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Abstract

This thesis presents segmentation-enhanced registration methods to support image-

guided treatments of brain tumors. The solutions are proposed for magnetic reso-

nance imaging (MRI) and ultrasound acquisitions.

Multiparametric MRI data are acquired before and after neurosurgery. To ac-

curately detect any pathological remnants or regrowth, a comparison of successive

acquisitions is often performed, which can be further improved by the application

of automatic registration methods. Such solutions are required to address the lack

of one-to-one correspondence between pre- and post-operative acquisitions, which

is often caused by the presence of pathology, and the need to identify the optimal

MRI sequence to guide the registration process. This thesis proposes two automatic

solutions for registering pre- and post-operative volumes, an iterative method and a

deep learning-based approach. In both algorithms, segmentation masks can be used

to select the voxels of non-corresponding pathological tissues, whose contribution

is discarded from the registration process. A quantitative analysis of the impact

of pathology exclusion on the registration methods is conducted. Furthermore, an

evaluation of the influence of multiple MRI sequences on the registration result is

presented. In addition, a deep learning method for the segmentation of resection

cavities in multi-parametric MRI volumes is proposed. The influence of different

MRI sequences on the segmentation of these structures is evaluated. The masks

generated by the segmentation method are used in the aforementioned registration

solutions.

During tumor resection procedures, multiple intraoperative ultrasound volumes

are acquired at different stages to provide continuous imaging of the ongoing surgery.

However, due to the brain shift, which is a displacement of brain tissue from its pre-

operative position, there is a need to compare successive acquisitions to track the

changes during the surgery. Automatic registration methods can be employed to

facilitate this task, but they have to account for the lack of correspondence between

successive acquisitions. Therefore, this thesis proposes two iterative segmentation-

enhanced registration methods to compensate for the brain shift in intra-patient

ultrasound volumes. The first method involves automatically segmenting masks of

corresponding healthy structures, which are then used to guide the registration of



successive acquisitions. In the second method, masks of non-corresponding resection

cavities are segmented, and subsequent ultrasound volumes are registered by exclud-

ing the contribution of the segmented structures from the search for correspondences.



Kurzfassung

Diese Arbeit präsentiert Registrierungsmethoden im Kontext der bildgeführten

Behandlung von Hirntumoren, die durch die zusätzliche Nutzung von Segmentierun-

gen hinsichtlich ihrer Genauigkeit verbessert werden konnten. Die Lösungen werden

für Ultraschall- und Magnetresonanztomographie-Volumina vorgeschlagen.

Multiparametrische Magnetresonanztomographie-Daten werden vor und nach der

neurochirurgischen Behandlung erfasst. Um Tumorreste und erneutes Tumorwach-

stum besser identifizieren zu können, ist es vorteilhaft, longitudinale Aufnahmen

visuell zu vergleichen. Automatische Registrierungsmethoden können diese Auf-

gabe erleichtern. In diesem Kontext schlägt diese Arbeit zwei Arten von automa-

tischen Methoden für die Registrierung von prä- und postoperativen Volumina vor:

eine iterative Lösung und ein Deep Learning Ansatz. Die Registrierung von multi-

parametrischen, longitudinalen Daten ist aufgrund i) des Fehlens einer Entsprechung

zwischen prä- und postoperativen Aufnahmen und ii) der Notwendigkeit, die beste

Sequenz zur Führung des Registrierungsprozesses auszuwählen, eine Herausforderung.

Aus diesem Grund führt diese Arbeit eine quantitative Analyse durch, die un-

tersucht, wie der Ausschluss von Pathologien Registrierungsmethoden beeinflusst.

Darüber hinaus wird eine Bewertung des Einflusses mehrerer MRT-Sequenzen auf

das Registrierungsergebnis präsentiert. Ferner wird eine Deep-Learning-Methode

zur Segmentierung von Resektionshöhlen in multiparametrischen MRT-Volumina

beschrieben. Der Einfluss verschiedener MRT-Sequenzen auf die Segmentierung

dieser Strukturen wird bewertet. Die Ergebnisse der vorgeschlagenen

Segmentierungsmethode werden in den Registrierungslösungen angewandt.

Mehrere intraoperative Ultraschallvolumina werden zu verschiedenen Zeitpunkten

der Tumorresektionsverfahren zur Verfügung gestellt, um eine aktualisierte Bildge-

bung der laufenden Operation zu liefern. Aufgrund von Brain Shift besteht die

Notwendigkeit, aufeinanderfolgende Aufnahmen visuell zu vergleichen. Diese Auf-

gabe kann durch automatische Registrierungsmethoden verbessert werden, die das

Fehlen einer Entsprechung zwischen aufeinanderfolgenden Aufnahmen berücksichtigen

müssen. Daher werden in dieser Arbeit zwei iterative, durch Segmentierung geführte

Registrierungsmethoden vorgeschlagen, um den Brain Shift von Ultraschallvolumina



des gleichen Patienten zu kompensieren. In der ersten Lösung werden Masken von

entsprechenden gesunden Strukturen automatisch segmentiert und dann verwendet,

um die Registrierung aufeinanderfolgender Aufnahmen zu anzuleiten. Die zweite

Methode besteht ebenfalls aus zwei Schritten: Masken von nicht entsprechenden

Resektionshöhlen werden segmentiert und aufeinanderfolgende Ultraschallvolumina

werden registriert, indem der Beitrag der segmentierten Strukturen von der Suche

nach Entsprechungen ausgeschlossen wird.
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1. Introduction

Medical images are obtained at multiple stages of brain tumor treatments. The vi-

sual inspection of successive acquisitions helps differentiate pathology from healthy

tissues [1] and, thus, contributes to providing more accurate care [2]. In neuro-

surgery, intraoperative US (iUS) volumes obtained towards the end of the resection

can be visually compared with iUS data acquired at earlier stages of the procedure,

to precisely identify the remaining pathological tissues [3]. Moreover, the visual

examination of pre- and postoperative magnetic resonance imaging (MRI) data can

help distinguish between pathology and imaging artifacts induced by post-surgical

treatments, such as radiotherapy [4]. Yet, finding correspondences in the visual in-

spection of subsequent acquisitions is challenging: The conformation and position

of brain structures in successive images get modified by brain shift and post-surgical

treatments [5; 6]. As a solution, image-based registration algorithms can ease the

visual examination by automatically establishing one-to-one correspondences in sub-

sequent acquisitions [3; 7; 8; 9]. However, image registration of neurosurgical data

is hampered by the fact that a one-to-one correspondence cannot be guaranteed for

all the voxels. Tumors have no matching tissues in successive acquisitions [10], since

they are only visible in preoperative stages, not in the surgery’s late stages or after

the removal. A strategy to solve this challenge is to limit the search for correspon-

dences, conducted by registration algorithms, to brain tissues in common between

successive images. In this context, this thesis proposes segmentation-enhanced reg-

istration algorithms, that utilize masks of pathological or healthy tissues to specify

the voxels in which correspondences between two successive scans are guaranteed.

The proposed methods are applied to register pre- and post-operative MRI acquisi-

tions and intraoperative ultrasound volumes. Moreover, since multiple sequences are

usually obtained in MRI acquisitions, this thesis also quantitatively investigates the

influence of multiple MRI sequences on the registration of pre- and post-operative

acquisitions, and on an automatic method for segmentation resection cavities.

1



1. Introduction

The following introduction provides the clinical and technical information for bet-

ter comprehending the solutions proposed in the thesis. First, section 1.1 gives an

overview of image-guided neurosurgery for brain tumors, and of the multiple imag-

ing acquisitions obtained in brain tumor treatments. Second, sections 1.2 and 1.3

introduce provide the main concepts of image registration and image segmentation,

to better comprehend the segmentation-enhanced registration methods described

later in this thesis. Moreover, since several methods make use of convolutional neu-

ral networks, an introduction to deep learning is given in section 1.4. Lastly, an

overview of the image modalities used in the experiments described in this thesis is

provided in section 1.5.

1.1. Image-Guided Neurosurgery

Neurosurgery is the main treatment for brain tumors (1.1.1), and comprehend all

those procedures aimed at the removal of pathological tissues [11; 12]. Image-guided

neurosurgery integrates the use of imaging data at the different surgical steps [13],

including preoperative planning, resection, and postoperative steps (1.1.2).

1.1.1. Brain Tumors

Brain tumors are abnormal masses of cells growing in the human cranium [14].

They can be distinguished between primary tumors, that originate from the brain, or

secondary (metastatic) ones, generated in other parts of the body and then spreading

to the human brain. Intracranial tumors can be extremely debilitating for diagnosed

patients [15], who are exposed to a wide variety of symptoms, including headache,

nausea, vision problems, inability to accomplish simple tasks, hearing problems, etc.

The most common treatments to mitigate or eliminate the negative effects of tumors

include surgical resection, radiotherapy, and chemotherapy [16; 17]. A combination

of them can also be used. In all the stages, medical images are utilized to support

the treatment’s decisions.

1.1.2. Multiple Imaging Acquisitions in Neurosurgery

The first step in neurosurgery is surgical planning. It consists of delineating the

tissues that have to be removed and is conducted on brain images acquired before

surgery [18]. MRI acquisitions are commonly acquired since they provide a good

2



1.1. Image-Guided Neurosurgery

image contrast between tumors and healthy tissues. Several MRI sequences are

usually obtained for a better analysis of the pathology [4]. Because accurate and

complete removal of the pathological tissues correlates with high survival rates of

the operated patients [19; 17], preoperative data can also be made available dur-

ing surgery for making tumor resection as precise as possible [18]. This is achieved

by utilizing neuronavigation systems, consisting of computer-assisted techniques to

guide (or navigate) surgeons during neurosurgical procedures [20]. Commercial sys-

tems utilize electromagnetic or optical technology to track the positions of specific

landmarks placed on the head of the operated patients. Then, the corresponding

locations are identified in the image data, and an image-to-patient registration is

computed [3]. Thanks to this transformation, neuronavigation systems register pre-

operative image data to the patient’s head observable in the surgical scene [21]. The

positions of surgical tools can also be tracked and mapped to the preoperative data,

and each pin-pointed location within the skull of the patient can be related to its

corresponding area in the imaging data acquired before resection [22]. However, the

use of preoperative data during resection is degraded due to a phenomenon known as

brain shift [23]. It consists of anatomical changes caused by the surgical procedure,

which modify the conformation and the positions of brain tissues, especially those

proximal to the resection area [24]. As a consequence, the pre-surgical images do

not anymore show what is actually observed in the surgical scene. The longer the

surgery is performed, the more evident brain shift effects become, and, thus, the less

reliable preoperative imaging is to support the removal of tumors. As a solution,

intraoperative images can be acquired [25; 26].

Intraoperative images provide an updated view of the surgical scenario and, thus,

a better identification of the remaining tumor can be achieved. Multimodal data,

including magnetic resonance imaging data and ultrasound images, can be acquired

to identify the pathology [27]. In particular, ultrasound (US) imaging demonstrated

to be a valid option for supporting neurosurgical procedures, because it provides

a good image contrast between pathological and healthy tissues and is relatively

fast to be acquired [28]. Thanks to these advantages, US data can be obtained at

multiple intraoperative stages [29], to repeatedly have an up-to-date imaging vi-

sualization [25]. However, images obtained towards the end of the resection are

difficult to interpret [3]. In fact, in the late stages of neurosurgical procedures, sev-

eral artifacts affect the image quality of the acquired data [3]. They are due, for

example, to possible inflammations around the resection area, or saline solutions

3



1. Introduction

used to fill the cavity left by the removal [30]. To improve the interpretation of

intraoperative images obtained at later stages of the resection, they can be visu-

ally compared with earlier acquisitions [29]. Nevertheless, the visual comparison

of subsequent intraoperative data is challenging: The resection procedure removes

and deforms the brain tissues, which have different positions and conformations in

subsequent acquisitions. Only experienced neurosurgeons can mentally compensate

for the anatomical changes caused by the brain shift.

After the surgical removal is concluded, postoperative MRI acquisitions are usu-

ally obtained to locate any pathological remnants [31], and plan postsurgical ad-

juvant treatments, such as radiotherapy. To better identify tumor regrowth and

possible residuals in postoperative data, a visual inspection of preoperative and

postoperative MRI data can be carried out [4]. However, this task is challenging.

In preoperative data, the pathology is present, whereas in postoperative images the

resection cavity is visible. Furthermore, the brain tissues surrounding the removal

point are deformed due to the changes in the resection cavity, which tends to mod-

ify its shape and conformation in postoperative stages, also due to radiotherapy

treatments.

1.1.3. Image-Based Registration in Brain Tumor Treatments

In brain tumor treatments, there is often the need of comparing intra- and postoper-

ative data with acquisitions obtained before surgery. However, the visual inspection

of subsequent acquisitions is time-consuming and mentally exhausting, especially

for non-experienced medical personnel. As a solution, the search for visual corre-

spondence between subsequent acquisitions can be supported by neuronavigation

systems. They rigidly register subsequent acquisitions by using the corresponding

locations in the surgical scene and in the imaging data. However, these systems

often compute only a rigid transformation, which is not accurate enough to model

the local deformations induced by the surgical resection. Deformable image-based

registration algorithms compute voxel-wise transformations and can generate more

realistic transformations to make the visual inspection of subsequent acquisitions

more precise. They aim to reduce the dissimilarity between the two images, by

establishing one-to-one correspondences between two subsequent acquisitions. The

template (moving) image is registered to be as close as possible to the reference

(fixed) image (more details in Section 1.2).

4



1.2. Segmentation-Based Image Registration

The design of automatic methods registering neurosurgical subsequent data is

challenging, due to the fact there is no guarantee of one-to-one correspondence for

all the voxels in subsequent acquisitions. Segmentation masks can help to guarantee

that the search for correspondences is conducted on brain tissues that remain visible

in the images to register.

1.2. Segmentation-Based Image Registration

This thesis proposes segmentation-enhanced registration methods to improve the

visual comparison of intraoperative ultrasound and pre- and post-operative MRI

volumes. The following chapter provides an overview of the main concepts of image

registration and is based on the theory presented in [32; 33]. It will be useful to

better comprehend the solutions proposed in the thesis.

1.2.1. Introduction to Image Registration

Pair-wise image registration algorithms aim to transform two sets of data to the

same reference system by establishing correspondences between the images (see Fig.

1.1). In case of volumetric data, let R, T : R3 → R denote a reference and a

template volume. The goal of image registration is to generate a transformation

y : Ω → R3 that aligns the volumes R and T on the field of view Ω ⊂ R3 such

that R(x) and T (y(x)) are similar for x ∈ Ω. The distance measure is used to

compute the dissimilarity (or similarity, according to the formulation of the loss

function) between the warped template (T (y(x))) and reference (R(x)) image. It

has typically the form:

D(R, T (y)) =

∫
Ω

d(R(x), T (y(x)) dx (1.1)

Image registration can be modeled as the minimization of a loss function J , com-

posed of the distance measure. The deformation computed by an image registration

algorithm represents one of its minimizers:

J (R, T , y) = D(R, T (y)) (1.2)

In the registration process, the transformation parameters composing y are up-

dated to reduce the value of the loss function. An optimization algorithm is used

5



1. Introduction

Figure 1.1.: Image registration. Image registration aims to map each point of the
reference image to the corresponding one in the template data by com-
puting a transformation y.

to guide the minimization process: The steps of updating the transformation pa-

rameters and computing the distance measure are repeated until some convergence

criteria are met.

Transformation Model

Image registration algorithms can be classified into two groups, rigid and non-rigid

(deformable), according to the degrees of freedom of the transformation y computed

to register the template volume to the reference one. Rigid registration includes

those transformations that can be expressed with a limited number of parameters,

such as translation, rotation, scaling, and shear. It is also defined as parametric

registration and provides a global deformation because the same transformation is

applied to each voxel of the template image. Rigid registration algorithms cannot

solve complex scenarios, in which image voxels have to be locally transformed. For

this purpose, non-rigid solutions are more suited, because they can locally deform

different areas of the template volume. These transformations have a large number

of parameters and, thus, this type of registration is also called non-parametric. Their

output is composed of a dense deformation field, which contains unique deformation
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parameters for each voxel position.

Regularization Term Deformable image registration is an ill-posed problem: When

searching for a deformation field, multiple solutions exist, and some of them might

not be anatomically unrealistic [34]. The search for deformation fields can be limited

to plausible transformations by introducing in the loss function an extra term, the

so-called regularizer. The regularization term usually favors the smoothness of the

deformation field and discourages unrealistic transformations [35]. The loss function

for deformable image registration in which a regularizer term R is utilized is defined

as follows:

J (R, T , y) = D(R, T (y)) + αR(y) (1.3)

The hyperparameter α controls the strength of the regularization term.

Feature-Based Registration

Image registration algorithms can also be divided into intensity- and feature-based

methods, depending on how the distance measure is computed [36]. In intensity-

based registration, the distance measure is directly computed on the intensity values

of the two images. For example, the sum of squared differences computes a pixel-wise

intensity difference between the fixed (reference) and moving (template) image [37].

Besides, other distance measures compute correspondences on features extracted

from one or both images. In features-based registration, features taken into account

for computing the distance measure can be of different types, such as landmarks,

segmentation, or results of some image filtering applied to the images.

1.2.2. Segmentation-Enhanced Registration in Brain Tumor

Treatments

The registration of subsequent brain volumes acquired at different stages of tumor

treatments is challenging because corresponding structures are often not available in

both acquisitions. In fact, the pathology visible in preoperative data gets removed,

whereas the resection cavity is observable in postoperative data. Segmentation-

enhanced algorithms are particularly suited to deal with the lack of correspon-

dence between subsequent neurosurgical acquisitions. Anatomical or pathological
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structures can be segmented in one or both images, and the generated masks are

then used in the registration process. The use of the segmentation can be dual,

as Fig. 1.2 clarifies. First, the segmentation of the pathology can help to deter-

mine the voxels on which the similarity measure shouldn’t be computed. Masks

of the non-corresponding structures are used to exclude from the computation of

the distance measure the contribution of non-matching tissues (see Fig. 1.2b).

Therefore, the algorithm can focus on the registration of the corresponding healthy

structures, for which a one-to-one correspondence is guaranteed. By indicating the

non-correspondences as Σ, the distance measure 1.1 can be expressed as follows:

D(R, T (y)) =

∫
Ω\Σ

d(R(x), T (y(x)) dx (1.4)

Second, the registration of subsequent images can also be performed by solely

using features extracted from corresponding structures. Anatomical matching el-

ements can be segmented, and the registration only uses the generated masks to

compute the distance measure (see Fig. 1.2c).

This thesis proposes and evaluates different segmentation-driven deformable reg-

istration methods. It demonstrates how automatic image segmentation algorithms

can support the registration of subsequent neurosurgical images.

1.3. Image Segmentation

As the previous section explains, image registration algorithms for neurosurgical

data can benefit from using segmentation masks to compute the distance measure

only on specific structures. Image segmentation is the process of delineating specific

structures in imaging data. It can be seen as a voxel-wise classification, in which

a class is assigned to each voxel of an image. In particular, the image gets divided

into different regions: The pixels identified by the segmentation process are labeled

as foreground, whereas the rest is the background. Image segmentation is used

to make the images more understandable, and the identification of specific objects

clearer (see Fig. 1.3).
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1.3. Image Segmentation

(a) Corresponding (blue and gree arrows) and non-
corresponding structures (red arrow).

(b) Exclusion of the non-corresponding elements.

(c) Masks of corresponding elements.

Figure 1.2.: Complementary uses of segmentation to support image registration of
neurosurgical ultrasound data. Registration algorithms can use the
original intensity volumes and exclude the contribution of the non-
corresponding elements (Fig. 1.2b) from the computation of the dis-
tance measure. Besides, in other scenarios, the distance measure can
focus only on the masks of corresponding structures (Fig. 1.2c).
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1. Introduction

Figure 1.3.: Image segmentation. Image segmentation aims to classify each voxel
of the input image as background or foreground. In this example, the
pathological tissues of an MRI image are segmented in different labels,
whereas the rest of the volume is classified as background.

1.4. Convolutional Neural Networks

The last decade has been witnessing a tremendous increase in the use of convolu-

tional neural networks (CNNs) to solve numerous tasks in medical imaging. The

solutions presented in this thesis to tackle segmentation and registration tasks in

neurosurgical procedures also utilize CNNs. Therefore, an introduction to CNNs,

based on [38; 39], is here provided.

1.4.1. Artifical Neural Networks

CNNs are a particular type of artificial neural network (ANN) used in image pro-

cessing and recognition tasks. ANNs are computational systems inspired by the way

the biological nervous system works. Traditional machine learning techniques make

use of hand-crafted features to learn how to solve a specific task. The main charac-

teristic of ANNs is the ability to automatically define and extract such features from

the input data. The feature extraction is possible thanks to the so-called artificial

neurons, computational nodes having incoming and outgoing connections with other

neurons. In the basic structure of an ANN (visible in Fig. 1.4), an input vector is

passed to the input layer, which distributes it to hidden layers. In ANNs, each neu-

ron in a hidden layer is connected to the neurons of the adjacent layers. A weight
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1.4. Convolutional Neural Networks

Figure 1.4.: General scheme for a three layered ANN.

is associated with every connection to a node so that the neuron can perform a

weighted sum of the incoming connections. The sum is then passed to an activation

function. An additional input, called bias, has a value of 1 and associated weight

and is added to the sum. The final weighted sum is then passed to the next neu-

ron. Thus, ANNs are composed of a large number of interconnected neurons, whose

parameters (or weights) are learned from input data and continuously adapted in a

learning phase [39].

The values of weights of the different neurons are repetitively adjusted thanks

to a learning (or training) process, carried out to minimize a loss function, which

quantitatively quantifies how close the generated outcome is to the desired output.

The training process can be divided into two main phases. First, in the forward

phase, images are passed through the network, in which input layers initially com-

pute weighted sums of the pixel values. Their output is then passed to hidden layers,

which compute weighted sums of the incoming values and, thus, extract features at

different levels. Eventually, a certain output (or prediction) is delivered as a result

of the output layers. The generated outcome represents a non-linear combination

of the image values and the weights of the neurons of the model. Second, in the

backward phase, the parameters of the models are automatically updated to im-

prove the generated output and minimize the loss function, using back-propagation

algorithms and modified versions of stochastic gradient descent. This technique is

repeated for several batches of images until the convergence of the loss function.
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When the network is composed of multiple hidden layers, whose weights are learned

in the training phase, the training process is called deep learning.

Limitations of Artificial Neural Networks

Two major limitations of ANN methods applied for image processing tasks rise

when the input image size increases [39]. First, the processing of large images leads

to high computational costs, due to the fact that large input images require more

hidden layers and more weights to be trained. The second problem is related to

a phenomenon known as overfitting, which happens when the network ineffectively

learns, leading to poor performance. It is due to several reasons, including the high

number of parameters. The fewer parameters used for training, the fewer chances

of overfitting are encountered. Thus, large ANNs are also more likely to overfit.

The difficulties of the use of the ANNs in image processing have been solved by the

introduction of convolutional neural networks.

1.4.2. Convolutional Neural Networks

In CNNs, neurons have connections only to some of the neurons of the adjacent layers

[39]. Consequently, the number of training weights is smaller and the computational

issues of ANN methods are reduced. This allows the creation of larger models, able

to solve more complex medical imaging tasks, without the exponential increase of

model parameters.

CNNs extract spatially independent features [38]. In solving a specific task in-

volving an image, it is not taken into consideration where the various objects are

located in the image. The region of an image influencing the output of a specific

neuron is limited to a neighborhood and takes the name of the receptive field [40].

Convolutional Neural Networks Layers

Convolutional neural networks are composed of three main types of layers: convo-

lutional layers, pooling layers, and fully-connected layers [39]. In image processing,

convolution is a mathematical operation that calculates for each pixel a weighted

sum of its neighborhood. The so-called kernel is the matrix that is convolved with

an image. According to the values (weights) of this matrix, different features are
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1.4. Convolutional Neural Networks

extracted from the image. A convolutional layer is composed of many kernels ex-

tracting specific features from the input image. The learning parameters of a convo-

lutional layer are the weights that compose the matrices of the kernels. According

to the values composing the kernels, the convolutional layers can identify specific

patterns in the input image. The size of a convolutional layer is influenced by the

convolution matrix, with a size of k x k, but also by the input channels n and the

desired output m: The final dimension of a convolutional layer can be expressed as k

x k xm x n [40]. In CNNs, stacked convolutional layers are utilized, so that a feature

hierarchy is created. Shallow layers are usually used to extract low-level features

such as edges, whereas deeper layers are responsible for more complex combinations

of the previous features.

Pooling layers are applied after convolutional ones for shrinking the dimensions of

input activation maps. They are responsible for reducing the number of parameters

and their complexity. They also allow features to be extracted at different scales of

the input image.

Fully connected layers contain neurons that are connected to all the neurons of

the previous layer.

Supervised and Unsupervised Learning

The goal of the training phase is to minimize a differentiable loss function, that

evaluates the generated output w.r.t. the desired outcome. There are two main

learning paradigms for CNNs, supervised and unsupervised learning. In the first

paradigm, the learning process is conducted to minimize the differences between

the automatically generated outputs and the desired outcome (the so-called ground

truth). A measure of the differences between the desired and generated outputs is

computed by a metric included in the loss function. Thus, in a supervised paradigm,

ground truth annotations are available for each input sample of the training dataset,

to evaluate the outcome of the algorithm. A drawback of this paradigm is that man-

ual annotation of medical data requires time and effort, and is not always possible.

This is especially true for image registration ground truth, where the identification

of ground truth deformation fields is not always feasible [34]. On the contrary,

unsupervised learning differs from the first paradigm because the training set has

no need for annotated labels. In this paradigm, the learning process is successful

whether the network can reduce or increase a loss function based on a metric (not
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computed on ground truth), as, for example, the distance measure of an image reg-

istration framework. In this context, the loss function is based on the computation

of the similarity between two images to register, for which no ground truth is needed.

When training convolutional neural networks, there are two different approaches

to providing input images. The data can be supplied using its original dimensions.

However, the larger the images are, the more computationally expensive the training

process becomes. The use of large images also means an increasing number of

parameters to process them. Thus, as a solution, the size of the images can be

reduced. A rescaling of the original size can be performed. Another possibility,

commonly used in CNN dedicated to image segmentation, is to perform a patch-

based learning process. Instead of providing each image as a whole, it is divided

into smaller parts (patches). The corresponding annotated data are also accordingly

divided, and a batch of patches is fed to the CNN in every training iteration.

1.4.3. U-net

The organization of the layers of a CNN is defined as architecture. Different CNN

architectures have been proposed according to the diverse image processing tasks.

One of the most successful CNN architectures for image processing tasks (especially

for image segmentation) is the U-Net [41]. This subsection describes the original

U-net architecture and introduces the applications for which modified versions of

this method have been used in this thesis.

The U-Net has been proposed in 2015 to tackle 2D image segmentation tasks and

achieved state of art in many challenges [41]. It consists of an encoder-decoder ar-

chitecture and, to better localize and segment objects, features from the contracting

path are merged with the upsampled output. A convolutional layer can learn to

combine the features coming from different depths. The segmentation of the images

is performed by using an overlapping strategy of multiple patches. This patch strat-

egy allows the application of the U-Net also to large images, which couldn’t be fit

to a GPU.

U-Net Architecture

The architecture of the U-Net consists of a contracting path (encoder) and an ex-

pansive path (decoder) (see Fig. 1.5). The first one comprehends repetitions of the
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1.5. Medical Imaging Modalities

Figure 1.5.: Visualization of the general architecture of the U-net method used for
segmentation of pathological tissues in brain images. The U-Net has an
encoder-decoder architecture.

combination of two 3x3 convolutions, each followed by a rectified linear unit and a

2x2 max pooling operation with stride 2 for reducing the dimension. At each level,

the channels of the features are doubled. The expansive path is composed of an

upsampling of the feature map followed by a 2x2 convolution halving the feature

channels, a concatenation with features maps obtained from the contracting path,

and two 3x3 convolutions followed by a ReLu. Each component of the final feature

vector of size 64 is mapped to the desired number of classes. The total number of

convolutional layers is equal to 23.

U-Net: Beyond Segmentation

Following the success of the U-Net in 2D medical segmentation, a 3D version of this

architecture has been proposed [42]. Moreover, in recent years the applications of

modified versions of this architecture have been expanding to other medical imaging

fields, including image registration [43]. This thesis uses modified implementations

of the 3D architecture of the U-Net to tackle segmentation and registration tasks.

More details about the specific modifications of the original architecture are provided

in each chapter.

1.5. Medical Imaging Modalities

Images of the human brain are essential in many steps of intracranial tumor treat-

ments [44; 45]. In particular, MRI and US imaging are useful to support neuro-
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surgical procedures [29]. This thesis proposes image registration and segmentation

solutions for MRI and iUS. An introduction to these image modalities is here pro-

vided.

1.5.1. Magnetic Resonance Imaging

MRI is a non-invasive imaging technique providing detailed information about the

human anatomy, function, and metabolism. MRI technique generates cross-sectional

images of the body without using ionizing (and, thus, dangerous) radiations. The

human body is largely composed of water molecules, each with two atoms of hydro-

gen containing a proton and an electron [46]. Since protons are particularly sensitive

to magnetic excitation, MRI scanners use a combination of static magnetic fields

and radio waves to influence their orientation in the human body. After excitation,

the protons tend to return to their status of equilibrium through different relaxation

processes and produce radio waves. By measuring the relaxation signals emitted in

a body area after a magnetic excitement, MRI images can be created.

In MRI scanners, a magnet generates a strong and homogeneous magnetic field

and produces a strong magnetization in the tissues of a scanned patient. Then, a

gradient system delivers linear and orthogonal magnetic fields, which are needed

for spatial localization. In particular, magnetic excitements in X and Y dimensions

select a specific slice of the volume of interest. Third, a radio frequency (RF) system

selectively excites the protons within the selected slice. The coil used for the RF

signal is also used to capture the relaxation of the nuclei when the RF magnetic field

is turned off. The image contrasts observed in MRI images for various structures

are influenced by the fact that human tissues have different hydrogen compositions,

which influence their relaxation properties.

The RF coils are continuously turned on and off. Repetition Time (TR) is the

amount of time between successive pulse sequences applied to the same slice. Time

to Echo (TE) is the time between the delivery of the RF pulse and the receipt of

the echo signal. The variation of TE and TR leads to different MRI protocols.

In brain tumor treatments, the most common acquired MRI protocols are the T1-

weighted (T1), contrast-enhanced T1 (T1-CE), T2-weighted (T2), and T2 Fluid

Attenuated Inversion Recovery (FLAIR) [47]. Each protocol is useful to highlight

specific characteristics of the human brain [48]. For instance, T1-CE is obtained

by the injection of contrast-enhancing liquid (usually Gadolinium-based contrast),
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which accumulates in the tumor tissues and, thus, enhances their image contrast

in MRI images. Besides, the FLAIR protocol is useful to better visualize tumor-

induced edema, which appears hyper-intense in the MRI images.

1.5.2. Ultrasound Imaging

Medical ultrasonography is an imaging technique based on the emission and reflec-

tion of ultrasound waves, that is, sound waves with a frequency between 20 kHz

up to several gigahertz [49]. To comprehend how ultrasound images are formed, an

ultrasound emitter positioned in front of the object to visualize can be taken as an

example. Both items are contained in a medium, with a different acoustic impedance

than the object. The emitter usually is a piezoelectric transducer that converts elec-

tric signals into ultrasound waves. The waves travel in the medium until they reach

the object of interest. If the encountered element has an acoustic impedance greater

than the first substance, the incoming waves are reflected and the so-called echo is

formed. Thus, an outgoing wave departs from the reflecting element, and a portion

of the original ultrasound waves will continue traveling. The backward signal is then

detected by a receiver, which often is the same device used to emit the signals. The

receiving piezoelectric instrument converts the incoming sound waves into voltage

signals. These are then converted into digital signals, which are used to generate

images.

Different types of US images can be generated, and one of the most used for

medical diagnosis is the B-mode, where B stands for brightness [50]. It is a cross-

sectional imaging showing boundaries of organs and tissues within the body [51]. It

is generated from the US waves reflected at anatomical boundaries and the scattering

caused by small irregularities between the different tissues. Each echo is visible as a

point in the image. The brightness of each point displays the strength and amplitude

of the echo. The position of each point in the image corresponds to the distance of the

related object’s point from the ultrasound transducer. The information about the

location is obtained by using the pulse-echo sequence. Each pulse-echo sequence is

used to generate a line in the B-mode image, showing the contours of the anatomical

structures positioned on the wave trajectory [51].

Bidimensional ultrasound images are formed by collecting many B-mode lines [51],

acquired by multiple transducers on the same probe. A linear probe, composed of

an array of transducers, can be taken as an example. When one of the transducers

is active, the others are off. It emits the ultrasound wave, and then receives the
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produced echoes. The first line of the image is formed based on the returning

echoes. This procedure is then repeated for all the transducers in the array until

the 2D image is created. The usual time for a complete sweep is around 1/30th of

a second. This allows the formation of images almost in real time and, thus, the

application of such imaging techniques is suitable also for those medical scenarios

in which medical images should be fast obtained, such as neurosurgery.

3D Ultrasound

One of the main difficulties of using 2D data as visualization support in neurosurgical

operations is the need to mentally integrate bidimensional images into a 3D surgical

scene. This task requires mental effort and time. 3D imaging represents a better

option for visualizing the anatomical and pathological structures in neurosurgical

procedures [52].

The most utilized techniques to reconstruct three-dimensional US images are me-

chanical scanning, free-hand scanning with position tracking, and free-hand without

sensing. In free-hand scanning with position tracking, a transducer acquiring 2D

US scans is converted into a 3D scanning by tracking its position and orientation

[53]. A sensor, whose position can be tracked, is attached to the extremity of the US

probe and, thus, the localization of the moving transducer is possible. There are two

main tracking technologies, respectively based on magnetic and optical systems. An

optical system detects the position and orientation of an object by identifying and

tracking visual markers on its surface. An infrared light emitter determines the po-

sition of an object via active (transmitting its infrared signal) or inactive (reflected

infrared light) markers. Inactive markers are usually colored with a highly reflective

material. Multiple cameras positioned at different locations detect the marker from

several perspectives, and its positions and orientations can be then triangulated.

By tracking multiple markers, the location and orientation of each 2D acquisition

become available. Eventually, several bidimensional images are used to build the 3D

volume. The operator handling the ultrasound probe has to be careful in moving

the transducer at an appropriate speed, to ensure that the following 2D images have

no too large gap.
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1.6. About This Thesis

The thesis presents automatic segmentation-enhanced registration solutions to im-

prove neurosurgical procedures for tumor resection. It is divided into two parts,

each related to methods proposed for a different image modality. A short overview

of the two parts is given in this chapter. At the end of the thesis, a conclusion

section is provided to discuss the proposed solutions and future work.

Part I: Magnetic Resonance Imaging The first part of the thesis focuses

on the registration of subsequent multisequence magnetic resonance imaging data

acquired in intracranial tumor treatments. Two types of automatic methods for

registering pre- and postoperative MRI data are proposed: an iterative method and

a CNN-based solution. The impact of excluding the pathological tissues from the

distance measure in the registration algorithms is investigated. Moreover, an anal-

ysis of the influence of different MRI sequences on the registration performances is

provided.

Furthermore, a segmentation method based on the 3D U-Net is proposed to automat-

ically delineate the resection cavities in post-operative MRI data. It is investigated

how much influence the different modalities have on the training process.

Part II: Ultrasound The second part proposes two automatic segmentation-

based registration methods to register intraoperative ultrasound volumetric data

acquired at different stages of neurosurgical procedures. The first solution is based

on two steps. First, an automatic method based on 3D U-Net is developed for

segmenting brain healthy structures. Second, an iterative method solely using the

generated masks registers subsequent US data.

The second approach registers US volumes by excluding the contribution of the re-

section cavities. An automatic segmentation method based on 3D U-Net to segment

the resection cavities in during- and postoperative acquisitions is developed. Then,

thanks to the generated masks, these structures are excluded from the computation

of the distance measures of the iterative method registering the US acquisitions.
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2. Magnetic Resonance Imaging in

Intracranial Tumor Treatments

Magnetic resonance imaging provides essential support at multiple stages of brain

tumor treatments. Before neurosurgery, surgical planning is conducted on MRI

volumes. At the end of the procedure, additional data are acquired to spot any tumor

remnants and evaluate the surgical resection. Subsequently, MRI acquisitions are

obtained at multiple post-operative stages to identify any pathological regrowth and

measure the target volume for post-surgical treatments, such as radiation therapy

[6].

Subsequent MRI volumes can be visually compared to improve intracranial tumor

treatments. For example, the visual inspection of pre- and post-operative MRI data

helps differentiate tumor recurrence from lookalike tissues, which can be induced by

postsurgical treatments [54]. However, the comparison of pre- and post-operative

MRI data is difficult, due to anatomical shifts induced by the resection and post-

surgical treatment. Automatic image-based registration algorithms can facilitate

the visual comparison of subsequent MRI acquisitions.

2.1. Image-Based Registration and Segmentation of

MRI Volumes

The automatic registration of MRI volumes acquired at different stages of brain

tumor treatments is challenging since tumors locally and heavily deform the sur-

rounding intracranial tissues. Deformable registration solutions are preferable to

rigid approaches to accommodate these anatomical changes since they can generate

local and more realistic deformations. However, the design of a non-rigid registration

algorithm is hindered by non-corresponding pathological tissues. In pre-operative

data, the tumor is visible, whereas in post-surgical acquisitions the resection cavity is
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formed. Image-based algorithms registering MRI acquisitions must have a strategy

to deal with the lack of one-to-one correspondence between pre- and post-operative

images.

Another challenge in the design of image registration algorithms is related to the

fact that multiple MRI sequences are acquired to differentiate pathological tissues

from healthy structures precisely. The most common ones are T1, T1-CE, T2, and

FLAIR [55; 31; 4]. Registration algorithms are highly influenced by the choice of

the MRI sequences used to compute the correspondences between the reference and

the moving image. An evaluation of the influence of the different sequences on the

image registration outcomes is advisable. The choice of the MRI sequence is also

important for other image-processing tasks, such as image segmentation.

Chapter 3 presents an iterative solution and a convolutional neural network-based

method for the registration of pre- and post-operative MRI data to support neuro-

surgical procedures for tumor resection. An analysis of the effects of the pathological

tissues on both algorithms is conducted. Each method is designed by excluding or

including the contribution of the pathological tissues in the computation of the dis-

tance measure: The voxels belonging to the pathology are specified by segmentation

masks. Besides, an evaluation of the influence of the different MRI sequences on the

outcomes of both registration methods is provided.

Chapter 4 further investigates the exclusion of the pathology from the regular-

ization term in the registration of subsequent MRI volumes. An iterative method,

which discards the contribution of the pathological tissues from the regularizer, is

proposed to register pre- and post-operative MRI acquisitions. Segmentation masks

of pathological tissues are utilized to specify the voxels, whose contribution is dis-

carded from the computation of the regularization term.

Chapter 5 presents a deep learning-based method to segment the resection cavity

in post-operative data and evaluates the influence of different MRI sequences on the

algorithm’s outcome. Similarly to registration methods, image segmentation algo-

rithms applied on post-operative MRI volumes are also influenced by the different

MRI sequences. Thus, the chapter evaluates which sequence leads to the most ac-

curate results. Besides, the segmentation masks obtained by the proposed method

are also utilized to support the registration methods in 3.
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Influence of Multiple MRI

Sequences and of Pathological

Tissues on the Registration of

Longitudinal Data Acquired

During Brain Tumor Treatment

The material of this chapter is available as an open-access journal paper published

in Frontiers in Neuroimaging.

Canalini, L., Klein J., Waldmannstetter D., Kofler F., Cerri S., Hering A., Held-

mann S., Schlaeger S., Menze B.H., Wiestler B., Kirschke J. and Hahn H.K. (2022)

Quantitative evaluation of the influence of multiple MRI sequences and of patho-

logical tissues on the registration of longitudinal data acquired during brain tumor

treatment. Front. Neuroimaging 1:977491. doi: 10.3389/fnimg.2022.977491

This is an open-access article distributed under the terms of the Creative Com-

mons Attribution License (CC BY).
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3. Influence of Multiple Sequences and Pathology on the Registration of MRI Volumes

Abstract
Purpose Registration methods facilitate the comparison of multiparametric mag-

netic resonance images acquired at different stages of brain tumor treatments. Image-

based registration solutions are influenced by the sequences chosen to compute the

distance measure and the lack of image correspondences due to the resection cavities

and pathological tissues. Nonetheless, an evaluation of the impact of these input

parameters on the registration of longitudinal data is still missing.

Methods and Experiments This work evaluates the influence of multiple se-

quences (T1, T2, T1-CE, and FLAIR) and the exclusion of the pathological tissues

on the non-rigid registration of pre- and post-operative images. We here investigate

two types of registration methods, an iterative approach and a convolutional neural

network solution based on a 3D U-Net. We employ two test sets to compute the

mean target registration error (mTRE) based on corresponding landmarks.

Results In the first set, markers are positioned exclusively in the surroundings

of the pathology. The methods employing T1-CE achieve the lowest mTREs, with

an improvement of up to 0.8 mm for the iterative solution. The results are higher

than the baseline when using the FLAIR sequence. When excluding the pathol-

ogy, lower mTREs are observable for most of the methods. In the second test set,

corresponding landmarks are located in the entire brain volumes. Both solutions

employing T1-CE obtain the lowest mTREs, with a decrease of up to 1.16 mm for

the iterative method, whereas the results worsen using the FLAIR. When excluding

the pathology, an improvement is observable for the CNN method using T1-CE.

Conclusion Both approaches utilizing the T1-CE sequence obtain the best mTREs,

whereas the FLAIR is the least informative to guide the registration process. Be-

sides, the exclusion of pathology from the distance measure computation improves

the registration of the brain tissues surrounding the tumor. Thus, this work provides

the first numerical evaluation of the influence of these parameters on the registra-

tion of longitudinal magnetic resonance images, and it can be helpful for developing

future algorithms.
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3.1. Introduction

In neurosurgery for tumor resection, a pre-operative MRI acquisition is obtained

to plan the surgical removal. After neurosurgery, MRI images are also acquired

at follow-up stages to identify any pathology recurrence [6]. The identification of

pathological tissues in post-operative acquisitions can be improved by comparing

MRI images obtained at subsequent stages of neurosurgical treatments [54]. Regis-

tration algorithms are used to establish correspondences for a precise visual inspec-

tion between the subsequent MRI scans [56]. Mass effects, pathology resection, and

tumor regrowth produce large deformations in the close-to-tumor regions [57]. To

accommodate these changes, rigid registration algorithms are not accurate enough

[58]. Instead, nonrigid registration solutions are a better option, because they gen-

erate deformations fields that can locally register brain areas.

Several methods to register pre- and post-operative MRI images are already avail-

able. The authors in [59] propose a solution to register corresponding healthy tis-

sues of longitudinal images. Furthermore, the same authors [60] develop a method

to register pre-operative MRI data with any stage of images acquired after tumor

resection. By estimating missing correspondences, their algorithm encourages the

accommodation of the tissues surrounding the tumor. Another solution is proposed

by [55], in which the authors register T1 MRI images by excluding pathological

tissues from the computation of the distance measure (see Eq. 3.2 and Eq. 3.1 for

a better explanation). Furthermore, the authors in [57] propose a semi-automatic

method to register pre-operative, post-operative, and follow-up images of individual

patients. Their approach first semi-automatically segments brain contours, ventri-

cles, enhanced tissues, and resection cavities in the pre- and post-operative images.

In the second step, T1-CE volumes and the masks are used as input to a registration

method. Besides, in [31] the authors propose a method to register pre-operative and

post-recurrence brain tumor images. The acquisitions are registered by excluding

the pathological tissues from the image-correspondence term. T1-CE and T1 MRI

sequences are used to guide the registration process. One of the few algorithms based

on deep learning to register longitudinal MRI data is proposed by [61]. 3D T1 images

are registered by excluding the segmentation of pathological tissues. A 5-level 3D

U-Net model is trained on the registration of inter-patient data. In the test phase,
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they use volumes coming from 18 longitudinal studies, each having 2 follow-up ac-

quisitions. Moreover, the work proposed by [62] is based on a convolutional neural

network (CNN). The authors propose a joint segmentation-registration solution to

i) automatically segment pathological tissues in the moving and fixed images and

ii) register the pair of multiparametric images by excluding the automatically seg-

mented structures from the computation of the distance measure. T1, T2, T1-CE,

and FLAIR sequences are all used as input.

Multiple MRI sequences are acquired at subsequent stages of the neurosurgi-

cal treatment to better identify pathological tissues [55; 31; 4]. The recommended

minimum requirements in neurosurgery include T1-CE, T1, T2, and FLAIR [47].

The standard for T1-CE and T1 images is usually to acquire high-resolution 3D

isotropic volumes, whereas for T2-weighted 2D acquisitions are obtained [63; 47].

Image-based registration algorithms using high-resolution images are likely to ob-

tain better results than those utilizing lower resolution images, such as FLAIR and

T2w acquisitions. Nevertheless, the already proposed solutions utilize different MRI

protocols to guide the registration process. A numerical evaluation of the influence

of multiple sequences on the registration of longitudinal MRI data is still missing.

Furthermore, image-based registration algorithms rely on the fact that corre-

sponding structures can be found in the pairs of images to be registered. This

assumption is not valid for the registration of longitudinal MRI acquisitions ac-

quired during tumor resection. The pathological tissues visible in pre-operative

acquisitions are removed and are not observable in post-removal images. Many of

the proposed registration methods tackle this problem by excluding the contribution

of pathological tissues from the correspondences computation [60; 55; 31]. In fact, it

is commonly assumed that the outcome of the registration process improves if only

corresponding (healthy) structures are taken into account. However, no exhaustive

evaluation of the influence of the exclusion of the pathological tissues has been done

yet.

First, this work aims to evaluate the influence of different MRI sequences on the

registration of longitudinal MRI data. To the best of our knowledge, it is the first

time that this analysis has been performed. More details are given in section 3.2.3.

Second, this work quantitatively analyzes the effects of excluding (and including) the

pathological tissues from the computation of distance measure used for registration

of longitudinal MRI data (more details in section 3.2.3). Two registration approaches

are proposed for performing the aforementioned experiments, an iterative method,
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and a CNN-based solution. The exclusion of the pathological tissues in the CNN

method is performed only during training, whereas the iterative method excludes

them during the registration process.

3.2. Material and Methods

3.2.1. Datasets

For the volume of each dataset, four different MRI sequences are available: native

T1, T1-CE, T2, and FLAIR. Each case is normalized using the same preprocessing

[63]: Every volume is skull-stripped, noise corrected, rigidly registered to an atlas

reference volume, and interpolated to 1mm3 voxel resolution. The images have a

size of 240 × 240 × 155 and are downsampled to 160 × 160 × 160 to be input to

the registration methods.

Munich Dataset

This set includes two or more consecutive post-operative acquisitions of 66 patients,

acquired at the Klinikum Rechts der Isar during 2015 and 2020 [64]. From this

dataset, we choose a subset of 57 patients to only include volumes characterized by

four MRI sequences. The original acquisitions for each patient include an isotropic

T1 (voxel size of 1 mm3) before and after contrast, axial T2 (voxel size of 0.72 × 0.72

mm2), an isotropic FLAIR (voxel size 1 mm3). The volumes are available after nor-

malization performed according to [63]. The pathological tissues are automatically

segmented [64]. To generate a robust brain tumor segmentation, we use an itera-

tive process. First, we generate binary segmentation masks using five segmentation

algorithms [65; 66; 67; 68; 69] developed within the scope of the BraTS challenge

[70; 71; 72; 63] using BraTS Toolkit btk) [73]. Second, we fuse the segmentation

masks using equally weighted majority via btk [73]. Third, a visual inspection is

conducted to correct the fused segmentation masks. This approach promises to

achieve a higher segmentation quality than a pure manual delineation [74] while

saving valuable expert radiologists’ time.

BraTS 2015: Validation Set

BraTS 2015 dataset includes a mixture of pre-operative and follow-up MRI images.

A subset of the BraTS 2015 training dataset is chosen [75], to include only longi-

29



3. Influence of Multiple Sequences and Pathology on the Registration of MRI Volumes

tudinal studies. This subset includes 45 pairs of images, each composed of a pre-

and post-operative acquisition. According to [63], the original acquisitions for the

images sets include a T1 image (1–6 mm slice thickness), a T1-CE image (voxel size

of 1 mm3 for most patients), a T2 image (with 2–6 mm slice thickness), a FLAIR

image (2–6 mm slice thickness). The ground truth masks of the pathological tissues

are also available. Moreover, the resection cavity, not originally segmented in the

original ground truth, has been manually segmented in a previous work [76].

BraTS 2015: Test Set

A subset of the BraTS 2015 test set is selected, to include only longitudinal studies.

It has 59 pairs of images of different patients. The acquisition details of this dataset

are the same as described in the previous subsection (BraTS 2015: Validation Set)

[63]. The masks of the pathological tissues (edema, enhancing tumor, necrosis non-

enhancing tumor) have been already segmented in the original dataset. Moreover,

the resection cavities in the post-operative volumes are manually segmented by

two raters. An example of the finally available structures is shown in the fifth

column of Fig. 3.1. To compute the registration results, six landmarks have been

manually acquired for each pair of longitudinal acquisitions. First, for each pre-

operative scan, landmarks are acquired near the tumor (within 40mm). Second,

corresponding markers are obtained in post-operative images. The landmarks are

acquired on anatomical structures, such as brain sulci and gyri, and the midlines of

the brain. An example of the annotated landmarks is available in Fig. 3.2. One

or two raters annotated them and an experienced neuroradiologist evaluated them

clinically. The baseline mean target registration error (mTRE) is 2.92 mm.

BraTS-Reg Challenge Dataset

The dataset includes 140 pairs of pre and post-operative MRI volumes [4]. The time

window between all pairs of pre-operative and follow-up volumes is in the range of 27

days-37 months. This dataset comprises already pre-processed image sets collected

in affiliated and public institutions. Although no information about the acquisition

parameters is provided by the challenge organizers, it is likely to assume that the

data have been acquired following the standard protocols mentioned in [63] and

already described in the previous section (BraTS 2015: Validation Set). Several

raters manually annotated 6 to 50 corresponding landmarks between the pre- and

post-operative volumes. For each pre-operative scan, landmarks are acquired near
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Figure 3.1.: Available MRI sequences. The figures in the first row show ex-
ample slices of a post-operative acquisition, whereas in the second row
images of the corresponding pre-operative volume are displayed. Each
volume comprehends four sequences: T1 gadolinium contrast-enhanced
T1-CE in (A) and (F), T1 in (B) and (G), T2 (C) and (H), and FLAIR
in (D) and (I). Each sequence is useful to spot a particular component of
the pathological tissues. For example, in T1-CE the enhanced tissue is
observable, whereas, on the FLAIR sequence, the edema is well visible.
The masks of the pathological tissues available for this work are visible
in subfigures (E) and (J). In (E), the resection cavity is colored green.
The pre-operative tumor and the corresponding resection cavity are in-
dicated by the orange arrows. In after-surgery acquisitions, pathological
tissues can also be present, as in this example (the post-operative tumor
is pointed by the yellow arrow).
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Figure 3.2.: Example of annotated landmarks on Test Set. Subfigures A and
B correspond to post and pre-operative MRI acquisitions of the same
patient. The corresponding landmarks are visualized with the same
colors.

the tumor (within 30mm) and far from the tumor (beyond 30mm). Thus, matching

points are obtained in post-operative images. The landmarks are anatomical struc-

tures, such as blood vessel bifurcations, the anatomical shape of the cortex, and

anatomical landmarks of the midline of the brain [4]. An example of the annotated

landmarks in BraTS-Reg is available in Fig. 3.3. After a rigid pre-registration be-

tween the pre- and post-operative volumes, the baseline mTRE is 3.62 mm. The

automatic algorithm already applied for 3.2.1 is here utilized to segment the patho-

logical structures in every volume of this dataset.

3.2.2. Methods

This work investigates two different types of registration methods, an iterative solu-

tion, and a CNN-based approach. The following design concepts are valid for both

approaches.

The reference (post-operative) and template (pre-operative) images can be mod-

eled as functions R, T : R3 → R. The goal of the proposed image registration

approaches is to generate a deformation y : Ω → R3 that aligns the two images R
and T on the field of view Ω ⊂ R3 such that R(x) and T (y(x)) are similar for x ∈ Ω.

The deformation field represents a minimizer of the cost function:

J (R, T , y) = D(R, T (y)) + αR(y) (3.1)
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Figure 3.3.: Example of annotated landmarks on BraTS-Reg dataset. Sub-
figures A and C show different axial images of the post-operative acqui-
sition for the same patient, whereas B and D correspond to the cor-
responding locations in the pre-operative image. The corresponding
landmarks are visualized with the same colors.

The first term D is a distance measure computing the difference between the

reference R and the warped template image T (y) summing pointwise distances. A

challenge of registering longitudinal MRI data is that a one-to-one correspondence

between the two images is not guaranteed due to the resection of pathological tissues.

We tackle the problem by adding the possibility of excluding the contribution of

the pathology of the fixed image from the computation of the distance measure.

By indicating the pathological tissues as Σ, the distance measure is computed as

follows:

D(R, T (y)) =

∫
Ω\Σ

d(R(x), T (y(x)) dx (3.2)

In our settings, R and T respectively refer to the post-operative and pre-operative

volumes. Thus, Σ corresponds to the pathological masks of the post-operative image.

More details about the distance measure are available in Eq. 4.2.

The second term R in Eq. 3.1 is the regularizer, which limits the possible deforma-

tions that can be computed during the minimization process. The hyperparameter

α controls the strength of the minimization term. More details about the regular-

ization chosen in this work are available in Eq. 3.4 and Eq. 3.5.

Multi-level deep learning method

The deep learning registration method used in this work is based on the solution

proposed by [43]. It is a multi-level variational image registration approach, that

combines deformation fields computed at different image scales. Since the solution
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already achieved good results in other medical imaging fields, we want to evaluate

how this method performs on longitudinal MRI data.

The solution has been originally proposed to register lung data, where also cor-

responding masks and landmarks were available to compute additional similarity

terms. In our case, only intensity brain volumes are available. Therefore, we use

only the intensity images to compute the similarity. Due to the lack of consistent in-

tensity profiles in the MRI acquisitions [4], and the presence of pathological tissues,

the normalized gradient fields (NGF) measure is chosen as distance metric [77]. The

use of the NGF is based on the observation that two images are considered similar

if intensity changes occur at the same locations. Instead of computing the magni-

tude of the image gradient (∇R(x) and ∇T (x) respectively for the reference and

template image), the normalized gradient field is utilized [77]. The goal of image

registration based on NGF is to align them by reducing the difference between the

normalized gradient fields computed for the reference and the template image. It is

defined as follows,

NGF(R, T ) =
1

2

∫
Ω

1−
( ⟨∇R(x),∇T (x)⟩εRεT

∥∇T (x)∥εT ∥∇R(x)∥εR

)2

dx (3.3)

where ⟨x, y⟩ε := x⊤y + ε, ∥x∥ε :=
√
⟨x, x⟩ε2 and εR, εT > 0 are the so-called

edge-parameters controlling influence of noise in the images. Their value has been

empirically chosen. Moreover, we modified the original CNN implementation by

introducing the possibility of using masks of the pathological tissues as external

input during the training and validation phases, to exclude their contribution from

the correspondence computation (see Eq. 3.2). In the test phase, no mask of the

pathological tissues is needed. Moreover, we also added the possibility of using input

images characterized by two MRI sequences, whereas the original implementation

accepted only one-channel images.

When searching for the best solution to the minimization term, multiple solutions

may exist. However, not all the possible minima of the objective function represent

good and realistic registration solutions. The R term in the objective function (see

Eq. 3.1) favors a smoother deformation field y. As in the original architecture, we

utilize the curvature regularizer,

R(y) =

∫
Ω

3∑
k=1

∥∆yk(x)∥2dx (3.4)
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which penalizes deformation fields having too large second derivatives. To limit

even further the viable solutions, another regularization term

V(y) =
∫
Ω

ψ(det∇y(x))dx (3.5)

is added to the objective function, where ψ(t) = (t− 1)2/t for t > 0 and ψ(t) :=

∞ for t ≤ 0. The volume change control is used to discourage foldings in the

deformation field y that may be generated during the minimization of the cost

function. Folding in the deformation field represents an unrealistic transformation

that the minimization process may lead to. The hyperparameter controlling the

influence of this extra term on the loss function is γ, thus the final term to be added

is γV(y).
The proposed solution is based on a 3D U-Net architecture that takes as input

the concatenation of the 3D fixed (follow-up) and the moving (pre-operative) image

and provides as output a 3D dense deformation field with a resolution identical to

the images [78]. The following description of the CNN architecture is based on

what was reported in [78]. The network consists of three levels starting with 16

filters in the first layer, doubled after each downsampling step. 3D convolutions are

used in both the encoder and decoder paths with a kernel size of 3 followed by an

instance normalization and a ReLU layer. In the encoder path, the feature map

downsampling steps use average pooling with a stride of 2. In the decoder path,

the upsampling steps use transposed convolution with 2 × 2 × 2 filters and half the

number of filters than the previous step. The final layer uses a 1 × 1 × 1 convolution

filter to map each 16-component feature vector to a three-dimensional displacement.

The datasets BraTS 2015: Validation Set and Munich Dataset are used as the

training sets. Each CNN model is trained for 40 epochs. The loss weighting pa-

rameters are set as follows: α = 0.1, γ = 0.01. The learning rate is set to 0.001.

The values of these parameters are different from the original implementation and

were empirically modified. Besides using individual sequences, input characterized

by two features (i.e., two MRI sequences) are also utilized to train the CNN method.

The combinations of MRI sequences used to train and test the CNN solution are

available in 3.2. The use of data input characterized by two features is a novelty

with respect to the original architecture, where only one-channel images have been

used [78].

The registration is performed on three levels (L = 3) by using images at different

scales. The deformation field is initially computed on the coarsest level and the
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images are downsampled by a factor equal to 2L-1. On a finer level, the previously

computed deformation fields are utilized as an initial guess by warping the moving

image. At each level, the moving and fixed images are downsampled. Due to graph-

ical memory issues, the finest resolution of the registered images is 160 × 160 × 160,

which is also the size of the generated deformation field [78]. The final deformation

field is then upsampled to the original size of the input images.

Multi-level iterative method

The iterative solution utilized in this work is a variational image registration ap-

proach [32]. This method has been already used in the neurosurgical context [79]

and, in this work, we evaluate it on longitudinal MRI data. The registration can be

considered as an iterative optimization algorithm where the search for the correct

registration between two images corresponds to an optimization process aimed at

finding a global minimum of an objective function. The objective function has to be

minimized for each image pair and the minimization process is performed according

to a discretize-then-optimize paradigm. The objective function to be minimized in-

cludes a distance measure, quantifying the similarity between the warped template

image and the reference one, and a regularizer, which favors the smoothness of the

computed deformation fields. NGF is here used as a distance measure (see Equation

3.3), and a curvature regularizer is utilized (see Equation 3.4). The method also al-

lows to mask the pathological tissues out from distance measure computation (see

Equation 3.2). However, differently from the CNN method, these segmentations

are needed in the test phase. Moreover, in the iterative method, the choice of the

optimal transformation parameters is conducted by using the quasi-Newton l-BGFS

[80], due to its speed and memory efficiency.

The iterative method performs a non-parametric registration that, as for the deep

learning method, is performed on three levels (L = 3) by always using images at

different scales. On the finest level, the volumes have a size of 160 × 160 × 160. The

deformation field obtained in output from the iterative method is then upsampled

to the size of the original images. The stopping criteria for the optimization process

are empirically defined: the minimal progress, the minimal gradient, and the rela-

tive one, the minimum step length are set to 0.001, and the maximum number of

iterations is set to 100. The loss weighting parameter is empirically set to α = 0.1.

The registration algorithm is used to register the volumes of the test set.
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Diffeomorphic registration ANTs method

The Symmetric Diffeomorphic registration method ANTs represents a standard reg-

istration algorithm for MRI data [81; 82]. Thus, we aim to evaluate how well the

proposed methods perform in comparison to a standard approach. ANTs is applied

by using the original size of the volumes (240 × 240 × 155). As suggested in [83],

the Symmetric Normalization (SyN) transformation model of ANTs is utilized, and

cross-correlation is used as the distance measure since NGF is not available. The

T1-CE is used to guide the registration, since it is supposed to be the sequence

with the higher original resolution and, thus, the one leading to better registration

results. Moreover, the masking of the distance measure is performed, to reduce the

negative effects of the non-corresponding tissues on the registration results.

3.2.3. Experiments

Influence of different MRI sequences

This work aims to numerically analyze the influence of multiple MRI sequences on

the registration of longitudinal data by evaluating the performances of two types of

methods, the iterative solution, and the deep learning-based approach. The CNN

method is trained on four individual sequences (T1-CE, T1, T2, and FLAIR). In the

inference process, the models are then used to register the corresponding sequences

in the test sets. Besides, the iterative method is applied to different individual

sequences. Moreover, we also train the CNN solution using input volumes charac-

terized by two distinct sequences. This experiment aims to verify whether multiple

MRI sequence input is better than only one to train the neural network models.

The deformation field computed on an individual or multiple sequences can then be

applied to the other MRI acquisitions of the same patient.

The nonparametric Wilcoxon signed-rank test is utilized to verify whether there is

a statistically significant difference between the results of each registration solution

(iterative method and trained CNN models) and the baselines of the two test sets.

This analysis tests whether the median of the differences between the two paired

results is zero. The data distribution of the baseline registration errors is not normal

according to the One-sample Kolmogorov-Smirnov test [84].
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Figure 3.4.: Target registration errors on the test set. The box plots related
to the solutions where no masking procedure is performed are indicated
as No Mask. In each box plot, the red line and the point respectively
indicate the median and mean values.

Effects of excluding the pathological tissues from the distance measure

This work also evaluates the influence of pathology on the registration process.

Thus, masks are used to exclude the contribution of the pathological tissues from

the distance measure computation. For the CNN method, the segmentation of the

pathological tissues is used as extra input only during training, to compute the

distance measure on the healthy tissues (see Eq. 3.2). In the inference process,

no mask is required. Four additional models are trained, each for a different MRI

sequence, without masking the distance measure. The iterative method also has the

possibility of excluding the pathological tissues from the distance measure. However,

it requires the segmentation of pathological tissues when applied to the test set. The

iterative method excluding and including the pathological tissues is also utilized for

each of the four MRI sequences.
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Figure 3.5.: Comparison of qualitative results for CNN models trained on
T1-CE and T1 MRI sequences. Each row refers to the results for
the CNN models trained on different sequences (from the top to the
bottom, T1-CE, and T1). The post- and pre-operative images are visu-
alized in the first and second columns, and the initial overlay between
the two acquisitions is visible in the third column. The last four columns
display the warped moving volumes and the overlays between the fixed
image (post-operative) and the warped moving images, respectively for
the models excluding and including the pathology in the distance mea-
sure. The purple arrows point to locations where improvements are
observable. In Subfigs. D, and K a better overlap of the lateral ventri-
cles is visible. Moreover, in Subfigs. F, K, and D the sulci are better
registered.
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Figure 3.6.: Comparison of qualitative results for CNN models trained on
T2 and FLAIR MRI sequences. Each row refers to the results
for the CNN models trained on different sequences (from the top to
the bottom, T2 and FLAIR). The post- and pre-operative images are
visualized in the first and second columns and the initial overlay between
the two cases is in the third column. The last four columns display
the warped moving volumes and the overlays between the fixed image
(post-operative) and the warped moving images, respectively for the
models excluding and including the pathological tissues in the distance
measure. The purple arrows point to locations where improvements are
observable. In Subfigs. E, L, and N, a better registration of the lateral
ventricles is visible. Besides, in Subfigs. G and E the sulci are more
aligned.
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Figure 3.7.: Qualitative results obtained by CNN and iterative solutions
masking the distance measure. The first row is related to methods
using the T2 MRI sequence, whereas the last one shows example results
for solutions using the FLAIR sequence. The first two columns show
the corresponding slices of the pre- and post-operative volumes, rigidly
registered in the pre-processing step. The third column presents warped
moving images obtained by the iterative method, the fourth column
shows the results for the CNN models.
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3.3. Results

The mean target registration errors are computed to evaluate the outcome of the

different registration algorithms. For each matching landmark (see Fig. 3.2 for an

example), the Euclidean distance between its position in the reference image and

its position in the moving image is computed. Then, for each patient set, the mean

Euclidean distance among all the landmarks is calculated. Thus, the mean value of

the distances of all the image sets of a test dataset (i.e., the mTRE) is estimated

(please refer to Appendix III for more details). The proposed methods’ output

is the warped moving image and the deformation field. The latter is applied to

the landmarks and, if the value obtained after registration is lower than the initial

baseline, the warped moving images are supposed to be better registered to the

corresponding reference images. The results shown in this paper are computed on

two different test sets, BraTS 2015: Test Set and BraTS-Reg Challenge Dataset.

Table 3.1 shows the mTREs obtained by the proposed solutions. For the CNN

models trained without masking, the lowest mTRE (2.32 mm) is obtained by the

model using the T1-CE, whereas the highest value is achieved when the FLAIR

sequence is used (3.04 mm). Besides, the iterative method using this sequence also

achieves the highest mTRE (3.41 mm). The lowest mTRE is obtained with the

T1-CE (2.13mm). A further comparison of the results obtained on different MRI

sequences by the two methods is visible in Fig. 3.4. In both cases, the FLAIR se-

quence leads to higher median TREs, with a large range of results. On the contrary,

the T1-CE and T2 sequences help to lower the median TREs and limit the ranges

of values. Besides, the Wilcoxon test is utilized considering the target registration

errors. In both methods, the null hypothesis cannot be accepted for the models

trained on T1-CE (p < 0.000001), and on T2 (p < 0.01). Fig. 3.5 shows the qual-

itative results of CNN models trained on T1-CE and T1 MRI sequences, and Fig.

3.6 those of the methods using the T2 and FLAIR MRI sequences. The qualitative

results for the iterative method using T2 and FLAIR MRI are visible in the third

column of Fig. 3.7. In this figure, the visual results of the iterative method using

T2 or FLAIR are provided.

Moreover, for what concerns the results obtained by discarding the contribution of

the pathology, Table 3.1 shows that the lowest and highest mTREs obtained by the

CNN without masking the pathological are reduced when these tissues are excluded

from the distance measure computation (respectively, 2.16 mm and 2.98 mm). When
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the tumor is excluded, an mTRE of 3.24 mm is achieved by the iterative method

using FLAIR. The lowest mTRE in our experiments is obtained when registering the

T1-CE MRI sequence (2.11 mm). A comparison between each method excluding or

not the pathological tissues from the distance measure is also available in Fig. 3.4.

Besides, the fourth column in Fig. 3.7 shows the registration results for two CNN

models trained on longitudinal data by excluding the pathological tissues from the

distance measure. Furthermore, in Table 3.2, the lowest mTRE (2.41 mm) is ob-

tained by CNN trained with T1-CE and T2 sequences. On the contrary, the highest

mTRE of 2.82 mm is achieved by the solution using FLAIR and T2 sequences.

The CNN models trained on individual sequences, as well as the iterative methods,

are also applied to the BraTS-Reg dataset. The mTRE results are available in Ta-

ble 3.3 and Fig. 3.8. The results of both methods are lower when using the T1-CE

and the T2 sequences, whereas the highest mTREs are achieved on the FLAIR se-

quence. Fig. 3.8 shows that, when using the FLAIR sequence, both methods lead

to a range of values even higher than the baseline. Moreover, when the iterative

method uses the T1 sequence, some cases also have larger TRE than before regis-

tration. On the contrary, when using T2 and T1-CE sequences, smaller ranges of

values are achieved. When comparing the CNN models masking the pathological

tissues and those not excluding them in Table 3.3, we can observe a lower value only

for the networks trained on T1-CE. However, higher mTREs are obtained by the

CNN methods trained on FLAIR and T2. Besides, almost no difference can be seen

between the sections related to the traditional method (Iterative vs Iterative masks).

A more detailed overview is observable in Fig. 3.8, comparing for each sequence the

box plots labeled as No Mask and Mask. Besides, the second section of Table 3.2

provides the results obtained on the BraTS-reg dataset by the CNN models trained

on multiparametric input. The numerical result obtained by using T1-CE and T2

achieves the lowest mTRE obtained by the CNN method on the BraTS-Reg dataset.

According to our experiments, the T1-CE sequence and the masking of the patho-

logical tissues from the distance measure lead to the lowest mTREs. The ANTs al-

gorithm also uses these settings (see 3.2.2) and the mTRE obtained by this method

on the BraTS-Reg dataset is 2.84 mm, whereas on the Test set the final value is

equal to 2.37 mm.
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3. Influence of Multiple Sequences and Pathology on the Registration of MRI Volumes

Figure 3.8.: Target registration errors on the BraTS-Reg dataset. The box
plots related to the solutions where no masking procedure is performed
are indicated as No Mask. In each box plot, the red line and the point
respectively indicate the median and mean values.
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3.4. Discussion

None of the already proposed methods analyzed the influence of different sequences

on the registration of longitudinal MRI data. However, our experiments show that

the choice of the MRI sequence has a strong impact on the outcome of the regis-

tration of longitudinal data. This is evident by analyzing the results obtained by

two different types of registration methods, namely an iterative and CNN method,

proposed for the task of non-rigidly registering longitudinal MRI data. Our experi-

ments show that the T1-CE sequence is the best choice for designing the registration

algorithms, leading to better mTREs. This outcome could be explained by the fact

that T1-CE images used in neurosurgery usually have a higher resolution than other

MRI protocols. Moreover, thanks to the contrast enhancement, the better image

contrast of anatomical tissues in this protocol could also be responsible for better

registration results. On the contrary, the FLAIR is the worst to guide the registra-

tion process: This couldn’t be predicted from the original acquisition parameters

of the test sets, since the T1-weighted, T2, and FLAIR images are acquired with

comparable resolution. These findings are also visible in Figs. 3.4 and 3.8, where

the boxplots related to the FLAIR sequence present higher median and mean TREs

than the other sequences, and a range of values higher than the baseline. Besides, all

the multi-sequences trained CNN models to improve the baseline mTRE of the test

set, but none leads to an improvement in terms of registration accuracy. The defor-

mation fields computed on T1-CE sequence can then be employed to warp the other

acquisitions characterized by the other MRI protocols. Besides, the model trained

on T1-CE and T2 sequences outperforms that method trained solely on T1-CE in

the BraTS-Reg dataset (refer to Table 3.2 and Table 3.3).

Our experiments also show that computing the distance measure on non-corresponding

elements negatively impacts the registration of the longitudinal MRI data. Yet, the

influence of the masking procedure differently affects the brain tissues, depending on

their positions relative to the pathological tissues. The exclusion of the pathology

from the computation of the distance measure has a positive effect on the mTREs

of Table 3.1. However, the exclusion of these tissues has almost no influence on the

registration of the BraTS-Reg dataset, as shown in 3.3, except for the CNN trained

on the T1-CE. where landmarks are also positioned far away from the pathology.

Furthermore, the iterative solution using downsampled volumes outperforms the

CNN approach, and the standard method ANTs, which utilizes original-size images
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in both test sets. In fact, the best improvement is obtained by the iterative method

using T1-CE on the BraTS-Reg dataset, where the initial mTRE is reduced by 1.16

mm. In the test set, the initial value is reduced by 0.81 mm by this method. Instead,

the CNN approach is outperformed by the standard method in the BraTS-Reg set.

Besides, in the test set, the CNN method achieves better results than the standard

solution. The CNN method trained on the T1-CE sequence obtains an improvement

of 0.65 mm on the BraTS-Reg set and of 0.76 mm on the test set.

3.4.1. Limitations

The iterative method is not affected by memory issues as the CNN solution. Thus,

original resolution images could be utilized to validate the iterative method. Never-

theless, this method has been evaluated by using the resampled volumes as input,

which could be suboptimal for the accuracy outcome. Although it is not uncommon

to use lower resolution images to speed up the registration process, an improvement

in the registration results might be achieved by using original size data. Neverthe-

less, the iterative solution using downsampled volumes already achieves the best

results in our experiments.

Due to memory issues, the input data to the CNN had to be downsampled. By

reducing the input size, the information stored in the original images gets lost.

Less information can also be responsible for the poorer performance of the CNN

solution, which is based on a learning process. To overcome the memory issues

related to the 3D CNN solution, a 2.5 dimension approach could be used [85]. It

has already been demonstrated to provide good registration results for 3D data and

could help to improve the registration results by using larger input images. In this

work, up to two sequences could be used to train the CNN solution, due to memory

limitations. By using more powerful hardware, larger combinations of MRI protocols

could include up to four sequences. It would be interesting to investigate whether

the performance of the CNN method could improve. Moreover, a larger and more

heterogeneous dataset could help to improve the performance of the deep learning

method.

Another limitation is related to the landmarks provided in the BraTS-Reg dataset.

Although this set provides more image pairs and landmarks than the Test Set, no

information about the distance of the landmarks from the tumors is shared with

the public. If the landmarks would be divided into two groups according to their

distance from the pathology, it would be interesting to validate how the proposed
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Table 3.1.: Mean Target Registration Errors for the test set. The mean TREs
obtained by CNN models trained with and without masking procedure
are visible in the second and third columns. The results achieved by the
iterative method are in the fourth and fifth columns.

mTRE (mm)
Baseline 2.92

ANTs (T1-CE, mask) 2.37

MRI sequence CNN CNN Mask Iterative Iterative Mask
T1 2.79 2.65 2.27 2.29

T1-CE 2.32 2.16 2.13 2.11
FLAIR 3.04 2.98 3.41 3.24
T2 2.61 2.53 2.48 2.44

methods perform in the different brain areas for this dataset.

3.4.2. Conclusions

To the best of our knowledge, our work provides the first quantitative analysis of the

influence of different MRI sequences on the registration of longitudinal MRI data.

We also evaluate how much impact the exclusion of the pathological tissues has

on the registration of pre- and post-operative data. To conduct our experiments,

a multi-level deep learning solution and an iterative method are proposed for the

registration pre- and post-operative MRI data acquired in the neurosurgical context.

A few changes have been made to the original CNN implementation i) to accept

multiparametric images and ii) to mask specific tissues out of the distance measure.

Our experiment showed that the best sequence to guide the registration process is

the T1-CE. For the CNN solution, the combination of T1-CE and T2 sequences also

leads to good results. The best-performing solution in our experiments is provided

by the iterative method, using the T1-CE sequence.
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Table 3.2.: Mean Target Registration Errors of the multisequence trained
models on the test set (first table) and BraTS-Reg dataset (sec-
ond table).

mTRE (mm) - Test set
Sequence CNN Mask

T1-CE + T2 2.41
T1-CE + T1 2.45
T1 + T2 2.48

T1-CE + FLAIR 2.43
T1 + FLAIR 2.61
FLAIR + T2 2.82

mTRE (mm) - BraTS-Reg set
Sequence CNN Mask

T1-CE + T2 2.94
T1-CE + T1 3.17
T1 + T2 3.58

T1-CE + FLAIR 3.15
T1 + FLAIR 3.23
FLAIR + T2 3.03

Table 3.3.: Mean Target Registration Errors for the BraTS-Reg Dataset.
The mean TREs obtained by CNN models trained with and without
masking procedure are visible in the second and third columns. The re-
sults achieved by the iterative method are in the fourth and fifth columns.

mTRE (mm)
Baseline 3.62

ANTs (T1-CE, mask) 2.84

MRI sequence CNN CNN Mask Iterative Iterative Mask
T1 3.24 3.24 2.99 2.98

T1-CE 3.11 2.97 2.46 2.46
FLAIR 3.32 3.37 3.16 3.15
T2 3.13 3.17 2.81 2.83
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Abstract
Purpose Deformable registration of pre- and post-operative MRI brain acquisi-

tions is hindered by non-corresponding pathological tissues. Besides excluding their

contribution from the distance measure, the constraints imposed by the regularizer

on the deformations of the pathological tissues could be eliminated to improve the

registration of corresponding healthy structures. This work evaluates how the ex-

clusion of pathological tissues from the computation of the regularizer affects the

registration results.

Methods and Experiments An iterative deformable method is proposed to

register pre- and post-operative contrast-enhanced T1-weighted (T1-CE) volumes.

Masks of pathological tissues are used to identify the voxels of non-corresponding

pathological structures, whose contribution is discarded from the calculation of the

regularizer. This work compares this method with the same solution not excluding

pathology from the registration process.

Results A public dataset of 140 pairs of MRI volumes is utilized. Corresponding

landmarks acquired in pre-and post-operative acquisitions are available to evaluate

registration algorithms. Masks of pathological tissues are automatically segmented

by a freely available method. The deformable solution excluding the pathological

tissues from the objective function reduces the initial mean target registration error

(mTRE) from 4.25 mm to 2.38 mm. The mTRE obtained by the approach not

excluding the pathology is 2.43 mm.

Conclusion The exclusion of the pathological tissues from the regularizer com-

putation is beneficial to the registration results. Future algorithms could start from

these results for investigating additional ways of weighting the regularizer.
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4.1. Introduction

Non-corresponding pathological tissues in pre- and post-operative MRI volumes neg-

atively affect the image-based registration of subsequent acquisitions, due to the

lack of one-to-one correspondence between the reference and template images [4].

In subsequent MRI acquisitions, tumors visible in pre-operative scans are removed;

in post-operative volumes, they are no longer observable and resection cavities get

formed. Image-based algorithms must have a strategy to reduce the negative effects

of pathological tissues on the registration of subsequent MRI images acquired in

brain tumor treatments.

A solution for dealing with the lack of correspondence between pre- and post-

operative MRI acquisitions is to exclude the contribution of the pathological tissues

from registration algorithms [31]. A commonly utilized approach is to compute the

distance measure by excluding the contribution of the non-corresponding tissues

[86; 60; 55; 31]. For this purpose, pathological tissues can be manually or automat-

ically segmented and the generated masks are used to identify the voxels belonging

to the non-corresponding structures. The contribution of these voxels is excluded

from the distance measure computation. An analysis of the benefits of masking the

pathological tissues out of the distance measure is available in the previous chapter

(please refer to 3).

In deformable registration algorithms, the objective function to be minimized is

not only composed of the distance measure but of a regularization term too, which

penalizes too large or unrealistic deformations. When discarding the contribution

of the pathology from the distance measure, the goal of a registration algorithm be-

comes to correctly register the healthy tissues. To further improve the registration

of these structures, the contribution of non-corresponding tissues to the regularizer

could be adapted to the surrounding tissues, or discarded by using a weighting pa-

rameter for the regularizer. By doing so, a more precise and accurate registration of

the healthy corresponding structures could be achieved. The idea of locally adapt-

ing the amount of deformation to different types of tissues is not new in literature

[87; 88; 89; 90; 43; 91; 92]. The authors in [91] propose an inter-patient deformable

registration method for T1 MRI volumes, which computes a dense deformation field

to register brain tissues. They introduce a voxel-based weighting term to locally
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control the values of the regularization term, allowing some tissues to contribute

more to the regularizer computation. The motivation behind the weighting param-

eter is to generate more realistic transformations. In their approach, some tissues

are considered more as a stiff material, and others can be more freely deformed.

The weighting term has large values where little deformation is expected, and small

values in areas that should be more deformed. The degree of smoothness of the

deformation fields is achieved by using the segmentation of brain tissues. Three

classes are defined: cerebrospinal fluid, grey matter, and white matter. White and

gray matter are deformed as stiff material, therefore the value of the weighting pa-

rameters is set equal to one. For the CSF, the value is 0, thus it does not contribute

to the computation of the regularization. The authors in [92] also propose a grid-

powered solution for the registration of MRI volumes with pathology to a healthy

atlas. Similarly to the previous approach, they propose a solution in which the com-

putation of the regularization term can be adapted according to the brain tissues.

After segmenting healthy tissues and brain tumors, they accordingly modulate the

value of the weighting parameter. To deal with the non-corresponding tissues of

the pathology, their contribution is excluded from the computation of the regular-

izer: The value of the weighting parameter in these areas assumes the same value

as the surrounding tissues. They utilize a dataset of 22 T1-weighting MRI volumes

of different patients and qualitatively demonstrate how their pathology-aware solu-

tion improves the registration outcome. The authors in [89] propose a variational

image registration approach with spatially varying regularization. They introduce

a spatially varying parameter applied to an elastic regularizer, which can assume

different positive values. By using segmentation masks of the objects to register,

the factor multiplying the regularizer assumes different values. The weighting pa-

rameter controls how much the regularization values computed in correspondence

with the voxels of different areas contribute to the final calculation. They use this

approach to produce more realistic deformations.

Whereas the previous chapter 3 investigates the exclusion of pathology solely from

the computation of the distance measure, this chapter proposes a method discarding

the pathological tissues also from the computation of the regularization term. The

goal of this work is to analyze whether the registration results are positively affected

by the exclusion of the pathological tissues from the regularizer.
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4.2. Method

The fixed and moving images can be modeled as functions F , M : R3 → R. The

goal of the proposed image registration approaches is to generate a deformation

y(x) : Ω → R3 that aligns the two images F and M on the field of view Ω ⊂ R3

such that F(x) and M(y(x)) are similar for x ∈ Ω. The proposed method is a

variational image registration approach based on [32], in which the registration of

two volumes corresponds to the minimization of a discretized objective function

J (F ,M, y(x)). This work focuses on a non-rigid registration solution for intra-

patient MRI volumes. Its goal is to generate a dense deformation field y that locally

deforms each voxel of the template image. The search for the correct solution

corresponds to the minimization of an objective function, which aims at finding

a deformation field that can reduce the distance measure computed between the

reference and the warped template image. Expressing as D the distance measure,

the objective function is defined as

J (F ,M, y) = D(F ,M(y(x))) (4.1)

The deformation field should reduce the dissimilarity between the reference and

warped moving images. In the proposed solution, the normalized gradient field

(NGF) is used as a distance measure:

NGF(R, T ) =
1

2

∫
Ω

1−
( ⟨∇R(x),∇T (x)⟩εRεT

∥∇T (x)∥εT ∥∇R(x)∥εR

)2

dx (4.2)

where ⟨x, y⟩ε := x⊤y + ε, ∥x∥ε :=
√

⟨x, x⟩ε2 and εR, εT > 0 are the so-called

edge-parameters controlling influence of noise in the images.

Deformable registration is an ill-posed problem, where multiple solutions to the

minimization process exist. In this context, limiting the number of possible solutions

and penalizing unrealistic deformations is necessary. This is achieved by introducing

additional regularization terms. In this work, two additional regularization terms

are utilized. Thus, the objective function can be written as

J (F ,M, y(x)) = D(F ,M(y)) + αR(y) + γV(y) (4.3)

The first regularization term is the curvature regularizer
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R(y(x)) =

∫
Ω

3∑
k=1

∥∆y(x)∥2dx (4.4)

which penalizes deformation fields having too large second derivatives. To limit

even further the available solutions, another regularization term

V(y(x)) =
∫
Ω

ψ(det∇y(x))dx (4.5)

is added to the objective function, where ψ(t) = (t−1)2/t for t > 0 and ψ(t) := ∞
for t ≤ 0. The volume change control is used to reduce foldings in the deforma-

tion field y(x) that may be generated during the minimization of the cost function.

Folding in the deformation field represents an unrealistic transformation that the

minimization process may lead to. The two hyperparameters γ and α control the

influence of the regularization terms on the loss function.

Registration Parameters

Multi-level approaches register images at different scales (L) and are demonstrated

to be useful to avoid local minima in the optimization of the objective function,

and to speed up computational runtimes [78; 43; 93; 94]. The deformation field

is initially computed on the coarsest level and the images are downsampled by a

factor equal to 2L-1. On a finer level, the previously computed deformation fields are

utilized as an initial guess by warping the moving image. At each level, the moving

and fixed images are downsampled. Our solution proposes a multi-level approach in

which the registration is performed on three levels (L = 3).

Besides, the values of the stopping criteria for the optimization process are em-

pirically set: the minimal progress, the minimal gradient, the relative one, and the

minimum step length are set to 0.001, and the maximum number of iterations is set

to 100. The loss weighting parameters are empirically set to α = 1 and γ = 1.

The choice of the optimal transformation is conducted by using the quasi-Newton

l-BGFS [80], due to its speed and memory efficiency.

4.2.1. Voxel-Based Weighting of the Regularization Term

This work proposes a voxel-based weighting parameter for the regularizer. By ex-

pressing the sum of the regularization terms 4.4 and 4.5 as
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S(y) = αR(y) + γV(y) (4.6)

a voxel-based parameter ρ(x) : Ω → R multiplying S(y) is introduced to provide

a local weighting of the regularizer (ρ(x)S(y)). In registration approaches, in which

no weighting is applied, the parameter multiplying the regularization terms is fixed

and constant (ρ = 1). In the proposed method, its value is spatially dependent on

x and can be locally controlled according to the voxel positions.

This work aims at excluding the contribution of the pathological tissues from the

regularizer computation. To achieve this, the value of the weighting parameter ρ(x)

is set to zero in correspondence with voxels belonging to the pathological tissues

and one in the other brain areas. The two classes of voxels (pathology and healthy

tissues) are determined using segmentation masks of the reference images, automat-

ically obtained by a freely available method (see next section for more details).

The objective function optimized by the proposed method assumes the following

expression:

J (F ,M, y) = D(F ,M(y)) + ρyS(y) = D(F ,M(y)) + ρ(x)(αR(y) + γV(y)) (4.7)

The solution is proposed in two variants. In the first approach, the value of the

hyperparameter is set to zero for the voxels included in the segmentation masks of

the tumor. In the second one, the value of the parameter is set to one for each voxel

(ρ = 1).

4.3. Dataset

This work utilizes the dataset released for the BraTS-Reg challenge, organized at

the ISBI 2022 and MICCAI 2022 conferences [4]. The dataset includes 140 pairs of

MRI volumes obtained before and after neurosurgical resection. Each pair includes

two volumes, one acquired before surgery and the second after resection. Each case

is characterized by four MRI sequences: native T1 (T1), contrast-enhanced T1-

weighted (T1-CE), T2-weighted (T2), and T2 Fluid Attenuated Inversion Recovery

(FLAIR). The set also includes the corresponding landmarks in each pair of volumes.

These landmarks are obtained on anatomical locations such as blood vessel bifurca-

tions, the anatomical shape of the cortex, and anatomical landmarks of the midline
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of the brain. The total number of landmarks varies from case to case and across

all cases in the range of 6-50 per scan. The volumes of each pair have previously

preregistered to a standard reference [4]. The experiments conducted in this chapter

are related to deformable solutions: As a normal practice with deformable solutions,

an intra-patient rigid transformation is utilized to pre-align each pair of volumes.

The baseline mean target registration error (mTRE) after rigid registration is 3.62

mm.

Several sequences are available. The previous chapter 3 demonstrated that the T1-

CE is the most informative to guide the registration process in an iterative method.

Thus, this is the sequence utilized in the following experiments.

Automatic Segmentation of pathological tissues

This work investigates the exclusion of pathological tissues from the computation

of the regularization and distance measure terms. These issues are not provided in

the public dataset. To segment them, the automatic method (BraTS Toolkit btk)

[73]) described in the previous chapter 3 is utilized (please refer to section 3.2.1 for

more details).

4.4. Evaluation

Both methods are evaluated and compared by computing the registration results on

corresponding landmarks acquired on the 140 pairs of the training set of the BraTS-

Reg dataset [4]. The deformation fields output by the proposed method are used to

register the landmarks of the post-operative acquisitions. The goal of the deformable

registration algorithm is to reduce the baseline mTRE (please refer to Appendix III

for more details). Besides, as already described in [86], the non-parametric Wilcoxon

signed-rank test is used to check the statistically significant difference between the

results of each registration solution (iterative method and trained CNN models) and

the baseline. This analysis tests whether the median of the differences between the

two paired results is zero. The data distribution of the baseline registration errors

is not normal according to the One-sample Kolmogorov-Smirnov test [84].

Moreover, the plausibility of the deformation fields generated by the two different

approaches is computed. For a deformation field to be plausible, no folding should

be present. However, image registration is an ill-posed problem, in which unwanted

and unrealistic solutions might also be generated [95]. To measure the presence of
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foldings, the Jacobian determinant of the deformation field (det(J(y)), also indicated

as det(J)) can be computed [96; 97]. It provides a local measure for volume change.

A value of 1 indicates no change. If det(J) > 1, there is a volume expansion,

while if its value is less than 1, there is a local contraction. On the other hand,

if det(J) < 0, a folding has occurred. Thus, the percentage of voxels in which

det(J) < 0 is computed as a measure of the plausibility of the deformation fields [4].

4.5. Results

The baseline mTRE is reduced to 2.43 mm by the method not excluding the patho-

logical tissues, whereas the solution discarding the pathology from the registration

process achieves an mTRE value of 2.38 mm. The boxplots in Fig. 4.1 provide

a more detailed comparison between the baseline registration results and the out-

come of the proposed methods. According to the Wilcoxon test, the null hypothesis

cannot be accepted for both methods (p-value < 10-21).

Qualitative results are provided in Figs 4.2, 4.3. In particular, Fig. 4.2 shows an

example of the registration results for the two automatic methods. The first row

shows two corresponding slices of pre- and postoperative images before deformable

registration. The slices of the preoperative images after being warped by the de-

formation fields obtained by the two methods are available in the second row. Fig.

4.3 shows how the landmarks registration is improved before and after applying the

method excluding the contribution of the pathological tissues. The landmarks of

the template and reference images are colored respectively green and purple. The

two subfigures in the first column display the baseline location of the corresponding

landmarks from two different views. The second column shows the registration of

the landmarks after the application of the computed deformation field: The new

positions of the purple markers are obtained after applying the deformation field

generated by the registration method excluding the pathological tissues.

The percentage of foldings for both methods is < 0.1%.

4.6. Discussion and Conclusion

This work investigates how much influence the exclusion of the pathology from the

computation of the regularizer has on an iterative method non-rigidly registering

pre- and post-operative MRI volumes. Two solutions, based on the same method,
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Figure 4.1.: Registration results visualized with boxplots. The baseline mTRE is
compared to the method not excluding the pathological tissues and the
one excluding them from the regularization terms.
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(a) Postoperative image (b) Preoperative image

(c) Warped preoperative image
(Method No Mask)

(d) Warped preoperative image
(Method Mask)

Figure 4.2.: Registration results for the two registration methods. Subfigures a)
and b) show the post- and pre-operative images (respectively, reference
and template images). In subfigure b) it can be observed how much
deformation the tumor produces in the surrounding tissues: For exam-
ple, the lateral ventricles appear compressed by the pathological tissues.
The second row shows the corresponding warped preoperative slices ob-
tained after applying the proposed methods. In subfigures c) and d),
the solutions lead to a better registration: The lateral ventricles, the
brain parenchyma, and the sulci are more aligned to the post-operative
image. Moreover, comparing d) versus c) (for example, the lateral ven-
tricles), the improvements in the second subfigure appear to be more
evident.
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(a) Displacement before registration
(First view)

(b) Displacement after registration
(First view)

(c) Displacement before registration
(Second view)

(d) Displacement after registration
(Second view)

Figure 4.3.: 3D visualization of landmarks before and after registration. Correspond-
ing landmarks of the reference and template images are colored green
and purple; A partial volume of the template brain parenchyma is also
shown to give spatial information about their location. Two different
views of the same landmarks and brain are given for a better under-
standing of their displacement before and after registration. The first
column shows the landmarks’ location before applying any deformable
registration. In the second column, reference landmarks are registered
by applying the deformation field computed by the method excluding
the contribution of the pathology. In subfigures b) and d), landmarks
appear closer than their initial location in the first column. Thus, the
proposed method leads to an improvement in the registration results.
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are applied by including and excluding the contribution of the pathology from the

registration process. According to the experiments presented in this work, the initial

mTRE is improved if the pathology is completely discarded from the registration

method (see Fig. 4.1). By discarding the pathology from the regularizer, the plau-

sibility of the generated deformation field is not negatively influenced. From the

visual results in Fig. 4.2, it can also be observed how the solution excluding the

contribution of the pathological tissues from the registration process leads to a more

accurate registration of healthy brain tissues.

In future work, additional classes of healthy brain tissues could be considered in

the weighting of the regularization terms. In fact, the weighting parameter proposed

in this work is not limited to a binary mask: Values different from 0 and 1 can also

be utilized. It might be beneficial for some tissues to have more influence than

others on the regularization term since they could get more realistically deformed

[91; 92]. To accomplish this, masks of healthy tissues should be first obtained.

Other works already investigated the adaptation of the regularizer to different

tissues in CNN-based solutions. In future experiments, the weighting of the reg-

ularization term could also be tested in deep learning-based approaches for the

registration of subsequent MRI acquisitions.
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The material of this chapter is available as a conference paper published in Pro-

ceedings Volume 11598, Medical Imaging 2021: Image-Guided Procedures, Robotic

Interventions, and Modeling, and presented at the SPIE Medical Imaging 2021 con-

ference.

Canalini, L., Klein, J., de Barros, N. P., Sima, D. M., Miller, D., Hahn, H.

(2021). Comparison of different automatic solutions for resection cavity segmenta-

tion in post-operative MRI volumes including longitudinal acquisitions. Proceedings

Volume 11598, Medical Imaging 2021: Image-Guided Procedures, Robotic Interven-

tions, and Modeling. SPIE. doi: 10.1117/12.2580889

The article is distributed under the copyright (2021) of the Society of Photo-

Optical Instrumentation Engineers (SPIE).
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Abstract
Purpose Glioblastoma multiforme (GBM) represents the most common primary

brain tumor. After its neurosurgical resection, radiation therapy (RT) is indicated

as a post-operative adjuvant treatment to limit possible regrowth. In RT planning,

the target volume is carefully decided including also the resection cavity originating

from neurosurgery. The treatment is split into consecutive sessions to reduce side

effects. Throughout RT the pathological tissues often change their size and shape,

and the target volume defined in the initial planning has to be updated. Magnetic

resonance imaging (MRI) data can be acquired before each session to manually

redefine the resection cavity contours. However, the manual segmentation of this

structure is a tedious and time-consuming task.

Method In this work, we compare five deep-learning solutions to automatically

segment the resection cavity in postoperative MRI. The proposed methods are based

on the same 3D U-Net, widely used to tackle segmentation tasks. We use a dataset

of post-operative MRI volumes including also longitudinal acquisitions. Each case

counts four MRI sequences and comprises the ground truth of the corresponding

resection cavity. Four solutions are trained each with a different MRI sequence.

Besides, a method designed with all the available sequences is also presented.

Results In this work, we compare all the solutions to find which one obtains

the best DICE index computed between the automatically generated masks and

ground truth. Our experiments show that the method trained only with the T1

weighted contrast-enhanced MRI sequence achieves the best results, with a median

DICE index of 0.81. The 3D U-Net trained on the FLAIR sequence achieves the low-

est value 0.44. The solutions trained on all the MRI protocols obtain a DICE of 0.77.

Purpose The results obtained in this work show that the choice of the MRI

sequence has a strong effect on the training of deep learning solutions to segment

resection cavities. Thus, future solutions aiming to segment this structure should

take our results into account to obtain the best outcome.
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5.1. Introduction

Glioblastoma multiforme (GBM) is the most common type of intracranial tumor

and has a very poor prognosis [17]. Tumor resection is indicated as the first treat-

ment [11]. However, given the infiltrating nature of GBM, a maximal excision is

often unachievable. Therefore, radiotherapy (RT) is normally performed as a post-

operative treatment [98]. It uses high-energy radiations on a target volume specified

in RT planning, to destroy pathological cells and limit tumor recurrence. However,

radiation exposure can also damage healthy tissues. To limit side effects, the treat-

ment is usually split into several sessions in which a small dose of the radiation is

delivered [17]. The healthy tissue can recover faster from a small fraction of the

dose, reducing RT side effects. Besides, careful planning of the target volume is

important to limit the radiation dose only to a precise structure. In intracranial

RT planning, the target volume also includes the resection cavity’s contours [98].

However, throughout the RT, the anatomical volumes often change. This is also

true for the resection cavity, which can go under severe modifications regarding its

shape, size, and intensity [99; 6]. An example of the possible alterations is visible in

Fig. 5.1, showing two subsequent acquisitions for the same patient. The second and

third columns are respectively related to the FLAIR and T1 MRI sequences and

show how the intensities of a resection cavity can differ in two consecutive acqui-

sitions. Since it is important to focus the radiation therapy only on the structures

of interest, an update of the target volume becomes necessary. Besides computed

tomography (CT) scans, post-operative MRI is a valid alternative to obtain up-

dated images of the resection cavity. By observing this data, the contours of the

cavity can be manually modified, and the target volume updated. However, manual

segmentation is tedious work for physicians [100], who would benefit from having

an automatic method to accomplish this task. Despite the importance of the re-

section cavity in the postsurgical phases, very few solutions have been proposed to

automatically delineate its contours. The authors in [100] introduced an automatic

method to automatically segment the resection cavity in post-operative MRI. They

demonstrated that a convolutional neural network (CNN) can be a valid alternative

to manual segmentation. They used multi-sequence MRI volumes to train their so-

lution. However, they didn’t use post-operative MRI volumes acquired at different
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sessions of the same radiotherapy treatment. An automatic solution tackling the

segmentation of the resection cavity also in longitudinal MRI acquisitions is still

missing. In this work, we investigate five different automatic solutions to segment

resection cavities in post-operative MRI volumes which also include longitudinal

studies. Every method is based on the same CNN based on the 3D U-Net [42],

which has become a standard approach in automatic segmentation tasks in medical

imaging. Four of the proposed solutions are trained with a distinct MRI sequence,

whereas only one approach uses all the available MRI sequences together. A com-

parison between all the trained models is performed to check which one obtains the

best results. This could give a better understanding of which MRI sequences may

be the most informative to segment the resection cavity in post-operative MRI.

5.2. Material and Methods

5.2.1. Data

In this work, we utilized the data coming from BraTS 2015 [101], a public dataset in-

cluding a mixture of pre and post-operative MRI images. The volumes come already

skull-stripped, co-registered to the same anatomical template, and interpolated to 1

mm3̂ voxel resolution. For our experiments, we selected 47 post-operative volumes,

in which the resection cavity is clearly visible. This data is related to 14 different

patients in which high-grade gliomas have been resected. The utilized dataset con-

tains also longitudinal studies for eight patients who have been scanned subsequent

times. An example of the volumes used for our work is visible in Fig. 5.1, in which

we can observe the same patient scanned in two subsequent MRI acquisitions. The

original challenge focused on the segmentation of other tumor tissues but not on

the resection cavity, which therefore wasn’t originally segmented. Thus, we manu-

ally annotated the structures of interest by looking at the resection cavity on the

different MRI sequences. Figs. 5.3 and 5.4 show two examples of the ground truth

annotated for this work (highlighted with green contours).

5.2.2. Methods

We here propose five different solutions based on the same CNN architecture. We

utilized a 3-leveled 3D U-Net [42] with a receptive field size of 44 × 44 × 44 voxels.

The patches containing the background are a larger quantity than the ones including
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(a) T2 (b) FLAIR (c) T1-CE (d) T1

(e) T2 (f) FLAIR (g) T1-CE (h) T1

Figure 5.1.: Resection cavity changes in two subsequent MRI acquisitions of the
same patient. The first row contains four images, each showing different
MRI sequences (T2 weighted, FLAIR, T1 weighted, and T1 contrast-
enhanced) acquired during the same session. The second row shows the
same sequences acquired in a subsequent session.
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resection cavities labels. Thus, to speed up the training procedure, the patches’

composition has been modified: 20 percent of them include only background voxels,

whereas 80 percent contain at least a foreground voxel. Moreover, as a loss function,

we used the Tversky Loss to weigh recall higher than precision (a = 0.2, b = 0.8)

[102]. It is used to give more penalty on the false negative predictions so that a

larger amount of voxels will be segmented as foreground. Even if the false positive

predictions may increase, a lower number of foreground voxels will be missed. All

the proposed solutions are trained with a batch of size 5 and the best model is saved

every 100 iterations based on the Jaccard coefficient computed on the validation

data. Four of the proposed solutions are trained each with a different MRI sequence,

and only one has been trained with all 4 sequences together. Besides, we utilized

a five cross-validation procedure to test our algorithms. The 47 cases are split into

five disjoint groups, three of them composed of nine volumes each, and two with

ten volumes. Each of these disjoint groups represents a test set and the remaining

volumes are used to train and validate our solutions. Thus, each proposed method

is trained five times and tested always on a disjoint test set. Furthermore, in the

inference process, we apply connected component analysis to keep only the largest

segmented mask. The Tversky loss function could lead to an over-segmentation of

the structure of interest. However, only one resection cavity is present per volume,

so we discard smaller structures that may be wrongly segmented.

5.3. Results

We compute the DICE indices between the ground truth and the automatically

generated masks [103]. The results of the different approaches are visible in Fig.

5.2, where five box plots show the median DICE values. As we can observe, the

model trained with only the T1-CE MRI sequence obtained a median DICE of 0.81

in our experiments. On the contrary, the 3D U-net trained only on the FLAIR

sequence achieved the lowest score median DICE of 0.44. The method using all four

modalities together reaches a median DICE index of 0.79, which is slightly lower

than the approach trained with only T1-CE, but higher than the other solutions

(0.73 and 0.77 are the median DICE values for the solutions trained with T1 and

T2). Besides, the Wilcoxon sign-rank test is performed between the outperforming

method and each of the other solutions to verify if the differences are statistically

significant. The results of this test are available in Fig. 5.2. The test shows that
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there are statistically significant differences with a p-value<0.01 between the best

solution and methods trained only with T1, FLAIR, and T2. Besides, there is also

a statistically significant difference with a p-value<0.05 between the outperforming

solution and the model trained with all the sequences. The visual results for the

solutions trained with a single MRI sequence are available in Fig. 5.3. Thus, T1-CE

seems to be the most informative sequence to train the proposed method. This may

be because the resection cavities observed on T1 contrast-enhanced images usually

have uniform characteristics among different acquisitions. In fact, in T1-CE images,

the cerebral spinal fluid (CSF) within the resection cavity often appears hypointense

and delimited by a hyperintense border highlighted by the contrast enhancement.

Thus, it may be easier for the solution trained with only T1-CE to identify unique

features to segment the structures of interest. On the FLAIR sequence, the cavities

can assume instead very different characteristics even in longitudinal sequences,

mainly due to tumor recurrences or radiotherapy treatment [6]. As an example, the

second column in Figure 1 shows the same resection cavity observed on the FLAIR

sequence during two subsequent acquisitions: The CSF within the resection cavity

has very different intensities between the two images. Thus, the method trained

only with the FLAIR sequence may not be able to find a specific set of features

to correctly characterize the resection cavity. The variability in the intensity could

also explain the segmentation errors observed in the second column of Fig. 5.3. The

segmented structure (highlighted in orange) includes both hypo and hyperintense

parts, mainly because the resection cavity can be characterized by both of them.

Besides, the multisequence approach performs worse than the solution designed

with only the T1-CE sequence. This is surprising because the method trained with

multiple MRI sequences should learn more features, potentially leading to a better

outcome. However, there may be some MRI sequences that negatively affect the

task, especially considering what has already been discussed for the FLAIR MRI

sequence. The visual results for this solution are available in Fig. 5.4.

5.4. Discussion

To the best of our knowledge, we proposed the first comparison between different

solutions aimed at segmenting the resection cavity in post-operative MRI including

also longitudinal studies. We compare five approaches based on the same 3D U-Net

architecture, each trained on five different MRI sequence combinations. Four meth-
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Figure 5.2.: Figure 2: DICE results for the five solutions. The methods are listed
on the x-axis, whereas the y-axis reports the DICE values. The results
of every solution are summarized in the corresponding box plot. The
median DICE indices obtained on the whole dataset are indicated by a
green line (with the corresponding values written on top of it), whereas
the outliers are highlighted with plus-symbols in red color. The model
trained only with the T1-CE sequence is the outperforming solution and
shows a statistically significant difference in comparison to the other
methods (according to the Wilcoxon sign rank test). The lines on top
of the graph relate the T1-CE method with the other solutions. The
asterisk on top of each line indicates if the statistically significant dif-
ference between the solution trained with T1-CE and another method
is verified with a p-value < 0.05 (one asterisk) or < 0.01 (two asterisks).
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(a) T2 (b) FLAIR (c) T1-CE (d) T1

(e) T2 (f) FLAIR (g) T1-CE (h) T1

Figure 5.3.: Figure 3: Resection cavity segmentation results for the four solutions
trained on a different MRI sequence. From left to right, the first row
shows the visual segmentation results obtained by the methods trained
on T2, FLAIR, T1, and T1-CE sequences. The second row displays
the corresponding ground truth observed in the four different MRI se-
quences. The automatically generated segmentation of the resection
cavity is highlighted by an orange border (first row). The ground truth
is highlighted in green in the second row.
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(a) Original T1-CE MRI (b) Ground-truth (c) CNN segmentation

(d) Original T2 MRI (e) Ground-truth (f) CNN segmentation

Figure 5.4.: Figure 4: Resection cavity segmentation results for the four solutions
trained on a different MRI sequence. From left to right, the first row
shows the visual segmentation results obtained by the methods trained
on T2, FLAIR, T1, and T1-CE sequences. The second row displays
the corresponding ground truth observed in the four different MRI se-
quences. The automatically generated segmentation of the resection
cavity is highlighted by an orange border (first row). The ground truth
is highlighted in green in the second row.
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ods are designed only with a single MRI sequence, whereas one approach is trained

with all four different sequences. Our experiments show that training performed

with only T1 post-contrast MRI sequence achieves the best results, also when com-

pared with the multi-sequence approach. Besides, the outperforming method shows

a statistically significant difference compared to the other methods. On the contrary,

the solution trained only with the FLAIR sequence achieves the lowest DICE score.

This work is not being or has not been submitted for publication or presentation

elsewhere.

5.5. Conclusions

We have proposed a comparison between five different solutions based on the same

3D U-Net architecture to segment the resection cavity in post-operative MRI vol-

umes including longitudinal studies. Each method is trained with a different com-

bination of MRI sequences. Our experiments showed that the solution trained with

only the T1-CE obtains the best results. This represents a good starting point for

further investigations into resection cavity segmentation, where very few automatic

solutions have been proposed so far. Instead of using all the available MRI se-

quences, the next solutions may utilize only the most informative ones. For future

work, different deep learning architectures could be tested to verify which one would

be the best to segment the desired output. Besides, multi-label approaches could

be investigated, in which other pathological tissues (for instance edema and active

tumor) are segmented together with the resection cavity.
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6. Intraoperative Ultrasound Imaging

in Neurosurgery

Intraoperative ultrasound (iUS) imaging can assist neurosurgeons in the resection

of brain tumors [104; 105]. It represents a lower-cost solution compared to intraop-

erative MRI, and US volumes are relatively fast to be acquired. Thanks to these

advantages, iUS data can be acquired at different stages of the neurosurgical proce-

dures 6.1.

An initial iUS acquisition is usually obtained just after opening the skull, be-

fore the tumor resection starts, to better identify and localize the pathology [106].

Thanks to a neuronavigation system, these data can also be intraoperatively ob-

served. However, the more the surgery advances, the more unreliable this initial

acquisition becomes due to brain shift effects: The tissues observed in the US data

have a different position and conformation from what is observed in the surgical

scene. Therefore, additional intraoperative US images can be required to provide an

updated visualization [106; 107; 108]. Images acquired during and at the end of the

resection help to understand how much pathology has still to be removed. However,

the image quality of US data acquired at the late stages of the resection degrades

due to brain shift and the saline solution utilized to fill the cavity [52]. To ease

the understanding of these images, they can be visually compared with the US data

acquired just after the opening of the dura mater, in which brain shift effects are not

present yet. Neuronavigation systems can register intraoperative images acquired

at different surgical phases. However, these devices are prone to technical inaccura-

cies, which affect the registration procedure from the beginning of the resection [23].

Moreover, the commonly available neuronavigation systems only compute a rigid

transformation, which is not sufficient to compensate for the anatomical changes

caused by brain shifts.
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6.1. Registration of iUS Volumes

Image registration algorithms make the visual inspection of subsequent iUS acqui-

sitions more precise and, thus, improve neurosurgery outcomes for tumor resection.

Image registration methods usually assume that a one-to-one correspondence is guar-

anteed for each voxel of the images to be registered. However, this assumption is

often not verified when dealing with iUS. In fact, the registration of iUS is extremely

challenging due to the lack of correspondence between successive acquisitions (see

Fig. 6.1 as an example). In early acquisitions obtained after the opening of the

dura mater, the tumor is still intact, whereas, at later stages of the procedure,

pathology is removed and the resection cavity is formed. Therefore, a method aim-

ing to register iUS should have a strategy for dealing with the lack of matching

structures between subsequent iUS acquisitions. It also has to provide a deformable

transformation to accommodate the brain shift effects. In the last years, the re-

search about US registration has been pushed by the release of two public datasets

including intraoperative subsequent US acquisitions with corresponding landmarks

[109; 29; 110]. The authors in [111; 112] proposed a siamese network to detect cor-

responding landmarks between subsequent iUS. The detected landmarks were then

used to estimate an affine transformation to register the US data. Besides, the au-

thors in [113] present a GAN-based method, in which a generator calculates an affine

transformation whereas the discriminator learns the similarity measure utilized to

guide the generator during training.

Chapter 7 proposes a segmentation-based solution for registering intraoperative

US volumes. It offers a combination of rigid and deformable registration steps.

Besides, it tackles the lack of correspondence between subsequent acquisitions by

computing the distance measure of the objective function solely on matching healthy

structures. First, the solution automatically segments sulci and falx cerebri in sub-

sequent acquisitions by using a 3D U-net-based method. Second, the segmented

structures are used as input to the registration method. The deformation field ob-

tained by registering the masks is then applied to the original US volumes.

Chapter 8 introduces a segmentation-enhanced solution to register iUS volumes.

A combination of rigid and deformable steps is utilized. The method can be seen as

complementary to the first solution 7 because it registers the original US acquisitions
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(a) iUS at early neurosurgical stages (b) iUS at late neurosurgical stages

Figure 6.1.: Example images of intrapatient intraoperative ultrasound volumes ac-
quired before (a) and after (b) tumor resection. In neurosurgery, the
pathology is removed and the resection cavity gets formed. The resec-
tion cavity has no specific counterpart in the initial acquisitions. In
the process of registering intrapatient volumes, it would be beneficial to
exclude the contribution of non-corresponding elements of the resection
cavity and rely only on the structures which remain visible in subse-
quent acquisitions.

by excluding the contribution of non-corresponding structures from the distance

measure computation. The resection cavities are not visible in US acquisitions

obtained just after opening the dura mater, but only at the intermediate and late

stages of the surgery. By excluding their contribution from the distance measure

computation, the minimization of the objective function can focus on the healthy

structures, for which a one-to-one correspondence is available.
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7. Segmentation-Based Registration of Ultrasound Volumes

Abstract
Purpose In image-guided surgery for glioma removal, neurosurgeons usually plan

the resection on images acquired before surgery and use them for guidance during

the subsequent intervention. However, after the surgical procedure has begun, the

preplanning images become unreliable due to the brain shift phenomenon, caused

by modifications of anatomical structures and imprecisions in the neuronavigation

system. To obtain an updated view of the resection cavity, a solution is to collect

intraoperative data, which can be additionally acquired at different stages of the

procedure to provide a better understanding of the resection. A spatial mapping

between structures identified in subsequent acquisitions would be beneficial. We

propose here a fully automated segmentation-based registration method to register

ultrasound (US) volumes acquired at multiple stages of neurosurgery.

MethodsWe chose to segment sulci and falx cerebri in US volumes, which remain

visible during resection. To automatically segment these elements, first we trained a

convolutional neural network on manually annotated structures in volumes acquired

before the opening of the dura mater, and then we applied it to segment correspond-

ing structures in different surgical phases. Finally, the obtained masks are used to

register US volumes acquired at multiple resection stages.

Results Our method reduces the mean target registration error (mTRE) between

volumes acquired before the opening of the dura mater and during resection from

3.49 mm (± 1.55 mm) to 1.36 mm (± 0.61 mm). Moreover, the mTRE between

volumes acquired before opening the dura mater and at the end of the resection is

reduced from 3.54 mm (± 1.75 mm) to 2.05 mm (± 1.12 mm).

Conclusion The segmented structures demonstrated to be good candidates to

register US volumes acquired at different neurosurgical phases. Therefore, our solu-

tion can compensate for brain shift in neurosurgical procedures involving intraoper-

ative US data.

82



7.1. Introduction

7.1. Introduction

In brain surgery for tumor removal, neurosurgeons usually plan the intervention

on pre-surgical images. The most widely used modality for neurosurgery planning

is magnetic resonance imaging [27; 114; 21]. To help physicians with the resec-

tion, neuronavigation systems can be used to link preplanning data positions to

patients’ head locations. By tracking fiducial markers placed on the patient’s skull

and surgical tools, an optical system computes an image-to-patient transformation.

Consequently, by pin-pointing an intracranial location, neurosurgeons can obtain

the same position in the preplanning images. However, initialization inaccuracies

of the neuronavigation system may invalidate the image-to-patient transformation,

affecting the quality of these images since the beginning of the resection [23]. Ad-

ditionally, after resection starts, the preplanning data become even more unreliable

due to the brain shift phenomenon: Structures observed in preplanning images don’t

remain in the same conformation and position during tumor removal [23]. As a con-

sequence, the probability that pathological elements are missed increases, reducing

the survival rates of the operated patients [115; 116]. To overcome this problem,

intraoperative images can be acquired [117]: They provide an updated view of the

ongoing procedure and hence compensate for the brain shift effects. A solution is

represented by intraoperative magnetic resonance imaging (iMRI) [118]. It is demon-

strated to be a good option [119] since its high image quality provides good contrast

in anatomical tissue even during the resection [120]. However, the high costs of

iMRI and the architectural adaptations required in the operating room seem to pre-

vent this modality from being deployed more widely. A valid alternative is given by

intraoperative ultrasound (iUS) [121; 122; 123; 124]. Some authors reported that for

certain grades of glioma, iUS is equal or even superior to iMRI in providing good

contrast between tumor and adjacent tissues [106; 125]. Moreover, US represents a

lower-cost solution compared to MRI. In our work, we focus on intraoperative 3D

ultrasound used in neurosurgical procedures.

The more the resection advances, the more the initial acquisition of iUS becomes

unreliable due to increased brain shift effects. Therefore, an update of the intraoper-

ative imaging may be required. In [126], the authors acquired US volumetric data in

subsequent phases of glioblastoma resections in 19 patients and compared the ability
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to distinguish tumors from adjacent tissues at three different steps of the procedure.

According to their observations, the 3D images acquired after opening the dura, im-

mediately before starting the resection (we indicate this phase as before resection),

are highly accurate for delineating tumor tissue. This ability reduces during resec-

tion, i.e., after most of the resection has been performed but with residual tumor,

and after resection, i.e., when all the detected residual tumor has been removed.

In fact, the resection procedure itself is responsible for creating small air bubbles,

debris, and blood. Besides this, a blood clotting-inducing material, commonly used

during neurosurgical procedures, causes several image artifacts [106; 108]. Succes-

sive studies regarding other types of tumor resection confirmed the degradation of

image quality in US during resection [52]. Therefore, it would be helpful to combine

US images acquired during and after resection with higher-quality data obtained

before resection. Such a solution may also be beneficial to improve the registra-

tion of intraoperative data with higher-quality preplanning MRI images. In fact,

instead of combining directly degraded US data with preplanning imaging, it would

be useful to register first the pre-surgical MRI data with US volumes acquired before

resection, in which few anatomical modifications occurred. Afterward, intraopera-

tive US data acquired at the first stage of the surgery (which therefore has a higher

quality) may be registered to subsequent US acquisitions, and then the preplanning

data could be registered to those by utilizing a two-step registration [127]. In this

context, neuronavigation systems could be used to co-register intraoperative images

acquired at different surgical phases. However, these devices are prone to technical

inaccuracies, which affect the registration procedure from the beginning of the resec-

tion [23]. Moreover, the available neuronavigation systems usually offer only a rigid

registration, which is not sufficient to address anatomical changes caused by brain

shift. In our work, we propose a deformable method to improve the registration of

US volumes acquired at different stages of brain surgery.

Few solutions have been proposed to improve the US–US registration during tu-

mor resection in neurosurgery. In [128], the authors studied the performance of

the entropy-based similarity measures joint entropy (JE), mutual information (MI),

and normalized mutual information (NMI) to register ultrasound volumes. They

conducted their experiments with two volumes of an US calibration phantom and

two volumes of real patients, acquired before the opening of the dura mater. Differ-

ent rigid transformations were applied on each volume, and the target registration

error (TRE) was used as an evaluation metric. The accuracy of the registration
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was examined by comparing the induced transformation to move the original im-

ages to the deformed ones, with the transformation defined by the entropy-based

registration method. In both of the datasets, NMI and MI outperformed JE. In

another work [129], the same authors developed a non-rigid registration based on

free-form deformations using B-splines and using normalized mutual information as

a similarity measure. Two datasets of patients were used, where for each case a

US volume was acquired before the opening of the dura, and one after (but before

the start of tumor resection). To assess the quality of the registration, the corre-

lation coefficient was computed within the overlap of both volumes and before and

after registration. Furthermore, these authors segmented the volumetric extension

of the tumor with an interactive multi-scale watershed method and measured the

overlap before and after the registration. One limitation of the aforementioned two

studies is that no experiment is conducted on volumes acquired at different stages

of the surgical procedure, but only before the resection actually starts. In a real

scenario, neurosurgeons use intraoperative data to find residual tumors after the

first resection, which is conducted after the opening of the dura mater.

One of the first solutions to register US data obtained at subsequent surgical

phases utilized an intensity-based registration method to improve the visualization

of volumetric US images acquired before and after resection [130]. The results are

computed for 16 patients with different grades of brain supratentorial tumors located

in various lobes. Half of the cases were first operations, and half were re-operations.

Pre-resection volumes were acquired on the dura mater, or either directly on the

cortex (or tumor) or on a dura repair patch. The post-resection ultrasound was

used to find any residual tumor. The authors used mutual information as similarity

measure for rigid registration. In the further non-rigid transformation, the correla-

tion coefficient objective function was used. To correctly evaluate their findings, for

each of the 16 cases, a neuroradiologist chose 10 corresponding anatomic features

across US volumes. The initial mean Euclidean distance of 3.3 mm was reduced to

2.7 mm with a rigid registration, and to 1.7 mm with a non-rigid registration. The

quality of the alignment of the pre- and post-resection ultrasound image data was

also visually assessed by a neurosurgeon. Afterward, an important contribution to

neurosurgical US–US registration came by the release of the BITE dataset [109], in

which pre- and post-resection US data are publicly available with relative landmarks

to test registration methods. One of the first studies involving the BITE dataset

came from [108]. The authors proposed an algorithm for non-rigid REgistration
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of ultraSOUND images (RESOUND) that models the deformation with free-form

cubic B-splines. Normalized cross-correlation was chosen as similarity metric, and

for optimization, a stochastic descendent method was applied to its derivative. Fur-

thermore, they proposed a method to discard non-corresponding regions between

the pre- and post-resection ultrasound volumes. They were able to reduce the ini-

tial mTRE from 3.7 to 1.5 mm with a registration average time of 5 s. The same

method has been then used in [127]. In a compositional method to register preoper-

ative MRI to post-resection US data, they applied the RESOUND method to first

register pre- and post-resection US images. In another solution [10], the authors

aimed to improve the RESOUND algorithm. They proposed a symmetric defor-

mation field and an efficient second-order minimization for a better convergence of

the method. Moreover, outlier detection to discard non-corresponding regions be-

tween volumes is proposed. The BITE mean distance is reduced to 1.5 mm by this

method. Recently, another method to register pre- and post-resection US volumes

was proposed by [3]. The authors presented a landmark-based registration method

for US–US registration in neurosurgery. Based on the results of the 3D SIFT al-

gorithm [131], image features were found in image pairs and then used to estimate

dense mapping through the images. The authors utilized several datasets to test

the validity of this method. A private dataset of nine patients with different types

of tumors was acquired, in which 10 anatomical landmarks were selected per case,

in both pre- and post-resection volumes: For this set, they were able to reduce the

mTRE from 3.25 mm to 1.54 mm. Then, they applied the same method to the BITE

dataset and reduced the initial mean error to 1.52 mm. Moreover, they tested their

approach on the more recent RESECT dataset [106]. By using the same method on

the pre- and post-resection volumes, the mTRE was reduced from 3.55 to 1.49 mm.

Our solution proposes a segmentation-based registration approach to register US

volumes acquired at different stages of neurosurgical procedures and compensate

brain shift. A few approaches already applied segmentation methods on US data to

then register MRI and iUS [132; 133]. Our solution represents the first segmentation-

based method aimed at US–US volumes registration. Our approach includes a deep-

learning-based method, which automatically segments anatomical structures in sub-

sequent US acquisitions. We chose to segment the hyperechogenic structures of the

sulci and falx cerebri, which remain visible during the resection and thus represent

good corresponding elements for further registration. In the following step, para-

metric and nonparametric methods use the generated masks to register US volumes
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acquired at different surgical stages. Our solution reduces the initial mTRE for US

volumes acquired at subsequent acquisitions in both RESECT and BITE datasets.

7.2. Material and Methods

7.2.1. Datasets

We used two different public datasets to validate our segmentation-based registra-

tion method. Most of our experiments are conducted on the RESECT dataset [29],

including clinical cases of low-grade gliomas (Grade II) acquired on adult patients

between 2011 and 2016 at St. Olavs University Hospital, Norway. There is no selec-

tion bias, and the dataset includes tumors at various locations within the brain. For

17 patients, B-mode US-reconstructed volumes with good coverage of the resection

site have been acquired. No blood clotting agent, which causes well-known artifacts,

is used. US acquisitions are performed at three different phases of the procedure

(before resection, during, and after resection), and different US probes have been

utilized. This dataset is designed to test intra-modality registration of US volumes

and two sets of landmarks are provided: one to validate the registration of volumes

acquired before, during, and after resection, and another set that increases the num-

ber of landmarks between volumes obtained before and after resection. Regarding

both sets, the reference landmarks are taken in the volumes acquired before resection

and then utilized as references to select the corresponding landmarks in US volumes

acquired during and after tumor removal. In the RESECT dataset, landmarks have

been taken in the proximity of deep grooves and corners of sulci, convex points of

gyri, and vanishing points of sulci. The number of landmarks of the first and second

sets can be, respectively, found in the second column of Tables 7.3 and 7.4.

In addition, the BITE dataset is also utilized to test our registration framework

[109]. It contains 14 US-reconstructed volumes of 14 different patients with an

average age of 52 years old. The study includes four low-grade and ten high-grade

gliomas, all supratentorial, with the majority in the frontal lobe (9/14). For 13

cases, acquisitions are obtained before and after tumor resection. Ten homologous

landmarks are obtained per volume, and initial mTRE is provided. The quality

of BITE acquisitions is lower with respect to RESECT dataset, mainly because a

blood clotting agent is used, creating large artifacts [29].
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7.2.2. Methods

We used MeVisLab 1 for implementing (a) an annotation tool for medical images,

(b) a 3D segmentation method based on a convolutional neural network (CNN), and

(c) a registration framework for three-dimensional data.

Manual Segmentation of Anatomical Structures

The first step of our method consists of the 3D segmentation of anatomical struc-

tures in different stages of US acquisitions. Both RESECT and BITE datasets are

used to test registration algorithms and no ground truth is provided for validating

segmentation methods. Therefore, we decided to conduct a manual annotation of

the structures of interest in the US volumes acquired before resectioning of RESECT

dataset. Pathological tissue was excluded from the manual annotation since it is

progressively removed during resection and correspondences could not be found in

volumes acquired at subsequent stages. On the contrary, we focused on other hy-

perechogenic (with an increased response—echo—during ultrasound examination)

elements such as the sulci and falx cerebri. We consider these elements valid corre-

spondences because the majority of them have a high chance of remaining visible in

different stages of the procedure.

The manual segmentations were performed on a web-based annotation tool. As

shown in Fig. 7.1, each RESECT volume can be simultaneously visualized on three

different projection planes (axial, sagittal, and coronal). The segmentation task is

accomplished by contouring each structure (yellow contour in the first frame of Fig.

7.1) of interest on the axial view. The drawn contours are then projected onto the

other two views (blue overlay in the second frames of Fig. 7.1) so that a better

understanding of the segmentation process is possible by observing the structures

in different projections. The annotation process can be accomplished very easily

and smoothly, and 3D interpolated volumes can be then obtained by rasterizing the

drawn contours. As shown in Fig. 7.1, the contours are well defined in the axial view

but several elements are not correctly included if considering the other two views.

This is a common issue that we found in our annotation, which would require much

time and effort to be corrected. However, we decided to have a maximum annotation

time of 2 h per volume. The obtained masks correctly include the major structures of

interest, but some elements such as minor sulci are missing. Despite the sparseness

1https://www.mevislab.de/mevislab/
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Figure 7.1.: Web-based annotation tool. While contouring the structures of interest
on the axial view (yellow line in the left frame), the segmentation process
can be followed in real-time on the other two views of US volumes. The
annotation tool is accessible by common web browsers, and it has been
used to obtain and then review the manual annotation

of our dataset, we expect our training set to be good enough to train our model to

segment more refined structures of interest [42; 134].

The manual annotation was performed by the main author of this work (L.C.),

who has two years of experience in medical imaging and almost one year in US

imaging for neurosurgery. Then, a neurosurgeon with many years of experience in

the use of US modality for tumor resection reviewed and rated the manual annota-

tions, by taking into account the sparseness of the dataset. According to the defined

criteria, each volume could be rated with a point between 4 and 1. More precisely,

a point equal to 1 means that the main structures (falx cerebri and major sulci) are

correctly segmented, and only minor changes should be made to exclude parts of no

interest (i.e., slightly over-segmented elements). A point equal to 2 indicates that

the main structures are correctly segmented, but major corrections should be made

to exclude structures of no interest. A point equal to 3 indicates that main struc-

tures were missed in the manual annotations, which, however, are still acceptable.

A score of 4 means that a lot of major structures are missing; therefore, annotation

for the volume of interest cannot be accepted. The neurosurgeon evaluated the an-

notations by looking at the projected structures on the sagittal and coronal views

of the drawn contours. Table 7.1 shows the results of the rating process for the

volumes of interest.
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7. Segmentation-Based Registration of Ultrasound Volumes

Table 7.1.: Rating of the manual annotations

Volumes 1 2 3 4 6 7 12 14 15 16 17 18 19 21 24 25 27
Ranking 2 2 3 2 2 3 2 3 2 3 2 2 2 2 2 2 2

After the contours of the main structures of interest were manually drawn, the
neurosurgeons rated them according to the criterion defined in the session “Manual
segmentation of anatomical structures”. The criterion is defined by taking into
account the sparseness of the manual annotations. A point equal to 4 is given to
the annotations where many of the main structures of interest are missing. On the
contrary, if minor structures of interest (i.e., minor sulci) are missing but the major
ones are correctly included, the best point of 1 is given

Segmentation

A convolutional neural network (CNN) aimed at volumetric segmentation is trained

on manual annotations. More details about CNNs are provided in section 1.4.2.

In particular, we utilized the original 3D U-net [42] architecture. A more detailed

description of this original implementation is available 1.4.3. A few modifications

were made to the original implementation: (a) The analysis and synthesis paths have

two resolution steps and (b) before each convolution layer of the upscaling path a

dropout with a value of 0.4 is used in order to prevent the network from overfitting.

The training is conducted with a patch size of 30 × 30 × 30, padding of 8 × 8 ×
8, and a batch size of 15 samples. The learning rate was set to 0.001, and the best

model was saved according to the best Jaccard index computed on 75 samples every

100 iterations. The architecture modifications, as well as the training parameters,

were chosen by conducting several experiments and selecting those providing the

best results. As training, validation, and test sets, we split the seventeen volumes

acquired before resection, which we annotated in the manual annotation. The split

has been done as follows: The training set includes the volumes from 1 to 15, the

validation one the volumes from 16 to 21, and the test one the volumes 24, 25, and

27.

After having found the best model to segment anatomical structures in pre-

resection US volumes, we applied it to segment ultrasound volumes acquired at

different surgical phases.
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Registration

The masks automatically segmented by our trained model are used to register US

volumes. The proposed method is a variational image registration approach based

on [32]: The registration process can be seen as an iterative optimization algorithm

where the search for the correct registration between two images corresponds to an

optimization process aimed at finding a global minimum of an objective function.

The minimization of the objective function is performed according to the discretize-

then-optimize paradigm [32]: The discretization of the various parameters is followed

by their optimization. The objective function to be minimized is composed of a dis-

tance measure, which quantifies the similarity between the deformed template image

and the reference one, and a regularizer, which penalizes undesired transformations.

In our approach, the binary 3D masks generated by the previous step are used as in-

put for the registration task, which can be seen as a mono-modality intensity-based

problem. Therefore, we chose the sum of squared differences (SSD) as a similarity

measure, which is usually suggested to register images with similar intensity values.

Moreover, to limit the possible transformations in the deformable step, we utilized

the elastic regularizer, which is one of the most commonly used [32]. In our method,

the choice of the optimal transformation parameters has been conducted by using

the quasi-Newton l-BGFS [80], due to its speed and memory efficiency. The stopping

criteria for the optimization process were empirically defined: the minimal progress,

the minimal gradient, and the relative one, the minimum step length was set equal

to 0.001, and the maximum number of iterations equal to 100.

Our registration method aims to provide a deformable solution to compensate for

anatomical changes happening during tumor resection. As commonly suggested for

methods involving non-rigid registration tasks [32], the proposed solution includes an

initial parametric registration used then to initialize the nonparametric one. First of

all, the parametric approach utilizes the information provided by the optical tracking

systems as an initial guess. Based on this pre-registration, a two-step approach

is conducted, including a translation followed then by a rigid transformation. In

this stage, to speed up the optimization process, the images are registered at a

resolution one-level coarser compared to the original one. Then, the information

computed during the parametric registration is utilized as the initial condition for the

nonparametric step. In this stage, to reduce the chance of reaching a local minimum,

a multilevel technique is introduced: the images are registered at three different

scales, from a third-level to one-level coarser. As the output of the registration step,
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7. Segmentation-Based Registration of Ultrasound Volumes

the deformed template image is provided.

7.3. Evaluation

7.3.1. Segmentation

In Table 7.1, we can see that no annotation received the best score of 1, but all of

them have some imperfections. However, none of the manually annotated masks was

scored with 4. Consequently, we can consider our annotations as a sparse ground

truth in which only the main hyperechogenic structures of interest are included.

Regarding this, CNNs trained on a sparse dataset already proved to be able to

segment more refined and numerous structures with respect to the sparse training

set [42; 134]. Therefore, we expect our annotations to be good enough to train

the CNN model in order to generate meaningful structures for guiding the further

registration step. In fact, the registration step will give important feedback about

the quality of the generated masks: For our purposes, the segmented structures are

meaningful if they correctly guide the registration method. In addition to this, an

analysis of the segmentation results will be provided, as described in the following

section.

Regarding US volumes acquired before resection, no ground truth is available for

the structures not contained in the manual annotations. Consequently, the DICE

coefficients are computed by including only the automatically segmented elements

with correspondences to manual annotations and by discarding elements having no

counterpart in manually annotated data. This measure is useful to verify whether the

main structures of interest are correctly segmented by the trained model. As further

information, we also provide the DICE coefficients computed without excluding any

structure. These values would be useful for a deeper analysis of our algorithm

but, as aforementioned, they may not be so indicative for our purposes due to the

sparseness of our dataset. Furthermore, the automatically generated masks should

also include more refined elements than the original ground truth. To verify this,

a first visual assessment of the generated masks is performed. Moreover, the over-

segmented elements are expected to have a mean intensity value as close as possible

to one of the manually annotated structures. To verify this, we compared the mean

intensity values of the manual annotations and the automatically generated masks.

Regarding US volumes acquired during and after resection, no manual annotation
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was obtained, so no DICE index could be computed. Therefore, to be sure that

structures of interest are correctly segmented, we show that the masks of the three

stages of US data segmented by our trained model (a) are strongly correlated in

terms of volume extension by computing the Pearson correlation coefficient and (b)

include structures with a mean intensity value similar to the manual annotations.

Secondly, we conduct a visual inspection of the results, which is helpful to verify

whether or not corresponding anatomical structures are segmented in these stages.

Given the fact that our annotations are not publicly available, only a qualita-

tive comparison is made with respect to other methods which also proposed a US

segmentation solution in the context of neurosurgery [132; 133; 134; 135].

7.3.2. Registration

The transformations and deformation fields computed in the parametric and non-

parametric steps are applied to the landmarks contained in the datasets. The TRE

values before and after registration are provided per patient, with the measure of

the closest and farthest couple of points, and mean TRE (mTRE) and standard

deviation values are also given per each set of landmarks. For more details about

the computation of the mTRE, please refer to Appendix III. A visual inspection of

the registration results is also provided, in which the initial registration based on

the information from the optical tracker can be compared with the results obtained

by our method. Moreover, a comparison with previous solutions is provided. A few

methods have been proposed to register BITE volumes [108; 127; 10; 3], but none of

them except one [3] provided a generalized solution able to register volumes of both

datasets (BITE and RESECT). On the contrary, our method provides an approach

valid for both two datasets. For the RESECT dataset, the authors of [3] proposed

a solution only for volumes acquired before and after resection. Our approach is

the first one to be applied to the volumes acquired before and during the resection

of RESECT dataset; therefore, no comparison is available for this specific set. The

capture range of our method is also computed. We define the capture range as the

largest initial misalignment within which our algorithm still converges to a solu-

tion for 80% of the cases. To evaluate it, we started the registration from multiple

starting misalignments and we checked whether or not the method converged to a

solution. Then, we computed the value of the capture range by using as distance

measure the mTRE computed on the available landmarks.
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7. Segmentation-Based Registration of Ultrasound Volumes

Figure 7.2.: Segmentation and landmarks. Original intensity volumes where the
generated masks (in green) and RESECT landmarks (purple squares)
are overlaid. In RESECT dataset, landmarks have been taken in the
proximity to deep grooves and corners of sulci, convex points of gyri,
and vanishing points of sulci. We chose to segment sulci and falx cerebri,
and therefore, we can see how the landmarks are closely located to the
segmented structures

7.4. Results

7.4.1. Segmentation

Figure 7.2 shows an example of a segmented structure in a volume acquired before

resection. It can be seen that the generated masks cover the locations where land-

marks were acquired. In fact, we decided to segment sulci and falx cerebri, which are

the anatomical elements taken into account to acquire the majority of the landmarks

in the RESECT dataset.

Regarding US data acquired before resection, Table 7.2 (a) provides the DICE co-

efficients computed between the manually segmented structures and the correspond-

ing masks generated by our trained model. In Table 7.2 (b), the DICE coefficients

for the whole set of generated masks (without excluding the elements not included in

the manual annotation) are given. Furthermore, the first and third bars in Fig. 7.3

show that the structures automatically segmented in pre-resection volumes have a

mean intensity value very similar to those chosen in the manual annotations. A sim-

ilar consideration can be made for the elements considered as background (second
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Table 7.2.: DICE coefficients for volumes acquired before surgery
Volumes 1 2 3 4 6 7 12 14 15 16 17 18 19 21 24 25 27

(a)
Dice % 68 62 57 76 71 56 78 76 78 61 62 70 70 63 74 68 69
(b)

Dice % 62 46 28 59 50 46 67 67 63 53 45 35 61 42 58 44 51

(a) Refers to the DICE coefficient computed by considering only the structures with a
counterpart in the manual annotations. The method shows evidence of being able to
properly segment the anatomical structures considered in the manual annotations.
(b) Refers to the DICE values for the whole set of the automatically segmented
structures

and fourth bars in Fig. 7.3). Qualitative results also confirm this evidence. Figure

7.4 shows four examples of automatically generated masks in comparison with the

corresponding manual annotations. In most cases, our method correctly segments

refined elements which were not included in the manual annotation due to timing

restrictions (see “Manual segmentation of anatomical structures” in Section 7.2.2).

Violet squares highlight some examples of these structures. Though, in several cases,

the neural network wrongly segments pathological tissue which we excluded from

the manual annotations (see blue squares in Fig. 7.4 (d)).

For the volumes acquired during and after resection, a strong correlation exists

between the extension of their masks segmented by the neural network and of the

volumes before resection. The Pearson coefficient between the masks of US data

acquired before and during resection has a value of 0.90, and a value of 0.91 for

those of pre- and post-removal. As for the US data acquired before resection, Fig.

7.3 shows that the anatomical structures segmented at the different stages have a

mean intensity similar to the manual annotation (last four bars). Therefore, we can

state that our segmentation method, applied to volumes acquired at different stages,

segment structures related to each other in terms of volume extension and mean in-

tensity values. Then, visual results in Figs. 7.5 and 7.6 confirm the evidence of

the quantitative results, showing that our model trained on a stage of US correctly

segments analogous elements in volumes acquired at different stages. However, qual-

itative results in Fig. 7.6 also show that our method often detects resection cavities,

which have no corresponding structures in the pre-resection volumes.
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Figure 7.3.: Intensity values of the masked ultrasound volumes. This graph presents
the mean intensity values of the masked ultrasound volumes (first, third,
fifth, and seventh bars) acquired at the three stages, and the mean in-
tensity values of the area excluded by the segmentation (second, fourth,
sixth, eighth bars). For the volumes acquired before resection, volumes
masked with manual annotation and elements segmented by the neural
network are compared (first four bars). The masked volumes have in all
the cases a similar mean value, higher than the excluded areas. This is
meaningful since our elements of interest are the bright (hyperechogenic)
structures in the US. On the contrary, the even-numbered bars have a
similar mean intensity value, lower than the chosen structures. We are
not interested in hypoechogenic structures, which look darker in the US
acquisitions
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Figure 7.4.: Segmentation of ultrasound volumes acquired before resection. In each
example, the axial, sagittal, and coronal views are shown in the first,
second, and third rows, respectively. In the first column, the original
ultrasound volume is exhibited, in the second column, the manual an-
notation performed on the axial view and projected in the other two
views is shown, in the third column, the segmentation result obtained
by the 3D U-net for the same volume of interest is displayed. In each
example, a pointer (intersection of yellow crossing lines) highlights the
same volume position in the three views. Our method correctly seg-
ments the main structures. Moreover, structures wrongly not included
in the manual annotations are correctly detected by the trained neural
network (purple squares). However, in image (d), pathological tissue
correctly excluded in the original masks is wrongly segmented by our
method (blue squares in axial view)
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Figure 7.5.: Segmentation of ultrasound volumes acquired during resection. After
having trained the neural network on the stage before resection, we ap-
plied it to ultrasound volumes acquired during resection. This figure
shows four examples of segmentation results, each containing one inten-
sity volume together with the generated mask. It appears clear how the
main hyperechogenic structures are correctly included in the segmenta-
tion
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Figure 7.6.: Segmentation of ultrasound volumes acquired after resection. After hav-
ing trained the neural network on the stage before resection, we applied
it to ultrasound volumes acquired after resection. This figure shows four
examples of segmentation results, each containing one intensity volume
together with the generated mask. It appears clear how the main hy-
perechogenic structures are correctly included in the segmentation. In
the last two examples (second row), we see how resection cavities (ap-
pearing hyperechogenic on US) are segmented by the 3D U-net, even if
they have no counterparts in the pre-resection stage
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Figure 7.7.: Registration of different US volume pairs. Instead of registering directly
pre-resection US data with those after resection (continuous line), a two-
step method (dotted arrows) is proposed by including the US volumes
acquired during resection. The final transformation from before to after
resection volumes is obtained by concatenating two different registra-
tions results (US before resectioning to US during resection + US during
resection to US after resection)

7.4.2. Registration

The mean time required by the registration tasks is given in Table 7.6, together with

the mean time required by each volume to be segmented by the trained model. All

experiments are made on a computer equipped with an Intel Core i7 and a GeForce

GTX 1080 (8 GB).

By relying on the automatically generated masks in the segmentation step, we

registered the US volumes acquired at different surgical stages. First, the volumes

acquired before and during resection are registered. Then, our algorithm is applied

to volumes acquired during and after resection. The computed deformation fields

are applied to the landmarks provided in the RESECT dataset, and the results after

registration are shown in Table 7.3 (for volumes acquired before and during resec-

tion) and in Table 7.4 (volumes acquired before and after resection). Regarding the

results in Table 7.4, the registration of the landmarks is performed by concatenating

two different transformations: the one computed before–during US volumes together

with the one for volumes acquired during and after resection (see Fig. 7.7 for a more

detailed description).

As can be seen in both tables, both parametric and nonparametric methods reduce

the initial mean registration errors provided in the RESECT dataset. In Table 7.3,

it can be noticed that the proposed methodology improves the initial mTRE by

more than 2 mm, by decreasing the mean errors for each patient. For the second

registration task, our method reduces the mean registration error by nearly 1.5 mm

(Table 7.4). Visual examples in Figs. 7.8 and 7.9 also confirm the numerical results.
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7.5. Discussion

The images show the fixed volumes with the related segmentation (in red), together

with the mask of the moving volumes (in green). By comparing the overlay before

and after registration, we highlight the registration improvements by coloring in

yellow the correct overlay of the two masks. Regarding the results on the RESECT

dataset, only those obtained for volumes acquired before and after resection can be

compared with another solution [3] (see Table 7.4).

Our segmentation-based registration method is then applied to the BITE dataset,

directly registering volumes acquired before and after resection. The results are

available in Table 7.5, with a comparison to previously proposed solutions (last

section of Table 7.5). As it can be seen, also for this dataset the initial mTRE is

reduced by both parametric and nonparametric registration approaches.

7.5. Discussion

The manual annotations, even if sparse, are good enough to train the CNN model to

segment the anatomical structures of interest, as shown by the DICE coefficients in

Table 7.2. Moreover, Fig. 7.4 shows that automatically generated segmentations are

more precise than manual annotations, with better contour refinement and a larger

number of identified structures. However, some pathological tissues are wrongly

segmented by our method (see Fig. 7.4 (d)). This may be due to the fact that in US

data the glioma of grade II appears as hyperechogenic structures, with an intensity

similar to the elements of interest. In future work, we could consider separately

segmenting pathological tissue and then exclude it during registration. A similar

consideration can be made for the resection cavities in volumes acquired during and

after resection, which appear as bright as sulci and are wrongly segmented by the

proposed method (Fig. 7.6). Furthermore, from a qualitative comparison with other

segmentation methods involving US data, we can highlight some advances in our

approach. First of all, with respect to [132; 135], a higher number of anatomical

structures are included in our manual annotations. Therefore, the potential range of

clinical scenarios in which our method could be applied might be wider. Secondly,

a trained neurosurgeon has clinically validated the manual annotations (Table 7.1).

This is not the case for other segmentation-based methods [134; 133], in which no

precise rating of the manual masks is provided.

The second important contribution of this work is the registration of US volumes

acquired at different surgical stages. First of all, the segmentation method gives
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7. Segmentation-Based Registration of Ultrasound Volumes

Figure 7.8.: Registration results for before and during resection volumes. The images
show four examples of registration by combining fixed volumes (during
resection) with its segmented structures (in red) and the segmented
elements of moving volumes acquired before resection (in green). In
the first column of each example, we show the segmentation overlay
according to the original information. The second column displays the
overlay of the segmented structures after registration. By highlighting
in yellow the correct overlap of segmented structures, we can see how
the structures are more aligned after the performed registration
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7.5. Discussion

Figure 7.9.: Registration results for before and after resection volumes. These im-
ages show four examples of registration by combining fixed volumes (af-
ter resection) with its segmented structures (in red) and the segmented
elements of moving volumes acquired before resection (in green). In
the first columns of each example, we show the segmentation overlay
according to the original information. The second column displays the
overlay of the segmented structures after registration. By highlighting
in yellow the correct overlap of segmented structures, we can see how
the structures are more aligned after the performed registration
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7.5. Discussion

Table 7.6.: Mean time in seconds per task
Mean time (in s) per each task

Segmentation (inference) Total registration time (US before–during) Total registration time (US during–after)
1.28 28.55 29.40

With segmentation, we indicate the inference process in which the trained model
generates the mask of a volume given in input. The other two values are related to
the registration tasks, including the time of both the parametric and nonparametric
approaches

evidence of being able to generate meaningful masks to guide the registration task.

In fact, the proposed registration method is able to reduce the mTREs of three sets of

volumes from two different datasets (Table 7.3, 7.4, 7.5) by using the corresponding

anatomical structures previously segmented. From numerical and visual results,

we can notice that even if minor corresponding segmented elements are missing in

volume pairs, our method is able to reduce the initial registration errors. However,

in the case of volumes acquired after removal, resection cavities may be segmented

by our method due to their intensity similar to the sulci. Consequently, the mTRE

in Table 7.4 is reduced less with respect to Table 7.3, since these structures have

no or few corresponding elements in volumes acquired in previous steps. This is a

limiting factor of our registration method, which is completely based on the masks

generated by our trained model. In future work, we could try to segment such

structures and exclude them during the registration. Only another work [3] focused

on the registration of US volumes acquired before and after the resection of RESECT

dataset (Table 7.4). The mTRE obtained by the aforementioned approach is better

than our method, which, however, is the first one to provide results for the volumes

obtained before and during the resection of the RESECT dataset. In this set of

volumes, our registration performs quite well, reducing the initial mTRE to 1.36

mm.

Regarding the BITE dataset, our algorithm improves the initial registration (see

Table 7.5), proving not to be over-tuned on RESECT dataset. Note that in contrast

to our approach, all other methods compared in Table 7.5 have only been tested

on the BITE dataset. Thus, the results may be over-tuned on this limited set of

volumes and the approaches could lack generalization. On the contrary, our solution

is the second one after [3] to propose a more generalized method, which has been

tested on registering the volumes of both RESECT and BITE datasets. Therefore,

our method is validated on a larger number of US acquisitions, providing a more
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7. Segmentation-Based Registration of Ultrasound Volumes

generalized solution. Nevertheless, there might be some reasons why a few other

approaches have smaller average mTREs for the BITE dataset (last section of Table

7.5). First of all, a numerical impacting factor for our results comes from case 12,

where the TRE increases from 10.54 up to 11.08 mm, affecting the overall result.

The capture range of our method is too low to register this volume pair, which

has a very large initial misalignment. In future work, we could improve the results

by performing an initial registration which could increase the capture range of our

method. Moreover, the limited improvement obtained by our method might be due

to the lower quality of the BITE dataset compared to the RESECT volumes, which

are used for training the segmentation approach. Since our registration method is

based on the generated masks, it is almost impossible for the registration method

to converge to the right solution if the segmented masks are not accurate enough.

The total time required by each task of our method is visible in Table 7.6: The

segmentation step requires 1.28 s and 28.55 s (before/during) and 29.40 s (dur-

ing/after) that are needed to register the generated 3D masks. In addition to this,

we should also take into account the time to reconstruct 3D US volumes from 2D

images, which is a few seconds [106]. Considering the increase in the brain shift over

time and the average duration of a neurosurgical procedure [136], our algorithm is

fast enough to register US volumes and therefore provides a meaningful solution for

brain shift. Nevertheless, in future work, we could optimize our algorithm to speed

up the registration step.

7.6. Conclusion

To the best of our knowledge, our solution is the first one to propose a segmentation-

based registration method that registers US volumes acquired at different surgical

stages. Our approach provides some important contributions. Regarding the seg-

mentation step, a model based on a 3D U-Net has been trained on a large num-

ber of anatomical structures, whose manual annotations have been validated by

an experienced neurosurgeon. Even if the training is performed on a sparse set of

annotations, the proposed solution can automatically segment hyperechogenic ele-

ments in US volumes. Moreover, the segmented anatomical structures prove to be

meaningful elements that can guide the registration of US volumes acquired in the

neurosurgical context. In fact, for two different datasets of US volumes acquired

at different surgical stages, the initial mTREs are correctly reduced, demonstrating
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7.6. Conclusion

that our solution is not over-tuned for a specific dataset. Moreover, our work is the

first one to be applied also on the US volumes of RESECT dataset acquired during

resection, for which no previous work has been published.
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8. Enhanced Registration of Ultrasound Volumes by Segmentation of Resection Cavity

Abstract
Purpose Neurosurgeons can have a better understanding of surgical procedures

by comparing ultrasound images obtained at different phases of the tumor resec-

tion. However, establishing a direct mapping between subsequent acquisitions is

challenging due to the anatomical changes happening during surgery. We propose

here a method to improve the registration of ultrasound volumes, by excluding the

resection cavity from the registration process.

Methods The first step of our approach includes the automatic segmentation of

the resection cavities in ultrasound volumes, acquired during and after resection. We

used a convolution neural network inspired by the 3D U-Net. Then, subsequent ul-

trasound volumes are registered by excluding the contribution of the resection cavity.

Results Regarding the segmentation of the resection cavity, the proposed method

achieved a mean DICE index of 0.84 on 27 volumes. Concerning the registration

of the subsequent ultrasound acquisitions, we reduced the mTRE of the volumes

acquired before and during resection from 3.49 to 1.22 mm. For the set of volumes

acquired before and after removal, the mTRE improved from 3.55 to 1.21 mm.

Conclusion We proposed an innovative registration algorithm to compensate the

brain shift affecting ultrasound volumes obtained at subsequent phases of neurosur-

gical procedures. To the best of our knowledge, our method is the first to exclude

automatically segmented resection cavities in the registration of ultrasound volumes

in neurosurgery.
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8.1. Introduction

In the neurosurgical planning for tumor resection, preoperative magnetic resonance

imaging (MRI) data are usually acquired [29; 137]. Subsequently, neuronavigation

systems are utilized to make these images available during the tumor resection.

Through a rigid transformation computed between the surgical scene and the MRI

data, neurosurgeons are able to map any intracranial position to the preoperative

data. This is beneficial for the surgery outcome since it decreases the risk of tumor

residuals and increases the survival rate of the operated patients. However, image-

guided surgery based only on preoperative data has some limitations [23]. In the

early stages of the procedure, inaccuracies in the neurosurgical setting can degrade

the rigid registration computed by the neuronavigation systems. Moreover, during

the ongoing procedure, several anatomical modifications take place and the observed

surgical scene modifies compared to the preoperative data. In the early stages of

the surgery, the opening of the dura mater is responsible for the leakage of cere-

brospinal fluid that heavily modifies the brain structure. Additionally, the resection

of the tumor leads to other anatomical modifications, with no counterpart in the

preoperative data. All these effects combined together are denoted as brain shift

[23]. This phenomenon impedes a correct mapping between preoperative data and

surgical scene. Consequently, the probability of missing pathological tissue in the

resection increases, reducing the survival rates of the operated patients [138; 139].

To compensate for the brain shift, intra-operative images can be acquired to pro-

vide an update of the resection scene [140]. The most common intraoperative solu-

tions are given by MRI and ultrasound (US) modality. Intraoperative MRI (iMRI)

data give a good image contrast between healthy and pathological tissues [141; 120],

but it has the disadvantages of being expensive, requiring special adaptation in the

operating room (OR), and being relatively long to be acquired. A valid alterna-

tive is given by intraoperative US (iUS), which is inexpensive, fast, and practical to

obtain [123; 142]. However, the understanding of the US data can be challenging

[30], in particular, if compared to the image quality obtained by MRI modality. To

overcome this problem, neuronavigation systems can provide a direct mapping be-

tween preoperative MRI and iUS. By observing the same structures in two different

imaging modalities, a better understanding of the tissues is also possible.
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8. Enhanced Registration of Ultrasound Volumes by Segmentation of Resection Cavity

Additionally, a source of artifacts negatively affecting iUS is related to the re-

section cavity (RC), which appears in the ongoing procedure [30]. To perform US

acquisitions after a first resection, a saline water solution is used to fill the operative

cavity. When the US probe is used, the attenuation of sound waves in tissue is higher

than in the saline water solution used for coupling. Consequently, hyperechoic arti-

facts appear, especially at the bottom of the resection cavity. They negatively affect

the interpretation of the images, since they can be wrongly seen as pathological tis-

sue. Therefore, toward the end of the resection, it becomes extremely important to

identify these artifacts. As a solution, US volumes can be obtained at different time

points of the resection, without a delay in the surgical procedure [137]. By tracking

the US probe, neuronavigation systems compute a registration of the US volumes

acquired at different phases of the resection. Then, the US data obtained at the

end of the surgery can be compared with the early-stage acquisitions [30], in which

the artifacts related to the resection did not appear yet. Thus, image interpretation

becomes easier. Nonetheless, the direct comparison between subsequent phases is

challenging due to the brain shift, which can only be compensated by a non-rigid

solution [29; 143]. The registration provided by the neuronavigation systems is of-

ten not accurate, since it does not take into account anatomical modifications [29].

Therefore, this task is an open issue and a solution is still needed.

The registration of US volumes acquired at different resection stages is challeng-

ing since the brain undergoes anatomical modifications, such as the emerging re-

section cavity, which have no counterpart in the data acquired at the beginning

of the surgery (Fig. 8.1). A few registration solutions, which take into account

the missing correspondences between the different acquisitions, have been already

proposed. In [108], the authors suggested a non-rigid registration algorithm that

models the deformation field with free-form cubic B-splines. In the cost function,

the similarity metric is based on the normalized cross-correlation (NCC). They also

introduced a method to suppress the effect of non-corresponding regions between

the pre- and post-resection ultrasound volumes. The outlier detection is based on

the standard deviation of the NCC gradients. The same approach has been applied

in [127]. The authors in [10] advised an improvement compared to [108]. They pro-

posed a symmetric deformation field and an efficient second-order minimization for

a better convergence of the method. Moreover, an outlier detection to discard non-

corresponding regions between volumes is proposed. Their approach starts from the

one applied in [108] and adds feature to improve the accuracy of outlier detection.
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Another solution considering also the resection cavity has been proposed by [144]

to tackle the registration of pre- and intra-operative MRI images. Their framework

is based on the Demons algorithm using an anisotropic diffusion smoother. The

resected tissues in intra-operative data are detected with a level set method and

then integrated into the smoother as a diffusion sink.

Furthermore, the effect of the outliers can be reduced by feature-based meth-

ods, limiting the registration only to corresponding elements. In [3], the authors

proposed a feature-based registration approach where corresponding image features

are computed in US pairs. Afterward, they used them to estimate dense mapping

through the images. The authors utilized several datasets to test the validity of their

approach. Besides, the authors in [79] proposed a segmentation-based method. In

the first step of their approach, they introduced an automatic segmentation of cor-

responding elements (sulci and falx cerebri) in subsequent US acquisitions. Then,

their registration solution is only based on the automatically generated masks. In

this way, they discarded the non-corresponding elements by focusing on structures

available in the different acquisitions. A similar approach has been proposed in [145],

where the authors applied a distance transform on the generated segmentation of

the sulci and falx cerebri. Then, the transformed masks were registered.

We here propose a solution to register subsequent US volumes by discarding the

non-corresponding elements from the registration process. In our approach, a 3D

convolution neural network is utilized to segment the cavities generated with the

tumor removal. Then, in the following step, the generated masks are used to discard

the contribution of the resection cavity from the registration process. We expect

the proposed registration approach to achieve better results than the same method

not excluding the resection cavity. Regarding the segmentation step, to the best of

our knowledge only the authors in [146; 147] proposed a solution for this task. In

[147], they described a method based on a 2D U-Net to segment the resection cavity

in US volumes. Besides, in [146] they also demonstrated that the 3D architecture

achieves better results than a 2D approach. The mean time required from their 3D

neural network to process a volume is around 5 min, making the application of their

method not feasible in a clinical scenario. For both their methods, the authors used

a private ground truth to train their neural network.
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(a) (b)

Figure 8.1.: Ultrasound images acquired before (a) and after (b) resection. During
the ongoing resection, the tumor is gradually removed and the cavity of
the resection appears. The resection cavity is usually filled with saline
water, which appears usually hypoechogenic in US acquisitions. The
extension of the resection is usually recognizable by a hyperechogenic
contour. By comparing images a, b, we can notice that other anatomical
elements remain visible, even if deformed due to the brain shift effects.
On the contrary, the resection cavity has no specific counterpart in the
initial acquisitions. In the process of registering the two images, it would
be beneficial to exclude the non-corresponding elements of the resection
cavity and rely only on the structures that remain visible among subse-
quent acquisitions
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8.2. Material and Methods

8.2.1. Datasets

We utilized two publicly available datasets containing US acquisitions obtained at

different stages of tumor resection [29; 143]. In both datasets, manually annotated

landmarks are given for testing registration algorithms. The RESECT dataset [29]

includes US volumes acquired at three different stages of the resection. As mentioned

in the original publication, we indicate with before resection the acquisition at the

beginning of the neurosurgery, when the dura mater is typically intact. After an

initial resection is performed, a further acquisition is performed, and we refer to it as

during resection. At the end of the resection, neurosurgeons verify if any pathological

tissue is left, and the performed acquisitions are referred to as after removal. To

have more details about the initial mean target registration error (mTRE) and the

number of landmarks per each pair of volumes, please refer to Tables 8.2 and 8.3.

The BITE dataset [143] was released before the RESECT one and contains volumes

acquired before and after resection. Ten landmarks are provided per each pair of

volumes, and initial mTRE is provided in Table 8.4. The quality of the images of the

BITE dataset is lower compared to the more recent RESECT dataset, as observed

by [29]. Moreover, as observed by [146], the acquisition protocols of this dataset

differ from the one in the RESECT data (more details in Fig. 8.7).

8.2.2. Manual Annotations

No ground truth for resection cavity segmentation is provided in the aforemen-

tioned datasets. Thus, we decided to manually annotate 27 volumes of the RESECT

dataset, acquired during and after resection. To manually annotate the resection

cavities in the US volumes, we utilized MEVIS Draw 1 (see Fig. 8.2). With this

tool, the volume of interest can be visualized in three main projections and the

user can choose the more appropriate one for performing the manual segmentation

(Fig. 8.2a). If the annotation is executed on non-adjacent slices, an interpolation

automatically fills in the contour on slices not yet annotated. This reduces the time

needed for the annotation procedure, making 3D segmentation very efficient. Fur-

thermore, the user has always the chance to observe the manual annotation in three

1https://www.mevis.fraunhofer.de/en/research-and-technologies/image-and-data-
analysis/mevis-draw.html
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Table 8.1.: DICE coefficient for the segmentation of the resection cavity
Training set

Volume 2 a 2 d 3 a 4 a 7 a 7 d 12 d 15 a 16 a 16 d 17 a 18 a 19 a 21 a 24 a 25 d 27 a
DICE 0.91 0.91 0.85 0.88 0.89 0.7 0.88 0.82 0.88 0.82 0.91 0.90 0.95 0.95 0.86 0.87 0.92

Validation set Test set
Volume 1 a 14 a 17 d 19 d 21 d 6 a 6 d 12 a 18 d 25 a
DICE 0.76 0.88 0.75 0.75 0.71 0.88 0.88 0.88 0.26 0.86

The first part of the table is related to the training set, whereas the second one is for
the validation and test sets. The second row of each table indicates the RESECT
US volumes of interest: Each volume is indicated by a number, specifying its related
case in the dataset, followed by a letter. The letter indicates if the volume of interest
is related to the acquisition performed during (d) or after (a) resection. For example,
4 a is used for the volume belonging to Case 4 acquired after resection. The third
row indicates the computed DICE indices

different views (b), in which the drawn contours are projected. In case a modifi-

cation is needed, the user can modify the manual annotation in any of the three

views. Then, the interpolation is processed again. Two raters (L.C. and D.M.)

annotated the resection cavities in the volumes of RESECT specified in Table 8.1

(Fig. 8.3). The author L.C. has two years of experience with ultrasound data, and

the co-author D.M. is a neurosurgeon with a long experience in the use of the US

for tumor resection [79]. The masks generated by the intersection of the two manual

segmentations are available at the following link.

8.2.3. Automatic Segmentation

We used the clinically revised masks as a ground truth to train a convolution neural

network (CNN). CNNs are a class of artificial neural networks that automatically

and adaptively learn spatial hierarchies of features from images in order to solve

specific tasks (classification, segmentation, etc.) [148]. CNN is generally composed

of three types of blocks: convolution, pooling, and fully connected layers. In a

training phase, the generated outputs are compared with the ground truth, and a

loss function is defined to measure the performance of the CNN. Thanks to a back-

propagation algorithm, the trainable parameters are iteratively changed to minimize

the loss function and reduce the difference between generated outputs and ground

truth. A stochastic gradient descent optimization algorithm is usually used. More

details about CNNs are provided in section 1.4.2. For the segmentation task, we

utilized a neural network whose architecture is based on the 3D U-net [42]. It con-

sists of an analysis path to capture anatomical context and a symmetric synthesis
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8.2. Material and Methods

(a)

(b)

Figure 8.2.: Annotation tool. The contour of the structure of interest is drawn on
a specific view (a). After having drawn contours on a limited number
of images, an interpolation automatically computes the contours on the
remaining slices. In the process of segmenting the element of interest on
a specific projection (a), the corresponding contour can be visualized in
the other two views (b)
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8. Enhanced Registration of Ultrasound Volumes by Segmentation of Resection Cavity

(a) (b) (c)

Figure 8.3.: Manual segmentation. Two raters annotated the masks of interest. As
an example, (a) shows the image of an original intensity volume. In
(b) (first rater) and (c) (second rater), the two different versions of the
manual segmentation of the corresponding resection cavity are provided

path to precisely locate the structures of interest. An image is given in input to the

contracting (analysis) path. Here, each layer has two convolutions followed by an

activation function and a max pooling: Feature maps are extracted from the image

passing through the first part of the network. Then, in the expanding (synthesis)

path, the image is upsized to the original size. Each layer consists of an up convolu-

tion followed by two convolutions and an activation function. In the synthesis path,

at each level, the upsized image is combined with the corresponding high-resolution

features extracted in the contracting path. In the output of the neural network, a

volumetric mask is generated and an error between the generated mask and ground

truth is computed. More details are available in section 1.4.3.

With respect to the original implementation, some modifications were empirically

made: The analysis and synthesis paths have three resolution steps. Before each

convolution layer of the upscaling path, a dropout with a value of 0.3 is used to pre-

vent the network from overfitting. Additionally, we utilized the Tversky loss function

[149] which penalizes the false negatives and thus advantages the over-segmentation

of the foreground structures. We decided to train with this loss function because it

has been shown to achieve good results in the case of an unbalanced dataset. The

training of the CNN is conducted with patches of size 48 × 48 × 48, a padding of

20 × 20 × 20, and a batch size of 5 samples. The learning rate was set to 0.0005.

Additionally, we divided the annotated volumes into three groups (more details in

Table 8.1). The first set (training set) includes 17 volumes (60 percent of the total
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volumes) and is used to train the neural network. The second one is disjoint from

the training set and includes 5 volumes (20 percent of the dataset): It is utilized

to validate the trained algorithm on volumes different from the one used for train-

ing. Then, after the best model has been saved, the network is applied on a test

set (5 volumes) not used during validation and training. To evaluate the effects of

differences in the segmentation on the registration results, two 3D U-Net models are

trained, each using the annotation manually segmented by a different rater.

As commonly happens in medical images, in our dataset the positive voxels of

the foreground are in minor quantity than the background ones, and this may slow

the learning process of the neural network. To speed up the training, we decided to

alter the composition of the patches used to train the neural network. Thus, during

the training and validation processes, we decided to feed the network with 20 per-

cent of patches including only the background. The rest of the 80 percent includes

patches containing at least a pixel with the foreground label. In our experiments,

the Tversky loss had often the effect of producing an over-segmentation of struc-

tures of interest. The resection cavity is usually a closed isolated structure, with

no dispersed elements. Therefore, we applied a connected component analysis on

the automatically generated masks, to keep only the biggest segmented structure,

corresponding to the resection cavity.

8.2.4. Registration

In the proposed solution, the volume acquired before resection represents the tem-

plate (moving) image which is deformed to match the reference (fixed) one, respec-

tively, the data acquired during or after resection. The proposed solution is based

on [32], where the registration of two volumes is treated as an iterative optimization

algorithm. In this scenario, the correct registration of the two images corresponds

to the global minimum of a discretized objective function: This includes a dis-

tance measure, determining the similarity between the deformed template and the

reference image, and a regularizer, which penalizes undesired transformations. In

addition to the moving and fixed images, the proposed method uses an additional

input (mask). The parts excluded from the masks are usually those not in common

in both acquisitions. Thus, the contribution to the distance measure is limited to

the areas for which the segmentation is available.

In our solution, we use the quasi-Newton l-BGFS [80] to guide the optimization

process and the normalized gradient field (NGF) as the distance measure. The
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8. Enhanced Registration of Ultrasound Volumes by Segmentation of Resection Cavity

stopping criteria for the optimization process are empirically decided: The minimal

progress, the minimal gradient, and the relative one, the minimum step length was

set equal to 0.001, and the maximum number of iterations is equal to 100. The

algorithm takes in input two original intensity volumes. Besides, the automatically

generated masks are provided as a third input. The area of the resection cavity is

excluded from the computation of the distance measure: This represents the only

element, not in common between the two input images, and its exclusion may im-

prove the registration output. Moreover, as suggested by [128; 130], the background

outside the US beam is also discarded. The proposed approach is initialized by a

rigid registration, followed by a deformable approach. In the first step, the volumes

are directly registered at one fixed level coarser than the original scale, in order to

improve the speed of the algorithm. A transformation matrix is obtained and then

utilized for initializing the deformable registration. In the second step, we utilized

the curvature regularizer to limit the range of possible transformations [32]. To

avoid local minima in the optimization and to speed the computation, the volumes

are registered from a third coarse level, in which computations are cheap, until the

fine level. Besides, to estimate the effects of the inter-variation in the segmentation

on the registration results, we test the method with the two versions of the masks

generated by the two 3D U-Net models. We would like to check how much the

differences in the masks to be excluded affect the registration results.

In our experiments, we also tested a solution not excluding the resection cavity

from the registration.

8.3. Results

8.3.1. Segmentation

Table 8.1 shows the DICE coefficients for the segmentation of the resection cavity

for the 3D U-Net model obtaining the best mean value. Overall, the mean DICE

coefficient is 0.84. Visual results are available in Figs. 8.4 and 8.5, respectively,

for case 2 acquired during resection and for case 27 acquired after resection. Each

figure shows the related volume in three projections. To maintain a good tradeoff

between the visibility of the surrounding anatomical structures and visualization of

the mask of the resection cavity, we decided to highlight the element of interest with

a border in green (ground truth) and purple (automatic segmentation). Figure 8.6
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shows the segmentation results for the volume 18 acquired during resection (18 d in

Table 8.1), for which the worst DICE coefficient (0.32) has been obtained. In the

figure, we show the overlay between ground truth and automatic segmentation.

After having trained the neural network on the RESECT dataset volumes, we

applied it to volumes after the resection of the BITE dataset. As observed by

[146], the acquisition methodologies and the quality of the volumes are different

between the two datasets. The cavity is sometimes partially visible in the BITE

dataset, whereas on the contrary in the RESECT volumes, it is always completely

observable and usually surrounded by a bright border. In Fig. 8.7, we show an

example of a BITE case segmented by our methodology.

The proposed 3D U-Net requires a mean time of 4.86 s to generate the mask of

interest.

8.3.2. Registration

After having registered the volumes, the deformation field is applied to the related

landmarks and the mTRE is computed (please refer to Appendix III for more de-

tails). The mTRE obtained excluding the masks generated by the algorithm trained

with the segmentation of the first rater is 1.25 mm and 1.24 mm (before-during and

before-after registration, respectively), whereas the results by the method discard-

ing the resection cavity segmented with the 3D U-Net designed with the masks of

the second rater are 1.22 mm and 1.21 mm. In Tables 8.2 and 8.3, we report the

detailed results of the second method. Table 8.2 is related to the volumes before and

during resection, whereas Table 8.3 refers to those before and after tumor removal.

In both tables, the fourth column is related to the results obtained by our solution

without the exclusion of the resection cavity, whereas in the last one, we report

the registration results achieved by discarding it. For the volumes acquired during

and before resection, we achieved an mTRE of 1.22 mm by excluding the resection

cavity and 2.57 mm without excluding it. Instead, the corresponding results for

the volumes acquired after and before removal are of 1.21 mm and 3.53 mm. For

a better comparison with previously proposed methods, each table also contains a

second section in which the mTRE achieved by other methods is listed.

We conducted a statistical test to determine whether the two proposed methods

(with and without masking) show a statistically significant difference. The data are

not normally distributed, and thus, we decided to use the nonparametric Wilcoxon

signed rank test. It tests the null hypothesis that two related paired samples (the
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(a)

(b)

(c)

(d)

Figure 8.4.: Example of automatic segmentation in a volume acquired during resec-
tion. (a) The original intensity volume, on which a manual annotation
has been drawn (in green) (b). The automatically computed mask is
visible in (c) (in pink), whereas a direct comparison between the ground
truth and the generated masks is given in (d)
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(a)

(b)

(c)

(d)

Figure 8.5.: Example of automatic segmentation in a volume acquired after resec-
tion. (a) The original intensity volumes, on which a manual annotation
has been drawn (in green) (b). The automatically computed mask is
visible in (c) (in pink), whereas a direct comparison between the ground
truth and the generated masks is given (d)
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8. Enhanced Registration of Ultrasound Volumes by Segmentation of Resection Cavity

Figure 8.6.: Worst-case segmentation. This figure is a visual inspection of volume
18 during resection for which we obtained the worst DICE index. The
green contour is related to the ground truth, whereas the purple one to
the automatic segmentation. The generated mask is smaller compared
to the manual annotation

results of the two algorithms) come from the same distribution. For both studies

(before-during and before-after), we verified that the null hypothesis cannot be ac-

cepted (p-value < 0.001), meaning that there is a statistical difference between the

two methods. Besides, we conducted the same statistical analysis for the two regis-

tration methods using the masks generated by the two different 3D U-Net models.

The test fails to reject the null hypothesis (p-value > 0.6) for both registration tasks.

Moreover, we tested our final solution also on the BITE dataset. The related

results are available in Table 8.4.

The visual results for the registration task are shown in Figs. 8.8 and 8.9, dis-

playing the data in three projections. The volumes before resection are colored in

purple and are overlaid on the volumes during (Fig. 8.8) and after (Fig. 8.9) re-

section, shown in gray intensity. Each figure contains two sub-images displaying

the overlay of the two volumes of interest, before (a) and after (b) having applied

our registration algorithm. The difference between a and b is related to the volume

before resection (in purple), which is deformed according to the deformation field

computed by the registration algorithm.

The registration step requires a mean of 49.67 s to register the volumes of interest.
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8.3. Results

Figure 8.7.: Segmentation results on resection cavity with an open border. This fig-
ure shows the result of the automatic segmentation (purple border) on
a BITE dataset volume. The background surrounding the US cone is
colored orange. By looking at the positions pointed by the green ar-
rows, we can see how a side of the resection cavity is not surrounded by
a hyperintense contour: The US probe is directly inserted in the RC,
and this side of the cavity has no enhanced border. The acquisition
procedure of the volumes included in the BITE dataset differs from the
RESECT one, in which the resection cavities are always surrounded
by a hyperintense contour. Our segmentation algorithm correctly seg-
ments the structure of interest when it is surrounded by a hyperintense
element. However, it under-segments the part of the cavity where no
hyperintense border is available (the hypointense parts pointed by the
arrows should be included within the purple border)
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8.3. Results

(a)

(b)

Figure 8.8.: Registration of volumes acquired before and during resection. The two
figures show the volumes before resection (in purple) overlaid on the
volumes during resection (in gray). (a) The situation before applying
our registration algorithm; (b) the overlay of the volumes after having
deformed the moving image
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8. Enhanced Registration of Ultrasound Volumes by Segmentation of Resection Cavity

(a)

(b)

Figure 8.9.: Registration of volumes acquired before and after resection. The two
figures show the volumes before resection (in purple) overlaid on the
volumes after resection (in gray). (a) The situation before applying
our registration algorithm; (b) the overlay of the volumes after having
deformed the moving image
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8.4. Discussion

8.4. Discussion

Regarding the segmentation approach, our solution can achieve a mean DICE index

of 0.84 by comparing the automatically generated masks with the clinically vali-

dated ground truth. The visual results in Figs. 8.4 and 8.5 give evidence that the

3D U-Net achieves good results in segmenting the resection cavities in US volumes.

The only exception is given by volume 18 during resection, for which our solution

obtained the worst DICE index. This is confirmed also by visual inspection in Fig.

8.6: The resection cavity is under-segmented in comparison to the manual anno-

tation. The resection cavities are usually hypoechogenic structures contoured by

a hyperechogenic border. However, for the case in Fig. 8.6, the resection cavity

has intensity characteristics slightly different compared to the majority of the other

volumes. Thus, a possible cause for this failure may be related to the intensity of

the internal part of the resection cavity, which includes also a partial hyperechogenic

area. Nevertheless, for the other volumes of the test set, we obtained DICE values

in line with the rest of the dataset (Table 8.1). Our algorithm has been also applied

to the BITE volumes. Our automatic method can segment the volumes of interest,

but it usually underestimates the parts where a hyperintense border is missing. In

this dataset, the US probe is usually inserted inside the resection cavity, whereas

the volumes of the RESECT dataset are usually acquired from a position outside

it. Consequentially, in the BITE dataset, the hyper-intense borders surrounding the

cavity are not visible on the sides of the volume in which the acquisition probe has

been interested (Fig. 8.7), whereas, in the RESECT dataset, the resection cavity

is usually visible as a closed structure. The other algorithms proposed to segment

the resection cavity used a privately defined ground truth to train their solutions.

Therefore, a numerical comparison based on the DICE index is not possible. Re-

garding the time required to process a single volume, the solution proposed in [146]

requires around 5 min. It may be due to (1) the deeper architecture of the neural

network that they used, which requires more time to process a single volume, and

(2) the sampling method they chose, a sliding window approach with large patches.

On the contrary, our algorithm is faster, requiring less than 5 s in the inference

process.

Regarding the registration results, the proposed solution registers the volumes

of interest by reducing the overall mTRE for all the sets of volumes taken into

account. For the RESECT dataset, we are able to reduce the initial mTRE for all
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the volumes of both sets. Figures 8.8 and 8.9 also give impressions that the proposed

registration algorithm produces a better alignment of the volumes, compared to the

initial alignment. If we compare the results obtained by using the masks generated

by the two 3D U-Net models trained on different ground truths, we can observe

that the results differ from each other: Changes in the segmentation have an impact

on the registration outcome. However, these results also show that the differences

in the masks are negligible on the registration results (less than 0.1 mm in terms

of mTRE), as long as the segmentation includes the resection cavity. Moreover,

from the numerical results obtained in the RESECT dataset (Tables 8.2 and 8.3),

the exclusion of the resection cavity from the registration process (fifth column)

provides better results than the case in which it is not excluded (fourth column).

As expected, by discarding the non-corresponding elements from the registration

process, the algorithm can focus on the elements in common and therefore obtain

better results.

Compared to previous approaches, for both the sets of the RESECT dataset, our

algorithm achieves better results than the solutions compared in Tables 8.2 and 8.3.

This is true for the algorithms proposed to register both sets [146; 79], but also for

methods considering only the registration of volumes before-after resection [79; 150].

Additionally, our final method has been also tested on the BITE dataset (Table 8.4),

in which it can reduce the mTRE of each pair of volumes. In the comparison of

our approach with previous solutions, the algorithms [108; 127; 10] were tested

only on the BITE dataset: Even if they obtained slightly better results than our

solution, they lack generalization. On the contrary, our method has been tested

on a larger set of volumes, providing a better generalization. Moreover, the overall

mTRE is improved with respect to [79] (Table 8.4). However, the solution proposed

by [3] achieves a better mTRE. Our results are mostly affected by the registration

of volume 12, for which the initial error is only slightly reduced. The starting

condition for the registration of this case is the worst of all the sets of volumes, and

our method may be affected by the initial registration information provided by the

optical tracking system. Combining the time required by the segmentation of the

resection cavity and the registration step, the proposed algorithm can register two

volumes in less than 55 seconds. This small delay to the neurosurgical procedure

may be tolerable, especially if a better understanding of the surgical scene after the

registration can be achieved.
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8.5. Conclusions

We presented here an automatic algorithm for 3D segmentation of resection cavities

in US volumes, acquired in the neurosurgical procedures for tumor removal. For this

specific method, we manually annotated a ground truth that has been made publicly

available. Besides, we proposed a novel method to register US volumes acquired

in the neurosurgery context. In our solution, the resection cavities are excluded

from the registration thanks to the automatic segmentation method, reducing the

impact of non-corresponding elements in the computation of the distance measure.

Our experiments show that the registration results are only slightly influenced by

the differences in the masks, as long as they include the resection cavity to be

excluded. On the contrary, we show that by omitting the exclusion of the resection

cavities, a worsening of the results is obtained. To the best of our knowledge,

it is the first time that the resection cavities are taken into account to improve

the registration of US volumes in neurosurgical tumor resection. Moreover, the

registration results obtained in the RESECT dataset are the lowest in comparison

with the other methods in the literature (Tables 8.2 and 8.3).

In future work, we plan to manually annotate the resection cavity in the volumes of

the BITE dataset, to propose a more generalized solution. Moreover, the registration

method based on the exclusion of the resection cavity could be also utilized for the

inter-modality registration of intraoperative US volumes and preoperative MRI.
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9.1. Pre- and Post-operative MRI Acquisitions

This thesis investigated the segmentation-enhanced registration of intrapatient

imaging data acquired at multiple stages of brain tumor treatments. Chapters 3 and

4 proposed methods registering pre- and post-operative magnetic resonance imaging

volumes, whereas Chapters 7 and 8 focused on the registration of intra-operative ul-

trasound acquisitions. In Chapters 3 and 5, I also conducted a quantitative analysis

to find the most informative sequence for designing registration and segmentation

solutions for multiparametric MRI data.

In this chapter, I will review the findings reported in the thesis. The text is

divided into two parts, each respectively covering the results presented for MRI and

US data. For each modality, a summary of the proposed methods is provided, and

ideas for future research directions are suggested.

9.1. Pre- and Post-operative MRI Acquisitions

In the first part of the thesis, three automatic methods were proposed for registering

pre- and post-operative MRI volumes acquired in brain tumor treatments (see Chap-

ters 3 and 4). These solutions have in common the exclusion of the contribution

of non-corresponding pathological tissues from the registration process. The results

demonstrated that the discard of pathological tissues from the objective function is

beneficial for the registration of subsequent acquisitions.

Additionally, the experiments presented in Chapter 3 quantitatively assessed the

influence of four MRI sequences on the registration of MRI volumes. Furthermore,

Chapter 5 proposed a convolution neural network-based solution to segment resec-

tion cavities in post-operative data and compared the results obtained by models

trained on different sequences.

9.1.1. Image Registration Enhanced by Segmentation of

Non-corresponding Structures

In Chapter 3, I presented a deep-learning solution and an iterative method for regis-

tering pre- and post-operative MRI volumes. I quantitatively evaluated the impact

of excluding non-corresponding pathological tissues from the distance measure of

the registration methods by using the segmentation of pathological tissues. To do
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so, I designed two versions of each solution, one masking out and the other one

including the pathology in the distance measure. In the iterative method, the mask-

ing procedure is applied on the test set, whereas, for the deep learning solution, the

exclusion of the pathological tissues is performed only during the training and vali-

dation phase, and not in the test set. The results show that excluding pathological

tissues is beneficial to the registration outcome.

In the proposed methods, the pathological tissues excluded from the distance

measure belong to the reference, post-operative volumes. The decision to use masks

defined on the reference images is based on the assumption that pathological tissues

in post-operative data are located in the same intracranial areas occupied by the

tumors in pre-operative acquisitions. However, the methods do not take into account

that tumors and edema in pre-operative images could be characterized by a larger

number of voxels than those included in post-operative pathology. In future work,

the masking procedure could also include the pathological tissues defined in the

warped moving images.

As additional future work, it would also be interesting to evaluate how the pro-

posed solutions perform on longitudinal imaging data including only post-operative

cases. For this purpose, an additional dataset would be necessary.

Exclusion of the Pathological Tissues from the Regularization Term

Although the pathology is excluded from the search of correspondences in Chapter 3,

it is still taken into account in the computation of the regularizer, which discourages

large transformations and improves the plausibility of the deformation fields. How-

ever, when the pathological tissues are discarded from the distance measure, the

registration method solely focuses on correctly registering corresponding healthy

tissues. Consequentially, the inclusion of voxels of the pathology in the regularizer

can be considered redundant since the only interest should be in regularizing the

deformations for voxels of healthy voxels. Besides, the registration of correspond-

ing structures could benefit from excluding the contribution of voxels belonging to

the pathology from the computation of the regularizer, since more plausible defor-

mations could be achieved. Chapter 4 proposed a registration method in which the

contribution of the voxels belonging to the pathological tissues is also discarded from

the computation of the regularization term. The experiments showed the benefits

of the proposed method w.r.t. the same solution not excluding the pathology.
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The adjustment of the impact of the pathology on the regularizer has already been

investigated in the literature for the registration of brain images, but it is the first

time that its complete exclusion has been evaluated. As a possible future direction,

a weighting parameter for the regularization could take into account healthy tissues

too, and not only exclude the contribution of the pathology. As shown by other

groups, more realistic transformations could be achieved for the brain tissues.

9.1.2. Influence of Different MRI Sequences

Chapter 3 investigated how four different MRI sequences impact the registration of

pre- and post-operative MRI acquisitions. The proposed registration solutions are

designed on T1-CE, T1, FLAIR, and T2 sequences. The results showed that the

methods using the T1-CE achieved the best results. Although this outcome was

somewhat expected due to the higher image resolution of this protocol, this finding

has been quantitatively demonstrated for the first time in this thesis. The worst

sequence for both registration approaches is the FLAIR.

The deep learning method is further trained and tested on the combination of

two sequences. The experiments showed that the use of multi-features input images

doesn’t improve the results. This finding could be somehow surprising since it is

expected that learning-based solutions, trained on more input features (in this case,

MRI sequences), can more precisely adapt their model parameters to minimize the

loss function and, thus, better solve a specific task. Differently from what one could

anticipate, more features didn’t lead to an improvement in the outcome. In future

research, more combinations of MRI sequences could be tested for the deep learning

method.

Influence of MRI Sequences on the Segmentation of the Resection Cavity

Chapter 5 analyzed the effects of four sequences on the design of a deep learning

method, based on the 3D U-Net, for the segmentation of the resection cavity in post-

operative MRI acquisitions. Other research groups proposed methods to segment

this anatomical structure in brain images, and, in particular, a deep learning-based

method was recently presented in [100]. In their work, all the available sequences

(T1-CE, T1, FLAIR, T2) were used as input, and the authors didn’t analyze which

sequence would be the most informative to train a deep-learning method. My ex-

periments concluded that the T1-CE sequence is preferable for training and testing
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the 3D U-Net. My work also demonstrated that using multiparametric input data,

composed of all the available sequences, leads to a worsening of the DICE values

w.r.t. the same model trained on the T1-CE.

Based on my experiments, it appears that the T1-CE sequence is the preferred

choice. This could be attributed to its higher resolution, as has been observed in

previous registration tasks.

In future work, it would be valuable to assess the impact of different combinations

of MRI sequences on the 3D U-net-based method’s training and testing, hopefully

on a larger dataset. Additionally, multiple deep-learning architectures and methods

could be tested [151].

9.2. Intraoperative Ultrasound Acquisitions

The registration of subsequent intraoperative US acquisitions is tackled by two au-

tomatic segmentation-enhanced solutions in Chapters 7 and 8.

9.2.1. Image Registration Based on Segmentation Masks of

Corresponding Anatomical Structures

Chapter 7 presented a segmentation-based registration method in which only cor-

responding tissues are considered for guiding the registration process. First, sulci

and falx cerebri are automatically segmented in successive US intrapatient acquisi-

tions with a solution based on a 3D U-net. The masks are then used to compute the

distance measure in the iterative registration method. The deformation fields gener-

ated by registering the segmentation masks are applied to deform the corresponding

US acquisitions. The idea of utilizing segmentation to guide the registration of US

volumes is not a novelty in the field of US registration. However, my solution was the

first to demonstrate that the use of automatically generated segmentation masks of

falx cerebri and sulci represents a suitable strategy for the registration of subsequent

US data acquired in neurosurgery.

A limitation of the proposed solution might be related to the metric employed for

estimating the registration results in the utilized datasets. The mean target registra-

tion error is computed on corresponding landmarks annotated on brain structures,

such as falx cerebri and sulci. These also coincide with the anatomical elements
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that are automatically delineated by the segmentation method and whose masks

are used to guide the registration process. The results computed with this metric

might be influenced by the fact that the proposed solution might only focus on

correctly registering those anatomical elements, on which landmarks are also anno-

tated. To ensure that the US volumes are correctly registered, a visual inspection

of the registration was conducted in this thesis. Yet, in the future, it would be

interesting to also quantitatively evaluate the registration results in brain locations

different from the automatically segmented anatomical structures. To this purpose,

additional landmarks could be acquired in sites different from the automatically

segmented structures, possibly also on new data cohorts. A challenge in this regard

was, and remains, the limited availability of publicly available datasets, on which

additional results could be computed.

A second observation about the proposed solution regards the automatically seg-

mented structures to guide the registration process. The goal of my work was to

demonstrate that the idea of only using segmentation masks is a valid option for

registering subsequent US data. Since the masks are used to guide the registration

method, the quality of the generated masks could have a strong influence on the final

registration outcome. In future work, it would be interesting to evaluate whether

masks obtained by multiple raters or other automatic methods would affect the reg-

istration outcome. It could be expected that better quality segmentation would lead

to an improvement in the results of the segmentation-based registration of US data.

9.2.2. Image Registration Excluding the Contribution

Non-Corresponding Anatomical Structures

The second solution is a segmentation-enhanced method, in which resection cavi-

ties are first automatically segmented by a solution based on a 3D U-Net in intra-

and post-operative US acquisitions. Second, the generated masks are utilized in the

registration process to exclude from the computation of the distance measure the

contribution of the cavities, for which one-to-one correspondences are not guaran-

teed. The experiments of Chapter 8 demonstrated how the exclusion of automat-

ically generated masks of non-corresponding structures is beneficial for registering

subsequent US data: The method discarding the contribution of resection cavi-

ties achieves better results than the same solution including these structures in the

distance measure computation. By comparing the approaches presented in Chap-
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ters 8 and 7, one could observe how the use of the automatically generated masks is

complementary: in the first solution, corresponding structures are used, whereas the

method presented in Chapter 8 utilizes segmentation of non-corresponding elements.

This work aimed to validate the effects of excluding the contribution of the re-

section cavities from the registration process, automatically segmented by a deep

learning method. As for the first solution proposed for US acquisitions, the qual-

ity of the segmentation masks used in the registration could be a very important

parameter affecting the registration results. Even if it was out of the scope of the

proposed work, I partly evaluated this topic in the conducted investigation by com-

paring the same segmentation 3D U-Net-based method trained on ground truth

generated by two different raters. Nevertheless, it would be interesting to more ex-

tensively evaluate how masks generated from additional methods would affect the

registration outcome. In this regard, additional works have been recently conducted

[152; 153; 154; 155].

9.3. Future Directions

This thesis demonstrated that segmentation-enhanced solutions are suitable meth-

ods for the registration of neurosurgical subsequent acquisitions in which anatomical

correspondences are not guaranteed. I confirmed this finding by focusing on the reg-

istration of intraoperative US acquisitions and pre- and post-operative MRI volumes

obtained during brain tumor treatments. To confirm this result more comprehen-

sively, future solutions dealing with the registration of intracranial acquisitions of

other image modalities could also analyze the effects of discarding non-corresponding

tissues through segmentation masks. I believe one could expect that the exclusion of

the pathology from the registration process would also be beneficial for other image

modalities.

My experiments quantitatively demonstrated that the choice of the MRI sequence

strongly impacts the design of registration methods dealing with multiparametric

MRI data. The T1-CE sequence should be preferred to guide the two registration

methods, i.e., the iterative solution and the deep learning-based approach. A simi-

lar analysis has also been conducted for the segmentation method, based on the 3D

U-Net, for automatically delineating the resection cavity: In this case, the model
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using only the T1-CE sequence achieves a higher DICE index than employing all the

available sequences. Therefore, from my point of view, image-based methods deal-

ing with multiparametric MRI data should first concentrate on choosing the most

appropriate MRI sequence. To extensively investigate this topic, future works could

explore how different combinations of MRI sequences, in addition to those utilized

in the methods presented in this thesis, affect the registration and segmentation of

multiparametric data.
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[22] S. Başarslan and C. Göçmez, “NEURONAVIGATION: A REVOLUTION-

ARY STEP OF NEUROSURGERY AND ITS EDUCATION,” Medical Jour-

nal of Mustafa Kemal University, vol. 5, pp. 24–31, Mar. 2015.

[23] I. J. Gerard, M. Kersten-Oertel, K. Petrecca, D. Sirhan, J. A. Hall, and D. L.

Collins, “Brain shift in neuronavigation of brain tumors: A review,” Med.

Image Anal., vol. 35, pp. 403–420, Jan. 2017.

[24] S. Narasimhan, J. A. Weis, M. Luo, A. L. Simpson, R. C. Thompson, and M. I.

Miga, “Accounting for intraoperative brain shift ascribable to cavity collapse

during intracranial tumor resection,” J. Med. Imaging (Bellingham)., vol. 7,

p. 031506., May 2020.

[25] O. Bozinov, J.-K. Burkhardt, C. M. Fischer, R. A. Kockro, R.-L. Bernays,

and H. Bertalanffy, “Advantages and Limitations of Intraoperative 3D Ultra-

sound in Neurosurgery. Technical note,” in Intraoperative Imaging, pp. 191–

196, Wien, Austria: Springer, Vienna, Aug. 2010.

[26] D. Kuhnt, M. H. A. Bauer, and C. Nimsky, “Brain Shift Compensation and

Neurosurgical Image Fusion Using Intraoperative MRI: Current Status and

Future Challenges,” CRB, vol. 40, no. 3, 2012.

149



Bibliography

[27] V. M. Tronnier, M. M. Bonsanto, A. Staubert, M. Knauth, S. Kunze, and

C. R. Wirtz, “Comparison of intraoperative MR imaging and 3D-navigated

ultrasonography in the detection and resection control of lesions,” Neurosurg.

Focus, vol. 10, pp. 1–5, Feb. 2001.

[28] L. Dixon, A. Lim, M. Grech-Sollars, D. Nandi, and S. Camp, “Intraoperative

ultrasound in brain tumor surgery: A review and implementation guide,”

Neurosurg. Rev., vol. 45, pp. 2503–2515, Aug. 2022.

[29] Y. Xiao, M. Fortin, G. Unsg̊ard, H. Rivaz, and I. Reinertsen, “REtroSpec-

tive Evaluation of Cerebral Tumors (RESECT): A clinical database of pre-

operative MRI and intra-operative ultrasound in low-grade glioma surgeries,”

Med. Phys., vol. 44, pp. 3875–3882, July 2017.

[30] T. Selbekk, A. S. Jakola, O. Solheim, T. F. Johansen, F. Lindseth, I. Rein-

ertsen, and G. Unsg̊ard, “Ultrasound imaging in neurosurgery: approaches to

minimize surgically induced image artefacts for improved resection control,”

Acta Neurochir., vol. 155, pp. 973–980, June 2013.

[31] D. Kwon, M. Niethammer, H. Akbari, M. Bilello, C. Davatzikos, and K. M.

Pohl, “PORTR: Pre-Operative and Post-Recurrence Brain Tumor Registra-

tion,” IEEE Trans. Med. Imaging, vol. 33, pp. 651–667, Dec. 2013.

[32] J. Modersitzki, FAIR: Flexible Algorithms for Image Registration (Fundamen-

tals of Algorithms). Society for Industrial and Applied Mathematics, Nov.

2009.

[33] J. V. Hajnal and D. L. G. Hill, Medical Image Registration (Biomedical Engi-

neering) (English Edition). Boca Raton, FL, USA: CRC Press, June 2001.

[34] X. Chen, A. Diaz-Pinto, N. Ravikumar, and A. F. Frangi, “Deep learning in

medical image registration,” Prog. Biomed. Eng., vol. 3, p. 012003, Feb. 2021.

[35] D. Ruan, J. A. Fessler, M. Roberson, J. Balter, and M. Kessler, “Nonrigid

registration using regularization that accommodates local tissue rigidity,” in

Proceedings Volume 6144, Medical Imaging 2006: Image Processing, vol. 6144,

pp. 346–354, SPIE, Mar. 2006.

[36] S. Boda, Feature-Based Image Registration. PhD thesis, May 2009.

150



Bibliography

[37] M. B. Hisham, S. N. Yaakob, R. A. A. Raof, A. B. A. Nazren, and N. M. Wafi,

“Template Matching using Sum of Squared Difference and Normalized Cross

Correlation,” in 2015 IEEE Student Conference on Research and Development

(SCOReD), pp. 100–104, IEEE, Dec. 2015.

[38] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolu-

tional neural network,” in 2017 International Conference on Engineering and

Technology (ICET), pp. 1–6, IEEE, Aug. 2017.

[39] K. O’Shea and R. Nash, “An Introduction to Convolutional Neural Networks,”

ArXiv, Nov. 2015.
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Appendix

Evaluation of the Accuracy of Image Registration
Algorithms

An important aspect of image registration regards the way the results are ana-

lyzed and computed. In this context, the accuracy of the registration is a standard

performance measure taken into consideration to evaluate registration algorithms

in medical applications [97]. It can be measured using metrics that quantitatively

express the improvement of the proposed solution w.r.t. a baseline value. Different

metrics exist, but one of the most common includes anatomical landmarks. Pairs

of landmarks are located in corresponding locations in the two images to register.

Given that each point has its coordinates, the Euclidean distance between two points

can be computed as:

D((x1, y1, z1), (x2, y2, z2)) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 (.1)

Given two volumetric images F and M , the minimum number of pairs of corre-

sponding landmarks is three, but a larger quantity is preferred. For each pair p,

the Euclidean distance can be computed (Dp). If the number of pairs of landmarks

obtained in two images is N, the target registration error (TRE) is calculated as the

mean of all the Di computed for each pair acquired in two images F and M .

TRE =

N∑
i=1

Di

N
(.2)

If landmarks are acquired in M pairs of images, a mean TRE (mTRE) can be

computed:

mTRE =

M∑
i=1

TREi

M
(.3)
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