.

Figure 6.12: As Figure 6.9 but for the site Tiksi on the shore of the Laptev Sea, southeast of the
delta of the Lena River.
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6.1.3 Comparison to Reanalysis ERA5 Data

ERA5 and many numerical weather prediction models currently do not directly assimilate
brightness temperature (TB) from passive microwave radiometers over sea ice because of
the high uncertainties of the ice and snow emissions. Studies suggest that this could im-
prove performances (Scott et al., 2012). As mentioned before, radiosoundings are usually
assimilated in reanalyses, assessing the performance of the ERA5 in the Arctic is therefore
not straightforward and accuracies of the reanalysis products are not well known (Persson
and Vihma, 2017). That means that when comparing the retrieval to ERA5, differences
are not necessarily an indicator of insufficient retrieval performance of the satellite prod-
uct. Agreements however can increase confidence in findings based on either product. In
addition the comparison may give hints on where to improve the retrieval algorithm (or
may even point out issues of the reanalysis).

In order to compare the retrieval against the reanalysis ERA5, we first resample the
retrieved TWV based on satellite swath data to the 0.25◦ grid using Gaussian resampling
with a radius of 12.5 km and a σ of 5 km to obtain daily data. We then compare the
monthly averages of this gridded data product and the reanalysis in Figure 6.13 for the
winter season 2019–2020. Spatial differences are evident and differences change over the
season. Over open ocean, the differences between TWV from the retrieval and the reanal-
ysis vary little. The retrieval TWV is higher than the reanalysis (about 1.4 kgm−2). Over
the multiyear ice (MYI), on the other hand, we observe that the retrieval is lower than the
reanalysis in October (up to 3 kgm−2). This difference is decreasing and eventually even
changes sign in some areas towards April. In May, the retrieval TWV is then again lower
than the reanalysis in most areas over MYI. Over first-year ice, a different behavior is
visible: the retrieved values are higher than the reanalysis (dark red areas in Figure 6.13)
in November. Here, the differences decrease towards April and eventually change sign, re-
sulting in negative differences in May for both first and multiyear ice areas. The patterns
are similar for the winter season 2003–2004, shown in Figure 6.14, where the retrieval is
based on satellite data from the sensor AMSR-E. Here, the retrieval over multiyear ice
is in principal lower than the reanalysis, strongest in October, and it is higher than the
reanalysis over first-year ice. Over ocean, the retrieval TWV is only slightly higher than
the reanalysis (about 0.6 kgm−2), this difference hardly changes from month to month.
Differences between the sensors are less evident in the central Arctic but there is a clear
distinction between the data based on the AMSR-E and on the AMSR2 sensor in areas
with more open ocean.

In the following we constrain the comparison to the ice-covered ocean by using the
ERA5 land mask on both datasets as well as the ERA5 sea ice concentration variable to
mask out all data where the daily mean SIC is below 15% for at least half of the days in
the corresponding month. A comparison of the monthly mean values of all the ice covered
grid cells is shown in Figure 6.15 for October 2019–May 2020 (AMSR2) and in Figure 6.16
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for October 2003–May 2004 (AMSR-E). We note some interesting features of the reanal-
ysis: in both seasons there are several modes visible in the histograms, corresponding to
different months. Also, very low values (less than 0.34 kgm−2 for daily data and less than
1.28 kgm−2 for monthly data for October 2019–May 2020) are not observed. The modes
are less distinct in the satellite retrieval but can also be identified. The distribution from
the satellite retrieval shows lower values and a larger variability of TWV. In terms of
means and medians, satellite retrieval and reanalysis differ by less than 0.6 kgm−2.

Over open ocean (see Appendix D.10 and D.9) the correlation is high and similarly
to the land stations that are close to open ocean (see last paragraph) we observe a small
positive bias. In fact, this bias is larger for the AMSR2 (1.33 kgm−2) than for the AMSR-
E (0.47 kgm−2) time period. This hints at sensor intercalibration issues and will need to
be taken into account in the next Section.

6.1.4 Summary

Overall, the comparisons against data from five winter campaigns over sea ice demonstrates
that the retrieval performance varies but is satisfying overall. Values for the squared
correlation coefficient r2 range between 0.55 and 0.91 with biases that can be negative (up
to −0.88 kgm−2) or positive (up to 0.50 kgm−2). Comparisons against data from land
stations, measured over sea ice, reveal that the distributions of TWV are similar, which is
a requirement for statistical analyses of the TWV data. Mean absolute deviations range
between 0.82 kgm−2 to 2.55 kgm−2. The retrieval uncertainty over ice, given by Ŝ, see
Section 5.6.5, is on the order of 3 kgm−2 to 4 kgm−2 and thus even higher than these
deviations. Based on the results of this chapter, the actual uncertainty of the retrieved
TWV over sea ice may in fact be lower and we estimate it to be about 2 kgm−2.

Over open ocean, the agreement between retrieval and ground-based measurements
is excellent (r2 values above 0.8) and similar to the performance of the reanalysis ERA5
(based on the the comparison against data from the LOFZY campaign which was not
assimilated). The retrieval uncertainty over open ocean is about 1.8 kgm−2. Taking all
comparisons of this chapter into account this is a reasonable estimate for the uncertainty
over open ocean.

Comparison to the reanalysis ERA5 show that mean absolute deviations over sea
ice between October and May are about 1 kgm−2 but that these differences vary from
month to month. In several months these differences are also correlated to the ice type.
In addition we see a systematic bias between AMSR-E and AMSR2 which is particular
evident over open ocean areas.
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Figure 6.13: Differences in monthly mean values of total water vapor (TWV) between the
meteorological reanalysis ERA5 and the retrieval for the winter season October 2019 to May
2020.
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Figure 6.14: Same as Figure 6.13 but for the winter season October 2003 to May 2004.
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Figure 6.15: Monthly mean values of total water vapor (TWV) from the reanalysis ERA5 com-
pared to satellite retrievals of TWV from October 2019–May 2020. Only sea ice covered grid cells
are considered. Left panel: Kernel density estimate plot of all values. Annotated in the plot are
the number of observations, N, the square of the Pearson correlation coefficient, r2, the mean ab-
solute error, mae, and the bias. Right panel: Histograms of TWV from reanalysis (blue) and from
the retrieval (orange) of observations. Annotated are the statistical parameters mean, median,
standard deviation (std), skew and kurtosis for the reanalysis (left value) and the satellite retrieval
(right value).

Figure 6.16: As Figure 6.15 but for October 2003–May 2004 (satellite sensor AMSR-E).
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6.2 Trends and Variability of Arctic Water Vapor

6.2.1 Introduction

Total water vapor (TWV) generally increased in the Northern Hemisphere over the last
decades as observed in radiosonde observations (Durre et al., 2009; Ross and Elliott, 1996).
In terms of trends and variability of water vapor in the Arctic, a comprehensive picture
has not yet emerged. First existing studies’ insights from local Arctic sites, reanalysis and
satellite data are summarized. Then we present results based on the satellite retrieval
which was evaluated in the previous section.

Total water vapor trends and variability can be assessed at Arctic sites from ra-
diosoundings or using Global Navigation Satellite System (GNSS) data. Maturilli and
Kayser (2016) used the homogenized radiosonde record at Ny-Ålesund from 1993 – 2016
and found a moistening trend in winter (December, January and February) of 83± 122×
10−3 kgm−2 per year. Tomasi et al. (2020) analyzed monthly mean values of TWV ob-
tained radiosonde measurements for the years 2001 – 2015 from 14 Arctic stations. They
found variabilities in terms of standard deviation of 0.7 kgm−2 to 2.5 kgm−2 in winter
months. Half the stations exhibit slightly decreasing values of TWV at rates on the order
of 0.03 kgm−2 per year, for the other half TWV is increasing at rates on the order of
0.06 kgm−2 per year. Negusini et al. (2021) analyzed water vapor from GNSS stations
for over 20 years and provided local trends as well. Those partly differ from the ones
derived from radiosonde data at the same site (even in sign). Both positive (close to
the Atlantic Ocean) and negative (Greenland and North America) trends were found us-
ing the GNSS data. Overall, however, sites at high latitudes show no significant trend.
Rinke et al. (2019) took into account seasonal dependencies and found positive trends in
May – October and negative trends in late winter when averaging TWV trends based on
radiosoundings from the IGRA (see Section 6.1.2) of Arctic sites north of 65◦N.

Atmospheric reanalyses, combining model output with available observations, are
known to be less accurate in data-sparse regions such as the Arctic (Persson and Vihma,
2017) but they have the advantage of a high temporal resolution and an Arctic-wide cov-
erage. Several issues of reanalysis products in the Arctic have been found, including a
warm bias of air and surface temperature over Arctic sea ice in (Wang et al., 2019) and an
imbalance between precipitation and evaporation (no hydrological balance) (Persson and
Vihma, 2017).

Rinke et al. (2019) analyzed four different reanalysis products and concluded that,
while there is an overall agreement of a general robust moistening, there are significant
differences in terms of trend magnitude especially in the summer months where differ-
ences are larger than 0.05 kgm−2 per year. Based on the median of the four reanalyses,
the monthly moistening for October – May is mostly below 0.04 kgm−2. The moistening
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trend in the Arctic was also found based on reanalysis data (ERA-Interim) by Parracho
et al. (2018) who also noticed the strong interannual variability in winter. Finally, satel-
lite products can provide additional insights. While six different satellite products have
been systematically assessed by Crewell et al. (2021) for summer, and differences of up to
30% in monthly TWV in the central Arctic have been found, little is known about the
performances of these products (at least those operational without sunlight) in winter-
time. Boisvert and Stroeve (2015) analyzed monthly data from the Atmospheric Infrared
Sounder (AIRS) between 2003 and 2013. This satellite data reveal that the Arctic has
become wetter: TWV trends are mostly positive in winter and there is a large spatial
variability from month to month.

Altogether we find that the observation periods and considered temporal (or spatial)
averages differ in the presented studies, hindering intercomparisons between them. This
might explain some of the apparent discrepancies between them, e. g., in terms of TWV
trends. On the other hand TWV changes vary depending on the time of the year and
region that is of interest as well as on the investigated time period. Clearly, the overall
picture of Arctic TWV and its spatiotemporal trends and variabilities is not complete, not
even for the most recent decades.

Data: Water Vapor Satellite Product We now study the TWV satellite dataset from
the multi-parameter retrieval that was evaluated against ground truth data in the previous
section. This dataset comprises the retrieval from two different sensors that are listed in
Table 5.1: AMSR-E (until 2011) and AMSR2 (launched 2012). We use the AMSR2
data as provided by JAXA and not converted brightness temperatures based on, e. g.,
Meier and Ivanoff (2017), that is, the sensor data we are analyzing is not intercalibrated.
A possible change between the years prior and aer 2011 could thus be attributed to
sensor differences rather than actual (climatological) trends. We did apply the retrieval
on calibrated brightness temperatures as well but observed differences between the sensors
prevailed (see Appendix E.1). Because of the non-linearity of our retrieval method we
cannot apply common methods to intercalibrate the satellite product by matching it to
the reanalysis (e. g., Double-Differencing Method, Chander et al. (2013)). We therefore
use piece-wise linear regressions when analyzing trends. Due to higher uncertainties in
the presence of melt ponds that are not properly accounted for in our forward model, we
restrict the following analysis to the non-melting season from October to May.

Despite these limitations we now aim to answer the questions, where and by how
much the Arctic moistened or dried during the last twenty years according to the satellite
observations. We first look at variability to identify regions of higher and lower variability.
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6.2.2 Spatiotemporal Variability

In the following we use the daily resampled satellite product in the EASE projection of 25
× 25 km2. The Gaussian resampling method uses a maximum number of neighbors of 12,
a search radius of 12.5 km and a sigma of 5 km that is chosen as half the sampling interval
of the swath data.

For the winter months December, January and February we calculate mean values per
grid cell as well as standard deviations that are then averaged over the whole available
time span (2002 – 2023). Separating the dataset by sensor yields similar results (not
shown). The resulting mean winter state is shown in Figure 6.17a) while b) shows the
mean winter variability in terms of standard deviation of TWV (σTWV). The mean winter
TWV is higher over open ocean with 5.7 kgm−2 to 13.5 kgm−2 (5th – 95th percentile)
than over sea ice with 2.1 kgm−2 to 7.2 kgm−2 (5th – 95th percentile) and a median value
of 3.79 kgm−2. Here, the open ocean is defined as the area with mean winter SIC smaller
15%. The order of magnitude of the variability fits to the range of values documented
by Tomasi et al. (2020), who reported values between 0.7 kgm−2 to 2.5 kgm−2 based on
radiosonde station data. It is evident that the variability is also higher where values of
TWV are higher, which is most notably the case over the open ocean or in areas of lower
SIC such as the Barents Sea. The lower variability of TWV over high SIC areas is depicted
in Figure 6.18.
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Figure 6.17: Mean winter state of total water vapor (TWV) for December, January and February
averaged over 2002 – 2023 (a). Panel (b) shows the standard deviation giving the winter variability
of TWV for the same time period (December – February, averaged over 2002 – 2023). Panel c)
shows the relative variability. The mean ice edge (from the retrieved sea ice concentration at 15%)
and the Arctic regions are outlined as well.

Figure 6.18: 2D histogram of the standard deviation of total water vapor (σTWV), indicating its
winter variability over December, January and February, and the sea ice concentration (SIC). All
data above 66.5◦N, excluding land areas, is shown.
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6.2.3 Regional Time Series

Figure 6.19: Definitions of Arctic Regions from the National Snow and Ice Data Center (NSIDC)
(Meier and Stewart, 2023).

In order to compare regional time series for the Arctic regions shown in Figure 6.19 to
reanalysis we resample the reanalysis data (ERA5) onto daily grids in the EASE projection
of 25 × 25 km2 to match the satellite product. Here, the Gaussian resampling method
uses a maximum number of neighbors of 12, a search radius of 25 km and a sigma of 5 km.

We derive regional and monthly averages based on the regions outlined above (exclud-
ing land regions) for the satellite product, referred to as retrieval in the following, and
the reanalysis. First, we calculate daily regional averages and derive monthly mean values
from this regional data. Due to the shortcoming of the retrieval described in Section 5.6.5
some values are excluded and daily regional averages are only included when at least two
third of the area contains valid data. In order to derive monthly means, at least 20 days
need to have valid data.

TWV Winter Time Series The time series for four selected regions, Central Arctic,
Barents Sea, Beaufort Sea and Laptev Sea, are shown in Figure 6.20. Note the different
spatial extents of the regions ranging from 4.566×106 km2 (Central Arctic), 1.542×106 km2

(Barents Sea) and 0.692 × 106 km2 (Beaufort Sea) to 0.495 × 106 km2 (Laptev Sea). All
numerical values reported in the following are from the retrieval.

For all regions TWV is at the maximum in the transition season (either October or
May). In the Central Arctic, the maximum is found in May (both in reanalysis and
retrieval) between 4.5 kgm−2 to 6.0 kgm−2. The month of the minimum varies from year
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to year (both in reanalysis and retrieval) and is as low as 1.6 kgm−2 in 2003. In March or
April TWV increases again every year. The month-to-month variability from December
to March, given by the difference between maximum and minimum value in these months,
is less than 0.73 kgm−2.

The other regions show a similar seasonal dependence but the absolute TWV values,
their range and month-to-month variability are higher. The maximum of TWV is found
in either May or October (both in reanalysis and retrieval) and lies between 7.2 kgm−2

to 11.6 kgm−2 for the Barents Sea, between 6.2 kgm−2 to 8.0 kgm−2 for the Laptev Sea
and between 6.3 kgm−2 to 8.2 kgm−2 for the Beaufort Sea. The month of the minimum
also varies from year to year (both in reanalysis and retrieval) and is as low as 3.4 kgm−2

in the Barents Sea in January 2003, 2.5 kgm−2 in the Laptev Sea in January 2023 and
2.7 kgm−2 in the Beaufort Sea in February 2004.

The month-to-month variability from December to March strongly varies from year to
year: it lies between 0.3 kgm−2 to 2.8 kgm−2 for the Barents Sea, 0.3 kgm−2 to 2.1 kgm−2

for the Laptev Sea and 0.2 kgm−2 to 1.6 kgm−2 for the Beaufort Sea.

Comparison to Reanalysis Within the TWV time series differences to the reanal-
ysis are visible. They have partly been discussed in Section 6.1.3. We can see that the
differences vary from year to year and from month to month (see also Appendix, Fig-
ure E.3). In the Laptev and Beaufort Sea the retrieval reports higher values than the
reanalysis (about 1 kgm−2 with maximum differences up to 3.6 kgm−2 in November). In
the Central Arctic differences are smaller and average out (0.05 kgm−2) because of mostly
negative differences in the beginning and end of the non-melting season and positive differ-
ences in between. Monthly differences however can be as large as −1.8 kgm−2 in October
2004. In the Barents Sea the difference is systematically higher during the AMSR2 time
period (about 1.4 kgm−2) compared to the AMSR-E period (0.6 kgm−2). Because of the
sensor differences, especially evident in the Barents Sea data, we consider two independent
time series in the following section.

SIC Winter Time Series The corresponding time series of SIC is shown in the Ap-
pendix, Figure E.2. Except for the Barents Sea, SIC is high (> 90%) in all years for the
months November to March with little year-to-year variability. In the Barents Sea SIC is
lower (< 60%) and the year-to-year variability to variability is high, with a minimum in
2004 (below 30% in both reanalysis and retrieval).
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Figure 6.20: Regional time series of monthly total water vapor (TWV) from 2002 – 2023 for
October to May from the satellite retrieval (blue) and the ERA5 reanalysis (green), averaged over
the central Arctic (first panel), the Barents Sea (second panel), the Laptev Sea (third panel) and
the Beaufort Sea (fourth panel). Blue shading indicates the temporal variability of the retrieval
TWV given by the monthly standard deviation per grid cell averaged over the respective region.
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6.2.4 Changes in Arctic Total Water Vapor

As a first order approximation of changes in Arctic TWV we use the satellite time series
of gridded monthly data and obtain a rate of change from a fitted linear least-squares
regression of each grid cell over the AMSR-E and AMSR2 time period separately. The
regression is calculated using SciPy (Virtanen et al., 2020) and the p-value is calculated
for a hypothesis test whose null hypothesis is that the slope is zero. This approach fol-
lows Boisvert and Stroeve (2015), enabling a comparison against their results in the next
section. However we are aware of the unresolved debate about the use of p-values to
determine statistical significance (Ambaum, 2010; Shepherd, 2021). Frailties include that
p-values depend on sample size, for example, if we use daily data instead of monthly data
we get lower p-values but the values for the slope remain the same (not shown). High
p-values in our case mean that the null hypothesis cannot be rejected but that does not
automatically discard trends other than zero.

The trends2 in terms of the slope of the regression are shown in Figure 6.21 for Novem-
ber, January and March. Note that per grid cell a maximum of only n = 9 data points is
available for the AMSR-E time period (n = 11 for AMSR2). As additional measure of the
robustness of the derived slope we also calculate linear regressions for n−1 points, leaving
each year out once. The standard deviation of the hereby calculated slopes, called σslope,
serves as additional uncertainty metric shown in the Appendix, Figure E.4. In addition
we use a linear least-squares regression over the same time periods to derive trends for
the monthly averaged radiosonde land station data (introduced in Section 6.1.2), shown
as well in Figure 6.21 in the circles (only for stations with at least 5 years of available
data within the respective periods). Radiosonde trends with p-values smaller than 0.05
are shown with a bold outline.

For all months the changes are stronger and show more oen small p-values between
2002 – 2011 than between 2012 – 2023. In some regions, the trends also have different signs
in the two time spans. We note the patchiness of the trends over sea ice that can partly
be attributed to less data points in certain areas. Overall there is agreement between
these trends and the ones based on the radiosonde land station data, shown as circles in
Figure 6.21, but the trends based on ground-based data also differ in several cases from
the surrounding satellite grid cells (even in sign).

November Of the three selected months shown in Figure 6.21, the highest values of
the slope are found in November between 2002 and 2011. Here, the atmosphere over
ice got moister overall (red areas) but regional differences exist: the strongest positive
(up to 0.7 kgm−2/year) changes are observed for the Laptev Sea, the Northern area of
the Kara Sea and for parts of the Central Arctic between 90◦W and 180◦W. For these

2Note that this term is not to be confused with climatological trends for which our time span is too short.
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regions, relative uncertainties of the trend are below 20%. Negative changes are seen for
the ice-covered East Greenland Sea and the Southern area of the Kara Sea. σslope over sea
ice is on average 0.05 kgm−2/year (0.04 kgm−2/year) for 2002 – 2011 (2012 – 2023) and
lower than the observed changes in most areas.However, there are areas in the Central
Arctic and the East Siberian Sea with high σslope above 0.1 kgm−2/year for 2002 – 2011.
For the time period of 2012 – 2023 the atmosphere got drier above the Beaufort Sea and
large parts of the Central Arctic and moister above the East Greenland Sea and North-
East of Greenland. Both increasing and decreasing TWV are observed over the ice-free
Pacific between 2002 and 2011 and decreasing TWV between 2012 to 2023. Over the ice
free Atlantic east of 45◦W the atmosphere got drier between 2002 and 2011 and moister
between 2012 to 2023.

January Several patches of positive trends are seen in parts of the Central Arctic be-
tween 135◦W and 180◦W and in the Laptev and Kara Sea in January for the time period
2002 – 2011. This trend pattern is also observed between 2012 – 2023 although trend
magnitude values are smaller. For these areas σslope is lower than the observed trends and
over sea ice σslope is on average 0.04 kgm−2/year (0.03 kgm−2/year) for 2002 – 2011 (2012
– 2023). However there are areas in the Barents Sea with high σslope above 0.1 kgm−2/year
for 2002 – 2011. During the time span 2012 – 2023 we additionally observe decreasing
TWV in the East Greenland Sea close to the ice edge and in some parts of the Eastern Cen-
tral Arctic which is less pronounced for 2002 – 2011. Both decreasing TWV are observed
over the ice-free Pacific between 2002 and 2011 and mostly increasing TWV between 2012
to 2023. We see a moistening in the ice-free North Atlantic Ocean in January between
2002 and 2011 but decreasing TWV between 2012 and 2023, consistent with trends derived
based on data from the radiosonde station on Jan-Mayen.

March In March large areas of the Central Arctic show positive trends between 2002 –
2011 which are around 0.13 kgm−2/year. The atmosphere over the ice-free North Atlantic
got drier which is in agreement with radiosonde data. Again trend values, both negative
and positive, are small. Decreasing TWV are observed over the ice-free Pacific between
2002 and 2011 and increasing TWV between 2012 to 2023. Over the ice free Atlantic the
atmosphere got drier between 2002 and 2011 and shows hardly any change between 2012
to 2023. Over sea ice σslope is on average 0.04 kgm−2/year (0.03 kgm−2/year) for 2002 –
2011 (2012 – 2023).

Winter Trends The derived trends from the satellite dataset need to be handled with
care. First, our forward model consists of an idealized sea ice and snow setup that does not
include climatological changes of model parameters which could translate into changes of
the retrieval parameters. Examples could be changes in the sea ice thickness or a possibly
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changing percentage of refrozen melt ponds that would alter the emission characteristics
of the surface. Thus it is possible that the forward model setup is more representative of
a snow and ice pack at the beginning of the AMSR time series than of what one would
find now (or vice versa), and it may be the case that this introduces a bias in the retrieved
TWV.

Second, we are only looking at short time spans of about a decade. As described above,
the trends vary with the observed decade, per month and per region. The question posed
above, where and by how much the Arctic moistened or dried, thus requires a careful
refining by including the specific time period and time of the year that is of interest.
This is also true when one wants to compare these trend values to the results from other
studies, like the ones presented in the introduction or as done in the next section. Only
the area 75◦N – 85◦N, 135◦W – 180◦W shows a moistening in all three shown months
and in both time spans with p-values smaller 0.05. Here, we can speak of an overall
robust moistening. Based on both available literature discussed above and on the physical
relation between increasing air temperatures (as observed in the Arctic) and water vapor
given by the Clausius-Clapeyron relation3, this is reasonable. But the main conclusion
from this investigation is that the spatiotemporal variability of trends is high and needs
to be taking into consideration when analyzing TWV changes.

3The Clausius-Clapeyron equation relates the saturation vapor pressure of water to air temperature and
results in about 7% increase in TWV per degree warming assuming 100% relative humidity.
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Figure 6.21: Changes in total water vapor (TWV) from the slope of a linear regression over
monthly data from the AMSR-E time period (2002 – 2011, left panels) and the AMSR2 time
period (2012 – 2023, right panels). Changes over the same time from radiosonde-derived TWV are
shown in the circles. Thick circle outlines and stippling indicate changes that are significant at the
95th percentile. The purple line indicates the mean sea ice edge for the corresponding time spans.
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Figure 6.22: Mean values of total water vapor (TWV, left panel) and trends (from a linear
regression, right panel) over 2003 – 2013 (AIRS), values from Boisvert and Stroeve (2015) and
2002 – 2011 (AMSR-E, ERA5). The area considered here encompassed the Arctic regions Central
Arctic, the Canadian Archipelago, Beaufort Sea, Chukchi Sea, East Siberian Sea, Laptev Sea and
Kara Sea, excluding land areas. The standard deviation derived from spatial averaging is shown
as error bars.

Comparison to AIRS Satellite and Reanalysis Data As stated in the last section,
the atmospheric water vapor trends vary spatially and from month to month. Boisvert and
Stroeve (2015) provide monthly values for TWV trends for a large region encompassing
the Central Arctic, the Canadian Archipelago, Beaufort Sea, Chukchi Sea, East Siberian
Sea, Laptev Sea and Kara Sea from 2003 – 2013. In order to compare our derived mean
TWV and trends to the values given in Boisvert and Stroeve (2015), derived from the
infrared sounder AIRS, we also compute these regional averages for the satellite product
(for the AMSR-E period) and the reanalysis ERA54, shown in Figure 6.22. The time
spans are slightly different due to the availability of the AMSR-E data. Note the large
spatial variability, especially for the AMSR-E satellite product, denoted by the error bars,
indicating that this representation of trends falls short in describing the complexity of
Arctic TWV trends. However, we can still compare the datasets here: the seasonal cycle
of TWV (le panel in Figure 6.22) is evident in all datasets with higher values in May and
October and the minimum in February. Reanalysis and AIRS agree very well in January
and February while our satellite product is higher (about 1 kgm−2). Similar observations
can be made in November and December. In May and October the reanalysis product
is higher than both AIRS and our satellite data. In terms of trends (right panel), the
differences between the three datasets are more pronounced, and are highest in November
when the trends range from −0.023 kgm−2/year (ERA5) to 0.183 kgm−2/year (AMSR-E
satellite product) . While our satellite product shows positive trends in all months, the
reanalysis data gives a negative trend in October and November. AIRS shows a negative
trend in January and October but not in November and gives the lowest absolute trends
compared to the other two datasets in all months except for November. To some extent
the trends of the two satellite datasets are correlated, with both datasets providing higher

4Trends of the reanalysis data are obtained the same way as for the multi-parameter retrieval output
dataset described in the previous section.
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values in November, December and February than in the other months. The correlation
with respect to the reanalysis is lower for both datasets.

We can learn from this comparison that the differences between satellite and reanalysis
and between different satellite products are too large on this pan-Arctic scale to allow for
confident statements regarding the magnitude of changes within one decade. But although
the magnitudes vary, the different datasets do agree on the sign in most months, yielding an
overall moistening. However, as we have seen in the previous section, trends can strongly
vary from decade to decade. Additional intercomparisons of satellite products are needed
as well as longer time periods in order to arrive at robust statements. Also, meaningful
conclusions should be drawn on regional levels instead of Arctic-wide averages.
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6.2.5 Outlook: Water Vapor Feedback

As outlook we like to explore how this new dataset can provide insights into the water
vapor feedback. We hypothesize that three major regimes are prevailing in the Arctic,
sketched in Figure 6.23. The first case is the one of low SIC where moisture is available
and increasing temperatures will increase atmospheric TWV according to the Clausius-
Clapeyron relation, i. e., about 7-9% increase in TWV per degree warming at 100% relative
humidity5. In the second case SIC is high and the relative humidity is not saturated
because there is no moisture source. The increase in atmospheric TWV with increasing
temperatures will be less than what is predicted by Clausius-Clapeyron. In the third case
SIC is high as well, but increasing temperatures increase atmospheric TWV according to
the Clausius-Clapeyron relation because moisture is available from other, remote sources,
e. g.,from meridional transport. As first example we show relationships between regional
and monthly averages of the logarithm of the retrieved TWV, as well as SIC, presented in
Section 6.2.3, and the 2-m monthly temperature anomalies from ERA5 for the same regions
in Figure 6.24. As an illustration, we show data for January for three regions, the Barents
Sea (le panel), the Beaufort Sea (center) and the East Siberian Sea (right). In the case
of the Barents Sea, SIC is mostly below 50% and strongly and positively correlated with
the 2m air temperature (T2m) anomalies. ln(TWV) shows a strong positive correlation
as well and an increase of about 5% per degree warming, thus this case is corresponding
to the first, hypothesized regime. In the case of the Beaufort Sea, SIC is high and not
correlated with the 2-m temperature anomalies. ln(TWV) is correlated neither, thus this
case is corresponding to the second, hypothesized regime. In the case of the East Siberian
Sea, SIC is high and not correlated with the 2-m temperature anomalies. ln(TWV)
however is correlated to the 2-m temperature anomalies and increases by about 5% per
degree warming, thus this case corresponding to the third, hypothesized regime. These are
preliminary results. More cases and months need to be studied and methods to identify
potential remote moisture sources need to be applied, e. g. using backward trajectories
of air masses. Also, the presented relationships between SIC, TWV and T2m need to
be verified using other satellite products. Further, the question needs to be answered
whether temperature at other heights are more appropriate than T2m because of moisture
inversions. Here, we merely want to illustrate the potential of deriving such relationships.
They can help in understanding the water vapor feedback. Because we expect a decrease
of SIC with rising Arctic temperatures, the rate at which TWV increases, and thus the
strength of the water vapor feedback, can change as well, possibly depending on the
region (or regime). Using the satellite data we may identify regions where we expect an
accelerated change of TWV with decreasing SIC, and, consequently, an enhanced water
vapor feedback.

5The upper limit of the increase given by the Clausius-Clapeyron relation is higher at low temperatures
following the approximation given in Bolton (1980).



166 6.2 Trends and Variability of Arctic Water Vapor

Figure 6.23: Hypothesized regimes of relationships between atmospheric total water vapor
(TWV) and temperature. a) low sea ice concentration (SIC), high moisture availability, high
correlation between temperature and TWV, b) high SIC, low moisture availability, low correlation
between temperature and TWV, c) high SIC, high moisture availability, high correlation between
temperature and TWV.

Figure 6.24: Scatter plots of regional and monthly averages of the logarithm of retrieved total
water vapor (ln(TWV), red squares) against the monthly 2m temperature (T2m) anomalies from
ERA5 for the same regions for January. Circles show the sea ice concentration (SIC) compared
against the T2m anomalies with colors denoting the year. Selected regions are the Barents Sea
(left), the Beaufort Sea (center) and the East Siberian Sea (right). A linear least-square fit of
ln(TWV) against T2m anomaly is shown as dotted line, where the number indicates the slope and
the number in brackets the upper limit of the slope given by the Clausius-Clapeyron relation.



Chapter 7

Conclusions and Outlook

The protagonists of this thesis are sea ice, snow, atmospheric water vapor, cloud liquid
water. We use their microwave emission and scattering properties to unravel the Arctic
atmosphere and snow-covered sea ice. At the heart of this work lies the development of
an improved forward model and multi-parameter retrieval method and its evaluation with
a focus on atmospheric water vapor. In contrast to many single-parameter retrievals, the
multi-parameter retrieval uses all frequency channels and polarizations and, thus, aims to
fully exploit the information content available from the satellite measurements. In this
thesis, atmospheric contributions are not considered as noise as done in sea ice concen-
tration (SIC) retrievals but instead the method takes advantage of the information about
liquid water path (LWP) and total water vapor (TWV) contained in the signal. Because
it is not tuned to a specific geophysical parameter the multi-parameter retrieval may not
be as accurate or precise as a single-parameter retrieval on one hand but on the other
hand it provides a consistent set of parameters, enabling simultaneous analyses of sev-
eral parameters. For the multi-parameter retrieval to be successful, the surface emissions
need to be well represented in the forward model. For this we have studied the concept of
surface emissivity, performed measurements of surface emissions, and related surface emis-
sion changes to changes in satellite SIC retrievals before we improved and evaluated the
multi-parameter retrieval. The summary and conclusions presented here are structured ac-
cording to the different chapters because the thesis covers these various dimensions. Main
achievements are listed at the beginning of this chapter and are additionally highlighted
in bold fonts in the text. Further research directions with regard to the multi-parameter
retrieval method are considered in the second section.
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7.1 Summary and Conclusions

The most important achievements of this thesis are:

I. Measurements of summer Arctic sea ice emissivities in the marginal ice zone.

II. An analysis of the effects of warm air intrusions on satellite sea ice concentration
retrievals in a case study.

III. Improvements of a multi-parameter satellite retrieval using a microwave emission
model of the Arctic snow and sea ice.

IV. An assessment of the performance of this retrieval with a focus on atmospheric total
water vapor.

Snow, sea ice, atmospheric water vapor and cloud liquid water are the main players
in the microwave regime. These protagonists and their role in Arctic amplification are
introduced in Chapter 1, including the quantities they are measured in which are assessed
in this thesis: SIC, snow depth (SND), TWV and LWP. The fundamentals of microwave
remote sensing and the inverse method for the satellite retrieval are outlined in Chapter 2.
A brief discourse about some inherent uncertainties of remote sensing and the ambiguity
of a ground truth is included.

The ability of sea ice to emit electromagnetic radiation is oen described by the emis-
sivity which is measured in field studies and used in satellite retrievals. Seemingly straight-
forward, the concept of sea ice emissivity actually requires a nuanced analysis and is re-
viewed in Chapter 3. We underline the importance of intrinsic assumptions when
deriving the quantity emissivity and state under which conditions the result-
ing emissivities are more (or less) prone to these assumptions. Chapter 3 also
includes a literature review of measurements of Arctic sea ice emissivity and summarizes
the therein used assumptions. Measurements of sea ice brightness temperatures (TBs) and
emissivities from platforms other than satellites are rare. So in summer 2022 we set sail on
the research vessel Polarstern to the marginal ice zone in Fram Strait. During that cruise
we observed ice and ocean surface emissions at frequencies from 22 to 243GHz with a ship-
based instrumental setup using a novel mirror construction to switch between atmospheric
and surface observations flexibly. Chapter 3.2 describes the measurement design and how
emissivities are estimated, and summarizes the results: In the summer marginal ice
zone a clear distinction between open ocean and sea ice is found at frequencies
between 22GHz to 31GHz, vertical polarization, and a large variability of ice
emissivities is found at 243GHz, horizontal polarization.

We then bridge between surface emissions and satellite retrievals and analyze how
the emissions of the snow-covered sea ice can change due to atmospheric events and how
that subsequently impacts satellite retrievals of SIC in a case study in Chapter 4. The
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presented case study is about two warm air intrusion events in April 2020 during the
Multidisciplinary driing Observatory for the Study of Arctic Climate (MOSAiC) expe-
dition and combines satellite and in-situ observations as well as model results. We find
that the changes in surface emissions, which we attribute to large-scale surface
glazing, are relevant for several SIC retrieval algorithms.

The strong influence of the surface emissions on satellite retrieval (uncertainties) moti-
vates Chapter 5, the heart of this thesis: a physical model of the microwave emissions
of sea ice and snow is incorporated into a satellite retrieval. The forward model
maps geophysical parameters to top-of-atmosphere TBs. For the surface component
of the forward model we establish an idealized layered snow and ice pack using
literature data of snow and ice parameters such as density or salinity. This new
model extends the forward model used in previous works in a way that (empirical) surface
emissivities, whose limitations have been mentioned above, are no longer needed. Because
snow depth is included as new parameter, changes in TB related to this parameter can be
simulated and snow depth can be retrieved.

To answer whether this model can simulate realistic (ranges of) TBs we need ground
truth input parameters. Fortunately, we have the unique and extensive datasets acquired
during the MOSAiC expedition as ground truth and can evaluate the new forward model
against co-located satellite TBs between 6.9GHz to 89GHz that are measured by the
satellite sensor AMSR2 since 2012 and have been measured by its predecessor AMSR-E
from 2002 – 2012.

The model represents the temporal evolution and variability of TB from
October to April well and the agreement is found to be especially good for
the low-frequency, vertically-polarized TBs. For the higher frequencies at vertical
polarization, especially for 89GHz, the bias between model and satellite decreases from
October to April, possibly related to snow metamorphism: our model setup could be more
representative of a snowpack in the late winter season than at the beginning of winter.

Because of the Brewster effect, horizontally polarized TBs are more sensitive to changes
in snow and ice properties which are not fully represented in our model. As expected, the
agreement between model and satellite is indeed lower at this polarization.

As described above, the snow and ice model setup is idealized and each snow and ice
layer has fixed internal parameters like correlation length or density based on literature and
campaign data. The impact of the parameter choices on the simulated TBs depends on the
interplay of the parameters and on the state (described by snow depth, temperature and
ice type). The uncertainties of the forward model are estimated using a Monte
Carlo-like method. The results of this uncertainty analysis exhibit about the same order
of magnitude and frequency-dependence as the TB difference between model and satellite
described above. The majority of the deviations between model and satellite can
therefore be explained by the model parameter choices. For 89GHz, horizontal
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polarization, however, we find indications that not all sources of uncertainty are accounted
for (e. g., scattering mechanisms).

The retrieval method, inversion by optimal estimation, is a Bayesian approach and pro-
vides consistent sets of nine retrieval parameters and their uncertainties, namely TWV,
LWP, SIC, multiyear ice fraction, snow-ice interface temperature, snow-air interface tem-
perature, sea surface temperature and wind speed (the latter two only over open water).
The uncertainties from the Monte Carlo analysis are used as weights (in terms of the
covariance matrix in the optimal estimation scheme) in the retrieval. As the method is
limited with regard to independent measurements, a priori information about the state is
needed and used in the inversion as constraints. Here, we use climatologies projected on
an Arctic-wide grid to provide seasonally varying a priori data for each grid cell.

To investigate whether the new forward model improves the retrieval, the retrieval
output is evaluated against the MOSAiC ground truth. For most points in time, the
ground truth values lie within the retrieval uncertainty. The retrieved values, except for
the snow-air interface temperature, differ from the a priori, i. e., the retrieval does not
reproduce the a priori but provides additional information.

For the non-melting season (October to May), our four protagonists are evaluated
further using additional campaign and station data and are compared against reference
datasets, such as other satellite products or atmospheric reanalysis data. In summary, we
find for SIC, SND, and LWP:

• An excellent agreement for SIC in comparison to a reference dataset
containing scenes of 0% and 100% ice concentration. Good agreement, but spurious
ice in open water areas is found compared to a reference satellite dataset. Because the
deviations between the two satellite datasets are larger than the retrieval uncertainty
we conclude to increase the retrieval uncertainty to 7%.

• A promising SND retrieval. Reference data is sparse but a comparison to air-
borne campaign data reveals a clear improvement compared to the climatological
priori. Spatial patterns are as expected and for the late winter in good agreement
with the reference satellite product. For the beginning of the freezing season, how-
ever, retrieved uncertainties are very high (15 cm in October, corresponding to rel-
ative uncertainties higher than 100%) and deviations to the reference product are
high and show a high spatial variability.

• Too high retrieval of LWP in a comparison encompassing 20 years to ground-
based station data. While the order of magnitude and the spatial patterns of LWP
are comparable to reanalysis data, some areas are persistently featuring higher values
likely due to the surface representation rather than actual atmospheric events. The
MOSAiC data however shows that the method is sensitive to changes in LWP which
motivates future studies.
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We find cases with no true convergence in which the method retrieves the upper bound-
ary of snow depth and flag this data as being highly uncertain. This is currently one of
the main limitations of the method: under certain conditions low TBs are observed
by the satellite radiometer that the forward model fails to simulate. While this
affects usually only 1.3% of the daily data on average, in certain years and months this
percentage is above 5%. The reasons for this shortfall need further research.

Chapter 6 centers around TWV. The agreement between our dataset and cam-
paign as well as radiosonde station data is convincing. Performance substan-
tially improves compared to the previous version of the retrieval. We can
compare TWV distributions and find satisfactory agreement in terms of the
statistical parameters such as mean and standard deviation because the radiosonde
station datasets are large. Comparisons to the reanalysis ERA5 reveal differences between
the retrieval from sensor AMSR-E and AMSR2. Additionally, we find that differences
between our dataset and the reanalysis vary regionally, showing a dependence on the ice
type, and from month to month.

The second part of Chapter 6 is an investigation of spatiotemporal variabilities
and trends of TWV based on our new satellite retrieval dataset spanning the
years from 2002 to 2023. In the winter months December to February, the atmo-
sphere over the ice-covered Arctic Ocean is dry (for most areas below 4 kgm−2). Using
the standard deviation over these months as measure of the variability of TWV we iden-
tified regions of higher and lower variability over sea ice. It lies between 0.5 kgm−2 to
2.5 kgm−2 and is higher in the regions closer to the ice edge. Over open ocean the vari-
ability is between 2.0 kgm−2 to 3.1 kgm−2. Spatially averaged time series of TWV reveal
similarities and differences in TWV between the different Arctic regions and between our
satellite retrieval and the reanalysis ERA5. The seasonal cycle is evident in all regions
with maximum values in either October or May. As expected, the Central Arctic is the
driest region and the Barents Sea, being not fully ice-covered, has a moister atmosphere
and larger month-to-month variability. Using a straightforward measure of changes by
taking the slope of a linear regression as metric, we investigate whether a region has be-
come drier or wetter over the satellite time span. Because of the sensor differences revealed
by comparisons to reanalysis data, we consider the time period of 2002–2011 (AMSR-E)
and 2012–2023 (AMSR2) independently. For the first time span we additionally compare
the changes of the new dataset with reanalysis data and another satellite product from
the infrared sounder AIRS (Chapter 6.2).

In the AMSR-E period, the mean pan-Arctic TWV from our satellite retrieval is higher
than the reanalysis and Atmospheric Infrared Sounder (AIRS) data for the months Novem-
ber to April. In terms of derived trends, our satellite data shows the strongest moistening
in all months of the order of 0.05 kgm−2 to 1.8 kgm−2 per year. However, the main conclu-
sion from this investigation is that the spatiotemporal variability of trends is high
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and needs to be considered when analyzing TWV changes. As described above,
we see an advantage in the possibilities of simultaneous analyses of several parameters,
e. g., correlating sea ice loss and total water vapor change, a direction in research already
taken in Chapter 6.2.5. We consider this mostly an advantage. However, there might be
cases when changes in certain parameters obscure changes in others, e. g., are we observing
actual changes in LWP or rather changes in surface conditions: this will be important for
future works.

7.2 Outlook: Further Method Development

While working on the forward model and retrieval method, many ideas and suggestions
evolved on how to improve the retrieval. Not all of them could be implemented, but they
shall be collected here, for the sake of future researchers who may build upon our work.
We also mention our suggested first steps for each aspect. We start with the forward
model itself.

Forward Model In general, Monte Carlo-like methods may be used to find the most
relevant forward model parameters and to focus the improvement on those. One major
goal here is to achieve simulations of low TB as observed in certain areas over multiyear
ice (MYI). Currently, too high snow depth and possibly too low TWV are retrieved in
these areas. Aspects regarding the improvement of the forward model are:

• Forward model parameter choices - surface: the surface model contains many fixed
model parameters. To some extent their influence on the modeled brightness temper-
atures is illustrated by the uncertainty analysis in Section 5.4.2. Some of the surface
model parameters, e. g., the snow correlation length, could be adapted in the future
using more accurate in situ data. Others, like ice thickness or snow density, might
be parameterized as a function of, e. g., time, as they vary over the season. Here,
the first step could be a thorough analysis of the MOSAiC SnowMicroPen (SMP)
measurements to learn more about the correlation lengths and density of snow and
their temporal evolution.

• Forward model parameters choices - atmosphere: like the surface model, the atmo-
spheric model contains many fixed model parameters. Uncertainties of those at-
mospheric parameters could be estimated using other models like PAMTRA (Mech
et al., 2020) in an inter-model comparison, which could be performed as a first step
for typical Arctic conditions.

• Forward model parameterizations: All microwave emission models include a multi-
tude of model choices. These include the calculation of the effective permittivity
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of a dielectric mixture, the micro-structure representation or the solver of the ra-
diative transfer equations. Inter-comparing MEMLS_ice and SMRT is a first step
that could be taken to validate model choices. The SMRT model has an active com-
munity and includes even more model choices than the current implementation of
MEMLS_ice1.

• Forward model assumptions and limits: Only recently the SMRT model was eval-
uated for frequencies higher than 89GHz for snow (Wivell et al., 2023). This is
an interesting finding because, technically, concepts like the effective permittivity
of a mixture imply that the wavelength is large with respect to the inclusions in
the mixture. Exploring the (theoretical) limits of the parameterizations used in the
forward model also for sea ice is a necessary next step, especially when frequencies
higher than 89GHz (upcoming satellite missions) will be considered. Also, scatter-
ing in the atmosphere is neglected. Scattering-allowing models like PAMTRA can
be used to test this assumption for 89GHz which is closest to the assumed limits
of negligible scattering in microwave remote sensing. The assumption is certainly
no longer true for a precipitating atmosphere, which, if the Arctic is transitioning
to a rain-dominated regime as some studies suggest, might become more and more
relevant. A first step is to introduce a quality flag tailored towards detecting rain.

• Surface and interface roughness: In order to treat surface roughness correctly in our
model we need both realistic forward model parameter choices and a parameteriza-
tion. What is the roughness of snow on sea ice at relevant length scales? How about
the roughness at interfaces such as the snow-ice interface? How can we take into
account the size of a satellite footprint, e. g., tilted surfaces? What are the limita-
tions in our parameterizations when wavelength and roughness parameters are of the
same order of magnitude? The first question may be answered in a first step using
the data from a rapid photogrammetric method that was used during MOSAiC and
ATWAICE campaigns to measure surface roughness.

Inversion Method Besides the forward model, the inversion method itself may be
improved in various ways:

• A priori covariance: Work is underway to evaluate the impact of using both tempo-
rally varying variances (e. g. a lower variance of TWV in winter than in spring as
derived from reanalysis) and correlations. Here, the state dependence of the corre-
lations (e. g., different correlations of TWV and surface temperature depending on
SIC) is a major challenge.

1Alas, it is currently too slow to be used in inversion method for large satellite datasets.
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• Temporal and spatial correlations: currently, each satellite footprint is evaluated
independently of its surrounding observations and of the observations of the same
area at an earlier point in time. However, these observations are likely correlated.
The amount by which a parameter can change from, e. g., one day to the next is more
or less probable. Also, certain parameters are likely spatially correlated, although the
correlation length scale might be small, as for snow depth and sea ice thickness (below
100m (Itkin et al., 2023) or even unknown) and strong gradients do exist as well,
especially in the marginal ice zone. It is feasible to include this information in the
cost function by, e. g., punishing strong deviations from the average surroundings.
This needs of course some care in order to avoid a bias and to still include true
outliers, such as polynyas.

• Optimization scheme: currently the Levenberg-Marquardt method is used to min-
imize the cost function. The modular code setup that is now implemented allows
exchanging this optimization scheme against others, e. g., statistical methods. In a
first test they most oen converged to the same solution but at higher computa-
tional cost, though they could be of interest for specific cases that are known to be
challenging (e. g., the ice edge).

• Non-Gaussian probability density functions (PDFs): the method assumes that the
retrieval parameter distributions are described by Gaussians. If the actual PDF is
known one may transform this quantity to one which then is normally distributed.
For example, if we would find out the LWP is best described by a log-normal distri-
bution we may instead use the parameter exp(LWP) in our forward model.

• Positivity: similarly to the argument above we may consider transformations enforc-
ing positivity of certain parameters like TWV or SIC.

• Spatial resolution: currently, the method uses the brightness temperature product
resampled to the lowest spatial resolution. Techniques exist (e. g., Ludwig et al.
(2020)) to merge finer and coarser resolution datasets in order to enhance the spa-
tial resolution. These possibilities should be exploited in the future. Some of the
discrepancies between in situ measurements and retrieval parameters can likely be
attributed to the footprint size, see 2.3. It would be interesting to see whether higher
resolution products would increase accuracy and precision.

• Dealing with uncertainties: We saw in Chapter 4 how ice layers on the snow, caused
by warm air intrusions, influence satellite retrievals. As a first step, detection al-
gorithms may be implemented to detect possible rain on snow events or warm air
intrusions in order to set quality flags in the final satellite product that indicate
higher uncertainties. The same holds for a precipitating atmosphere.
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Extension to Summer Months In principle, the surface model does not account for
melting conditions (like snow wetness or melt pond formation). Analysis of the summer
data (Section 6.1.1) indicates that the method can still provide information about TWV.
Here, optical retrievals (and more in situ data) are available and more studies need to
follow to analyze summer data. It is worth testing whether changing the snow wetness
model parameter can improve the results.

Extension in Frequency Space Finally, we want to point out the potential of com-
bining our modular retrieval setup (Chapter 2.2) with upcoming satellite missions, like the
Arctic Weather Satellite or the Copernicus Imaging Microwave Radiometry (CIMR). Our
retrieval setup is modular, making it possible to extend it to more frequency channels.
On one end of the spectrum this has already been demonstrated for a lower frequency ob-
servations (L-Band, i. e., 1.4GHz, Scarlat et al. (2020)). The WALSEMA measurements
presented in Chapter 3 on the other end may serve as a reference when incorporating the
higher frequency channel at 243GHz in the forward surface model. For the atmospheric
part, the current model which neglects scattering can not be used but it can readily be
exchanged against other atmospheric models.
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Appendix A

Angle of Transmission

Figure A.1: Angle of transmission (θ2) for radiation entering medium 2 from air (i. e., with
permittivity ϵ1 = 1 and refractive index n1) under an incidence angle of θ1=55◦ depending on
the imaginary part of the permittivity of medium 2 given by ϵ2 = ϵ′ − iϵ′′ with ϵ′ = 3.17 (and
refractive index n2). Shown is the exact formulation following Stratton (1941) (orange line) and
the approximation using θ2 = sin−1(sin θ1 n1

Re(n2)
) (blue line).
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Appendix B

MOSAiC Expedition Case Study

B.1 Site Perspective: Ground-based Radiometry

We focus on two microwave radiometers deployed during Multidisciplinary driing Ob-
servatory for the Study of Arctic Climate (MOSAiC) observing the surface at 6.9GHz,
10.7GHz, 19GHz and 89GHz at horizontal and vertical polarization, similar to AMSR2.
The radiometers made observations at incident angles between 35◦ and 75◦. In this study,
we show values observed at 45◦ (6.9GHz ) and 55◦ (19GHz and 89GHz). For this in-
cident angle, the field of view (FOV) of the radiometers is around 6 m for 19GHz and
89GHz and 11 m (H-Pol) to 14 m (V-Pol) for 6.9GHz. Details are provided in the sup-
plemental Text S1 and Table B.1. Due to increased snow accumulation in front of the
instruments aer the warm air intrusions, the snow was much deeper around the ground-
based radiometers compared to the surrounding MOSAiC floe. Especially during and aer
the second warm air intrusion, deep snow dris formed in the FOV of some radiometers
(Text S2, Figures B.3 and B.4).

B.1.1 Brightness Temperatures from Ground-based Radiometers

The brightness temperatures of the ground-based radiometers between April 15 and 21 are
summarized in Figure B.1. All data shown in this figure is smoothed applying a running
mean with a one hour window. The analyzed period can be divided into four phases.
The gray shaded areas indicate the phases of the warm air intrusions with high TWV (see
Figure 4.1) and high temperatures. The first phase is the period from April 15 to April 16,
noon. In this period the first warm air intrusion hit the MOSAiC site. 2m air temperatures
are rising from −12◦C to −2◦C. Increased wind speed and (wet) snowfall led to changes
of the snow cover. At, e. g., 6.9GHz horizontal polarization (Figure B.1 (b)), fluctuations
during the peak of the first warm air intrusion indicate here that surface properties in
the FOV of the radiometer changed and that there might be already some low amount of
liquid water building in the uppermost layer of the snowpack. However, these fluctuations
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Figure B.1: Meteorological conditions and brightness temperatures observed by the ground-based
radiometers during the events. (a) 2m air temperature (T2m) and 10m wind speed during the
warm air intrusions. In addition, three major snowfall events are highlighted (see Figure 4.1). Rows
(b) – (d): Observed brightness temperatures for vertical (V) and horizontal (H) polarizations for
6.9GHz, 19GHz, and 89GHz, respectively. Background shading indicate the four different phases
for cloudy (gray) and clear sky (white) conditions.
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can also be caused by snow dune wandering through the FOV of the radiometer. At
19GHz horizontal polarization, no such fluctuations are visible. These measurements were
taken several meters apart from the 6.9GHz observations and thus the snow conditions
could have been very different during the first storm event. While the average brightness
temperature at lower frequencies (6.9 to 19GHz) is only slightly increasing, a strong
increase can be found at 89GHz (Figure B.1 (d)), indicating that mainly the temperature
of the upper snow layer changed (89GHz has the lowest penetration depth), which is
consistent with Figure 4.5.

The second phase, between April 17 and April 18 is marked by a rapid cooling below
−15 ◦C, clear sky and calm conditions. Brightness temperatures at all frequencies are
stable during this phase with a slight cooling at 19GHz and a strong drop in brightness
temperature at 89GHz.

The third phase marks the second, stronger warm air intrusion where the 2m air
temperature reached 0 ◦C. Strong changes for horizontally-polarized TB at all frequencies
indicate changes in the snow surface due to snow fall and dri as well as accumulation
and possible formation of liquid water in the snow. However, during this period, increased
snow accumulation around the instruments complicate the interpretation of the data at
the remote sensing site as the exact timings of snow dune formation are unknown.

Of special interest is the fourth phase, the period right aer the second warming event,
where a strong decline in brightness temperatures is observed at higher frequencies. At
89GHz, brightness temperatures at both polarization start decreasing around April 20,
11:00. Aer 14:00 and until 18:00, brightness temperatures at horizontal polarization
decrease much faster than at vertical polarization, leading to an increase in polarization
difference similarly to what was observed from the satellites (Figure 4.4). We note that
the start of this pronounced decrease coincides with a snowfall event, indicating that there
could have been snow dune formations. However, in the case of snow dri through the
FOV of the radiometer, we would expect higher temporal variability at H-pol. Instead,
brightness temperatures decrease in an almost monotonic way.

At the lower frequencies, this drop in TBH is less pronounced. In contrast to the
satellite observations, the PD(89) of the ground-based observations recovers aer less
than one day and thus much faster than the satellite measurements. A likely explanation
is the accumulation of snow in front of the ground-based radiometers, which does not
occur on the satellite scale. This already highlights the need of auxiliary data when using
ground-based measurements to interpret satellite data due to the local snow conditions.
Unlike the snow dris that accumulated in front of the instruments, most of the level ice
on the floe-scale did not experience accumulation during this event.
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B.1.2 Model Experiment On-ice Site: Simulation of a Glaze Ice Layer

Similar to the simulations of the SnowMicroPen (SMP) profiles (Section 4.1.3), we perform
an experiment with simulating the effect of a glaze ice layer in the FOV of the radiometers.
In the model, the glaze ice layer is approximated by a thin, radiometrically flat ice layer
(≤ 1.6mm) at top of the snowpack. The setup is chosen such that the model can reproduce
the observed PD changes from the ground-based radiometer at 6.9GHz and 89GHz during
phase 4, i. e., the clear sky phase aer the second warm air intrusion (fourth phase in
Figure B.1). As discussed earlier, during this phase, the increase in PD at 89GHz cannot
be explained by cloud forcing and is most likely due to the formation of a glaze ice layer
in the FOV of the radiometer.

For the experiment we simulate an ice layer that starts developing at April 20 at
around 14:00 and grows up to 1.6mm until 20:00. Aer that we allow a layer of new
snow to accumulate on top of this ice layer in order to reproduce the decrease in PD(89)
from April 21 at 03:00 onward. We know of the increased snow accumulation in front of
the instruments due to snow dri formation as wind speed was high during this period
(Figure B.1), however the exact timing of new snow accumulations remains a unknown.
The reflectance data from the terrestrial laser scanner (TLS) scan on April 22 shows that
a glaze ice layer is not visible anymore in the FOV of the radiometers by this date. Figure
B.2 shows the observed and simulated brightness temperatures between April 20 14:00
and April 21 08:00. With this set-up it is possible to reproduce the observed increase of
polarization difference at 89GHz indicating that indeed the formation of a glaze ice layer
likely explains the strong increase in observed PD 89.

In summary, the temporal development of microwave brightness temperatures mea-
sured by the on-ice radiometers and especially their polarization difference can be ex-
plained if a thin glaze ice layer is added in the microwave emission model. Such a glaze
layer actually was observed in the field. The effect of the glaze ice layer is larger at higher
frequencies and mainly affect the polarization difference.

B.1.3 Supplemental Text S1 - Ground-based Radiometer Observations

We focus on two microwave radiometers deployed during MOSAiC observing the sur-
face at frequencies ranging from 6.9GHz to 89GHz, similar to AMSR2. Details are pro-
vided in Table B.1. They were installed next to each other on the ice facing the same
area but the footprints do not overlap (see Figure B.5). The low-frequency system of
HUTRAD (Helsinki University of Technology Radiometer) (Hallikainen et al., 1996; Col-
liander et al., 2007; Lemmetyinen et al., 2009) measures at three frequencies at 6.825, 10.65
and 18.7GHz, at two orthogonal polarizations H and V. During MOSAiC, HUTRAD had
a sampling rate of 1 s, the dataset used here was averaged to 1-minute temporal resolution
in order to decrease fluctuations. HUTRAD was observing at a fixed incident angle of
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Figure B.2: Model experiment adding a glaze ice layer on top of the snowpack. The model
experiment covers parts of phase 4 after the second warm air intrusion (see Figure B.1). Panel
(a) shows the observed 2m air temperature. In addition the glaze and snow layer setup used for
the simulations (SIM) is shown. Panel (b) and (c) show the observed (OBS) and simulated (SIM)
brightness temperatures for PD 6.9 (b) and PD 89 (c). (SIM) refers to the simulations without and
(SIM Glazed) to the simulations with the glaze layer included in the model setup.
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Table B.1: HUTRAD and SBR radiometric properties: Shown are frequency (GHz), po-
larization P, radiometric bandwidth BW (MHz) and sensitivity (K), incidence angle θ
(degree), field of view (FOV) given by the half power beam width (degree) and the FOV
on the ground (cm) based on an instrument height of 0.8 m (HUTRAD) and 1.1 m (SBR)

HUTRAD SBR
Frequency (GHz) 6.9 10.7 19 89

Polarization H V H V H/V H/V
Bandwidth (MHz) 310 310 120 120 1000 4000
Sensitivity (K) 0.09 0.11 0.24 0.22 0.04 0.08

θ (◦) 45 45 45 45 55 55
Field of View (◦) 11.2 14.8 6.6 9.1 6 5.88
Field of View (cm) 22 × 32 30 × 42 13 × 19 18 × 26 20 × 35 20 × 35

45◦. With an instrument height of 0.8 m the largest footprint size (at vertically-polarized
6.9GHz) is 30 cm × 42 cm. The radiometer was deployed at a fixed location during the
whole period investigated. The uncertainty (i.e., 2× standard deviation) of the calibrated
brightness temperature is estimated to be around 3 K. The internal temperature control
of the 18.7GHz receiver failed early on in the MOSAiC campaign, which made measure-
ments unstable and unusable for our investigation. The surfaced-based radiometer from
University of Manitoba (SBR) observes at 19, 37 and 89GHz (Radiometrics, 2004). Ra-
diometric properties are provided in Table B.1; for more detailed specifications see Table 1
in Derksen et al. (2012). The SBR was measuring in scanning-mode with incident angles
varying from 40◦ to 70◦ in 5◦ steps. The sampling rate varies between 1 s and 5 s. For this
study, we only used the measurements at 55◦, as most data were collected at this angle.
The footprint size is about 20 cm × 35 cm (assuming 1.1 m instrument height). Similar to
HUTRAD the SBR data are resampled to 1-minute temporal resolution. The uncertainty
of the observations at 89GHz is similar to the lower frequencies (6 K for horizontally and
5 K for vertically polarized TB). Unfortunately, during leg 3, the 37GHz receiver was not
functioning. As the 18.7GHz horizontally polarized channel from HUTRAD was unstable
during our period of interest, we used the data from SBR which measures at 19GHz. Dur-
ing the first warming event some values from SBR (between two calibrations) had to be
removed because they showed unrealistic fluctuations. Corrupted scans and data points
with clearly non-physical values were filtered out manually for Figure B.1. Figure B.5
illustrates the formation of snow dunes in front of the radiometers that further increase
the local (intra- and inter-footprint) variability of the snow conditions.

B.1.4 Supplemental Text S2 - Glaze Layer Observations

Figure B.3 shows the TLS reflectance for April 17 and April 22. Glaze ice areas have
low TLS reflectance (dark purple colors) in the near-IR due to increased absorption and
specular reflections. On April 17, only a few patchy glaze ice areas are present (for example
the dark purple patch in the upper right) and none are within the instruments’ footprints.
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Figure B.3: Terrestrial Laser Scanning (TLS) reflectance near the HUTRAD and SBR instru-
ments. Glaze snow surfaces are on April 17 (left) and April 22 (right). Scale bars are in meters.

On April 22, widespread glazing was observed on unaltered snow surfaces (upper portion
of figure). However, the snow dris that formed in the instruments’ footprints were not
glazed. The glazing was also evident from visual observations. Figure B.4 shows the glaze
snow surfaces observed on April 22 at the remote sensing site (Figure B.4, le). The snow
in front of the radiometers is freshly accumulated. Also on pictures from the panorama
camera mounted on Polarstern, the glazing was visible at April 22 (Figure B.4, right).

B.1.5 Supplemental Text S3 - MEMLS_ice Initialization

MEMLS_ice is a microwave emission model for layered snow and ice to simulate the
upwelling brightness temperatures of a snow-ice system in the microwave regime, based
on its dielectric properties. The model needs several snow and ice properties as input
data. For the snow, most of these properties like density, exponential correlation length
or temperature can be obtained from SnowMicroPen and snow pit samples, while some
parameters like snow wetness or interface roughness have to be assumed. The roughness
is modelled by the modification of the interface reflectivity following Choudhury et al.
(1979). In principle, a glaze layer can lead to coherent reflections in the microwave regime.
However, as we do not have enough information about the thickness and uniformity of that
ice layer, we do not calculate coherent reflections in our modelling of the glaze layer. Note
that coherence is in principle implemented in MEMLS but deactivated for our purposes.

During the warm air intrusion events, one ice core sample was taken at April 17 in
the vicinity (approximately within 100 m) of the remote sensing site. We use this ice core
as first guess for the sea ice properties and then slightly varied the salinity and density
profiles to obtain brightness temperatures at 6.9GHz that are similar to the ground-based
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Figure B.4: Visual observations of the glazing. Left: Image from April 22 at the remote sensing
site (photo: Lars Kaleschke). Right: panorama image from Panomax webcam onboard Polarstern
(https://www.mosaic-panorama.org/) from April 13 and April 22.

radiometer observations before the warm air intrusion. For all layers, the deviations from
the ice core samples are less than 1 ppt for salinity and less than 50 kgm−3 for the density.
Also note that the Central Observatory was on second-year ice (with a low amount of
salinity in the upper layers) at the beginning of the expedition in 2019 but that there was
new ice formation during the winter. On the satellite footprint scale a mixture of second-
(dominating) and first-year ice prevailed. Except for the ice temperature, for which a
linear fit is used between the snow/ice and ice/ocean interface temperatures, the ice profile
properties are kept constant for the whole time series. Since the warm air intrusions were
short-term events and the temperature at the snow-ice interface only changed slightly, this
assumption is valid. Table B.2 shows the initialization profile for April 08 07:40 based on
the SMP profile S49M2235 (Macfarlane et al., 2021) for 6.9GHz. Density and SSA were
provided in the SMP data. The exponential correlation length was derived from snow
density and SSA measurements following Mätzler (2002). At the microwaves frequencies
investigated here, only the upper ice layer is relevant due to the high absorption in the
ice. Therefore, only the upper 40 cm of the ice are shown (bottom five rows in Table B.2).
The model was initialized with 2 m thick ice. Thus there is no influence from the ocean
below. The downwelling sky temperature is calculated with the radiative transfer model
PAMTRA (Mech et al., 2020) using the HATPRO TWV and LWP data as well as profiles
from radiosondes launched during MOSAiC.

Note that the snow height from the SMP profiles was usually lower than the snow in the
field of view of the radiometers due to enhanced snow accumulation. The TLS scan data
provides accurate relative differences of snow height. In order to obtain absolute values,
we used the measurement of the maximum snow dune height with a ruler stick on April
22, namely 90 cm as reference point. The acquired snow depths are in agreement with
other manual ruler stick measurements of snow height performed close to the radiometer
footprints. Table B.3 shows the snow height at the different sensors from TLS scans from



MOSAiC Expedition Case Study 189

Table B.2: Initialization profile for the MEMLS_ice simulation for April 08 07:40 for
6.9GHz. Shown are the parameters: layer thickness LT (cm), temperature T (K), sensity
ρ (kgm−3), exponential correlation length pc (mm), wetness W, salinity S (ppt), interface
roughness R (mm). Parameters used for fitting the simulations are shown in italics. The
downwelling sky temperature at 6.9GHz is 6.1 K

Depth LT T ρ pc W S R
0 2.1 250.1 269.8 0.292 0 0 0
2.1 3.3 250.9 374.6 0.344 0 0 0
5.4 4.0 251.9 311.5 0.298 0 0 0
9.4 2.8 252.5 299.0 0.271 0 0 0
12.2 2.0 252.8 287.7 0.271 0 0 0
14.2 3.0 253.0 287.7 0.271 0 0 0
17.2 2.1 252.9 312.8 0.299 0 0 0
19.3 3.0 252.8 264.6 0.203 0 0 0
22.3 8 253.0 880 0.450 0 3.08 2.20
30.3 8 253.5 880 0.450 0 2.93 0
38.3 8 253.2 880 0.450 0 2.80 0
46.3 8 253.4 880 0.450 0 2.66 0
54.3 8 253.6 880 0.450 0 2.50 0

Table B.3: Average snow height (cm) in the FOV of the different channels (GHz) at April
17 and April 22

Date 6.9 10.7 19 89
April 17 48 46 45 44
April 22 48 53 46 71

April 17 and April 22. Figure B.5 shows the surface elevation at April 22 based on a TLS
scan. In addition, the FOV of the different frequencies of the ground-based radiometers
is shown. High snow dunes were forming during the second warm air intrusion in front of
the radiometers.

B.1.6 Supplemental Text S4 - SMP-based Modelling

Figure B.6 shows the simulated brightness temperatures at different frequencies for the
time period before the warming events (April 08 to April 15, blue) and aer the warming
events (April 21 to April 27, red). For the simulations, the SMP profiles were averaged
to layers of at least 2 cm thickness. To maintain the layering in the snowpack, snow type
classifications provided by Kaltenborn et al. (2022) were used for the initial step. Strong
changes in simulated brightness temperatures are visible at all frequencies. At 6.9GHz
and 19GHz, brightness temperatures are higher aer the warming events caused by a
generally higher snowpack temperature. In contrast, at 37GHz, increased scattering due
to snow metamorphism leads to a decrease of brightness temperatures. Note that no glaze
layer was used in these simulations.
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Figure B.5: TLS surface height with respect to the laser scanner (height: 2.5 m) from April 22.
The cones indicate the viewing direction if the different sensors. From left to right: HUTRAD
frequencies (GHz): 10.7, 18.7 (not used), 6.9, SBR frequencies (GHz): 19, 89.

Figure B.6: Simulated brightness temperature from SnowMicroPen (SMP) profiles. The data
are split into the periods from April 08 to April 15 (blue) and April 21 to April 27 (red).
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Multi-parameter Retrieval

C.1 Brightness Temperature Comparison: RRDP

Table C.1: Results from the evaluation of the forward model performance using RRDP
data as input. From the RRDP, ground truth data is taken as input for the forward model.
The simulated TBs are compared to the corresponding satellite measured TBs included in
the RRDP and mean absolute error (mae), bias and r2 are listed in this Table. The total
number of data points is 530 (for each frequency)

Frequency/Polarization mae bias r2

6.9 V 1.15 1.00 0.93
6.9 H 4.80 -4.53 0.43
10.7 V 1.50 1.05 0.88
10.7 H 5.45 -5.10 0.49
18.7 V 3.30 1.16 0.66
18.7 H 5.08 -3.60 0.52
23.8 V 4.68 0.92 0.60
23.8 H 5.46 -1.84 0.55
36.5 V 7.09 -1.39 0.54
36.5 H 7.16 -0.85 0.51
89.0 V 5.83 -2.62 0.55
89.0 H 6.25 0.88 0.52
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C.2 Sea Ice Extent

Figure C.1: Sea ice concentration on January 10, 2020 (top row) and April 19, 2020 (bottom
row) from ERA 5 (left), the retrieval using modeled emissivities (center) and the previous version
using empirical emissivities (right).
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C.3 Uncertainties

Figure C.2: First row (i): Daily gridded map of retrieved sea ice concentration (SIC, left) for
January 10th, 2020, retrieved uncertainties of SIC as one standard deviation (center) and the ratio
of retrieved uncertainty to the a priori uncertainty (right). Second (ii) and third (iii) row: same
as first row but for snow depth (SND) and liquid water path (LWP).
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C.4 Shortfall of the Retrieval

Figure C.3: Retrieved parameters, gridded and resampled from daily AMSR2 swath data from
January 10th, 2003. Shown are sea ice concentration (SIC), multiyear ice concentration (MYIC)
obtained by multiplying the multiyear ice fraction with SIC, total water vapor (TWV), and liquid
water path (LWP), as well as the surface temperature as average (weighted by SIC) from the snow-
air interface temperature Tsa over ice and the sea surface temperature (SST) over open water, the
snow-ice interface temperature (Tsi, shown only in areas where SIC > 15%), wind speed (WSP,
shown only in areas where SIC < 15%) and snow depth (SND, shown only in areas where SIC >
15%). The area with very high snow depth (50 cm is indicated by a red rectangle in the SND map.
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C.5 Monthly Maps

C.5.1 Multiyear Ice Fraction

Figure C.4: Maps of monthly average of retrieved multiyear ice fraction (MYIF, left) from the
multi-parameter retrieval (MPR) compared to the reference sea ice age product, Version 4, provided
as weekly estimates by the National Snow and Ice Data Center (NSIDC) based on satellite-derived
sea ice extent and sea ice motion (Tschudi et al., 2019).
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C.5.2 Surface and Interface Temperature

Figure C.5: Maps of monthly average of retrieved snow-ice interface temperature (Tsi, left, only
displayed where monthly mean sea ice concentration is higher than 15%) and a retrieved surface
temperature given by the average of the snow-air interface temperature (Tsa) and the sea surface
temperature (SST) weighted by the retrieved sea ice concentration.
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Water Vapor Retrieval Evaluation

D.1 Evaluation with Observational Data from ATWAICE

Figure D.1: Time series of retrieved total water vapor (TWV, blue) and radiometer measurements
(grey, resampled to 10 minutes) from the ATWAICE campaign 2022. For every overpass, the
retrieval data was averaged within a 50 km radius, the spatial variability within that radius is
shown as error bar (given by the standard deviation).
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D.2 Land Stations: Radiosondes

Figure D.2: As Figure 6.9 but for the site Ny-Ålesund at the west coast of Spitsbergen, Greenland
Sea.

Figure D.3: As Figure 6.9 but for the site Malye Karmakuly at the west coast of Novaya Zemlya,
an island between Barents and Kara Sea.
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Figure D.4: As Figure 6.9 but for the site Utqiaġvik, formerly known as Barrow, Alaska at the
coast to the Beaufort Sea/Chukchi Sea.

Figure D.5: As Figure 6.9 but for the site Danmarkshaven, at the east coast of Greenland
(Greenland Sea).

Figure D.6: As Figure 6.9 but for the site Ittoqqortoormiit, at the east coast of Greenland
(Greenland Sea).
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Figure D.7: As Figure 6.9 but for the site Ostrov Dikson on an island in the Kara Sea near the
mouth of the Yenisei River.

Figure D.8: As Figure 6.9 but for the site Ostrov Kotel’Nyj situated on the New Siberian Islands
between the Laptev Sea and the East Siberian Sea.
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D.3 Comparison against Reanalysis

Figure D.9: Monthly mean values of total water vapor (TWV) from the reanalysis ERA5 com-
pared to satellite retrievals from October 2019 – May 2020. Only open ocean grid cells are consid-
ered. Left panel: Kernel density estimate plot of all values. Annotated in the plot are the number
of observations, N, the square of the Pearson correlation coefficient, r2, the mean absolute error,
mae, and the bias. Right panel: Histograms of TWV from reanalysis (blue) and from the retrieval
(orange). Annotated are the statistical parameters mean, median, standard deviation (std), skew
and kurtosis for the reanalysis (left value) and the satellite retrieval (right value).

Figure D.10: As Figure D.9 but for October 2003 – May 2004.
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Appendix E

Water Vapor:
Time series and Changes

E.1 Sensor Differences

Figure E.1: Scatter plot of regional and monthly mean values of total water vapor (TWV) for the
Central Arctic (left) and Barents Sea (right) from reanalysis ERA 5 and satellite retrieval. Colors
denote the satellite sensor, either AMSR-E (2002-2011; yellow), AMSR2 (2012-2023; purple) or
brightness temperatures from AMSR2 converted to AMSR-E equivalent brightness temperatures
(AMSR2 converted, red; following Meier and Ivanoff (2017)).
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E.2 Regional Time Series

Figure E.2: Regional time series of weekly sea ice concentration (SIC) from 2002 – 2023 for
October to May from the satellite retrieval (blue) and the ERA5 reanalysis (green), averaged over
the central Arctic (first panel), the Barents Sea (second panel), the Laptev Sea (third panel) and
the Beaufort Sea (fourth panel). Blue shading indicates the temporal variability of the retrieval
SIC given by the weekly standard deviation per grid cell averaged over the respective region.
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Figure E.3: Regional time series of monthly differences in total water vapor (TWV) between the
satellite retrieval and the reanalysis ERA5 from 2002 – 2023 for October to May, averaged over
the central Arctic (first panel), the Barents Sea (second panel), the Laptev Sea (third panel) and
the Beaufort Sea (fourth panel).
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E.3 Trend Uncertainties

Figure E.4: Uncertainties of the slope (σslope, with the slope values shown in Figure 6.21) of a
linear regression over monthly data from the AMSR-E time period (2002 – 2011, left panels) and
the AMSR2 time period (2012 – 2023, right panels). The purple line indicates the mean sea ice
edge for the corresponding time spans.
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