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Abstract

This work presents an approach to improving the autonomy of robots. This is done by adding
cognitive features with the aim of allowing these robots to be used in homes or care facilities
with little supervision. Specifically, my approach is to build knowledge-processing memory
modules capable of acquiring, retrieving, storing and updating knowledge. Using modules that
simulate memory allows robots to process knowledge and perform better in human environments.
In particular, this work focuses on Personal Service Robots executing complex manipulation
actions embedded into everyday tasks.

I aim to use techniques of learning from human examples to enable robots to perform everyday
tasks in household environments. A human activity recognition system for demonstrations from
a Virtual Reality environment was implemented to record and analyze those examples. This
system is capable of segmenting trajectories and events into actions and sub-actions. These are
stored in a hierarchical data structure called episodes, used by the memory modules to give the

robot insight into how to execute such actions.

Also, this research developed knowledge-processing memory modules to extend a cognitive
architecture. These memory modules are part of Long Term and Short Term Memory. This
architecture is transferable to diverse robotic platforms. It was tested in five robots from different
vendors and body configurations. This shows that the knowledge can be used depending on the
robot’s necessities and capabilities. The memory modules allow the robot to decide whether and
how to adapt actions. This way, the robots can perform complex manipulation actions similar to

humans.

The experiments in this work were performed in a simulated kitchen environment. There, the
five robots performed actions embedded in the cooking tasks. The results show an improvement
in the action execution success by eleven percent and a similar percentage reduction in the time

required to perform the tasks.

This work draws inspiration from linguistics, psychology, neuroscience, cognitive science and
computer science to create Knowledge Bases. They contain concepts from natural sciences,

actions, skills, objects, robotic platform capabilities and experience.






Resumen

Este trabajo presenta una propuesta para mejorar la autonomia de los robots. Esto, por medio
de agregar capacidades cognitivas para permitir a estos robots ser usados en hogares o insti-
tuciones del cuidado de la salud con poca supervision. En especial, mi propuesta es construir
modulos de memoria para procesar conocimiento capaces de adquirir, recuperar, guardar y
actualizar el conocimiento. Al usar modulos que simulan la memoria, los robots pueden procesar
conocimiento y mejorar la ejecucion de tareas en ambientes humanos. En particular, este trabajo
se enfoca en Robots Personales de Servicio ejecutando manipulacion complejas de objetos

relacionados con la tareas diarias.

Mi objetivo es utilizar técnicas de aprendizaje a partir de demostraciones humanas para permitir
que los robots realicen tareas cotidianas en ambientes domésticos. Para ello, se implemento un
sistema de reconocimiento de actividades humanas en un ambiente de Realidad para registrar y
analizar esos ejemplos. Este sistema es capaz de segmentar trayectorias y eventos en acciones
y subacciones. Estos se almacenan en bases de datos con una estructura jerarquica llamada
episodios, utilizada por los modulos de memoria para darle al robot una idea de como ejecutar

dichas acciones.

Ademas, esta investigacion desarrolldo modulos de memoria para procesar conocimiento que
amplian una arquitectura cognitiva. Estos modulos de memoria forman parte de la Memoria de
Largo y de Corto Plazo. Esta arquitectura es transferible a diversas plataformas roboticas. Fue
probada en cinco robots de diferentes proveedores y configuraciones fisicas. Esto demuestra
gue el conocimiento se puede utilizar dependiendo de las necesidades y capacidades de cada
robot. Los modulos de memoria permiten a cada robot decidir si adapta las acciones y como. De
esta manera, los robots pueden realizar acciones de manipulacion complejas de forma similar a

la de los humanos.

Los experimentos de este trabajo se realizaron en una cocina dentro de un entorno simulado.
Alli, los cinco robots realizaron acciones relacionadas con las tareas de cocina. Los resultados
muestran una mejora en el éxito de la ejecucion en un once por ciento y una reduccion similar

en el tiempo requerido para realizar las tareas.
Este trabajo se inspira en la lingiiistica, la psicologia, la neurociencia, las ciencias cognitivas y

las ciencias de la computacion para crear Bases de Conocimiento. Estas contienen los conceptos
de ciencias naturales, acciones, habilidades, objetos, capacidades y experiencia de los robots.






Zusammenfassung

In dieser Arbeit wird ein Ansatz zur Verbesserung der Autonomie von Robotern vorgestellt.
Dies geschieht durch Hinzufiigen von kognitiven Funktionen mit dem Ziel, dass diese Roboter
in Heimen oder Pflegeeinrichtungen mit wenig Aufsicht eingesetzt werden kénnen. Konkret
besteht mein Ansatz darin, Gedichtnismodule zu implementieren, die in der Lage sind, Wis-
sen zu erwerben, abzurufen, zu speichern und zu aktualisieren und so bessere Leistungen in

menschlicher Umgebung zu erbringen.

Hierzu nutze ich Techniken des Lernens von menschlichen Beispielen. Ein System zur Erken-
nung menschlicher Aktivititen fiir Demonstrationen in einer Virtual Reality-Umgebung wurde
implementiert, um diese Beispiele aufzuzeichnen und zu analysieren. Das System ist in der
Lage, Trajektorien und Ereignisse in Aktionen und Unteraktionen zu segmentieren. Diese
werden in einer Episoden genannten hierarchischen Datenstruktur gespeichert, die von den
Gediichtnismodulen verwendet wird, um dem Roboter die Ausfiihrung alltiglicher Aufgaben in
hiiuslichen Umgebungen zu erméglichen.

Diese Gedichtnismodule wurden im Rahmen dieser Forschung entwickelt, um eine kognitive
Architektur zu erweitern. Diese Architektur ist auf verschiedene Roboterplattformen iibertragbar.
Sie wurde in fiinf Robotern verschiedener Hersteller und Kérperkonfigurationen getestet. Dies
zeigt, dass das Wissen je nach Fihigkeiten der Plattform genutzt werden kann. Die Gedichtnis-
module ermoglichen es den Robotern zu entscheiden, ob und wie sie thre Handlungen anpassen
sollen. Auf diese Weise konnen sie komplexe Manipulationsaktionen dhnlich wie Menschen
durchfiihren, wobei sich diese Arbeit insbesondere auf Personal Service-Roboter konzentriert.

Die Experimente in dieser Arbeit wurden in einer simulierten Kiichenumgebung durchgefiihrt.
Dort fiihrten die fiinf Roboter Aktionen aus, die in Kochaufgaben eingebettet waren. Die
Ergebnisse zeigen eine Verbesserung des Erfolgs bei der Aktionsausfithrung um elf Prozent und
eine dhnliche prozentuale Verningerung der Zeit, die fiir die Ausfithrung der Aufgaben benétigt
wurde.

Diese Arbeit wird von der Linguistik, der Psychologie, den Neurowissenschaften, der Kognition-
swissenschaft und der Informatik inspiriert, um Wissensdatenbanken zu erstellen. Sie enthalten
Konzepte aus den Naturwissenschaften, Handlungen, Objekte, Fihigkeiten und Erfahrungen
von Roboterplattformen.
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Chapter

Introduction

The increase in life expectancy and the low birth rate have, as a consequence, an increase
in the aging population in the world [Lutz et al., 2008], which brings the necessity for
more caregiving personnel. However, this would increase the cost of elder care to provide
independent living support for everyone who requires it [Hashimoto et al., 2013]. Furthermore,
the COVID-19 pandemic showed the importance of deploying robots in caregiving facilities.
However, even though robots have the potential to support or replace human service employees,

specifically, Personal Service Robots (PSRs) acting in home environments and care facilities,

consumers need to trust them more. This mistrust makes people unwilling to use them to
perform such caring tasks [van Pinxteren et al., 2019].

Some robots without a manipulator achieved some of these caring tasks, such as giving reminders
and social interaction. However, tasks related to object manipulation, such as getting a drink,
reaching things on high shelves or the floor, finding and bringing items, and preparing meals,
still need to be completely available. Such manipulation tasks are identified in the Program
of All-Inclusive Care for the Elderly (PACE) [Johnson et al., 2017]. In this sense, many
robotic platforms can pick and place free-form objects or open and close devices like a fridge.
However, most still need some functionalities and autonomy for caregiving work. This lack of
functionalities was shown in the three-week trial by Martinez-Martin and del Pobil [2018] in real
private homes, where the robot could search, transport and bring small objects, give reminders
and detect emergencies. However, robot errors while performing these tasks led users to
frustration and mistrust. This mistrust shows that even though a Personal Service Robot (PSR)
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can perform specific tasks, their manipulation capabilities must be improved to be used as
caregivers.

This thesis focuses on improving the manipulation capabilities of PSRs. First, the chapter
presents the motivation for pursuing this research in Section 1.1. Then, Section 1.2 describes
the challenges and problems addressed in this work. Next, Section 1.3 expresses the main
contributions of this thesis. Finally, Section 1.4 explains the outline of this document.

11 Motivation

The motivation of this work is to give a Personal Service Robot (PSR) the capabilities to serve

humans. Those capabilities can be similar to the ones of humans, such as perception, attention,

action selection, memory, learning, reasoning and prospection. Specifically, this thesis work
is interested in how humans use learned knowledge to select actions and adapt to unknown
situations. For this, we can look into the research area of cognitive robotics, which arose from
applying new methods to model the human brain’s cognitive processes. In the same way, in
this work, different knowledge-processing memory modules were implemented to extend the

existing cognitive architecture, which was later tested on various robotic bodies.

Another motivation is that living beings perform actions that are not fully understood. Let’s take
the example of peeling an orange; a person could select a knife or a peeler as a tool, depending
on what is available. Then that person has to manipulate the orange and tool together to have
a specific contact to start the movements required for the peeling action. All these actions are
represented somehow in the person’s brain. Such representations together provide an action
plan. This work looks better at understanding actions and their representation concerning plan
construction. Knowledge is represented and stored in memory for that to be possible, so a PSR
can use it to build execution plans. This work follows the premise that manipulation depends
not only on complex motion control but on other cognitive processes-related elements. One
motivation for this work is that when we build and program robots, we better understand their

limitations and how their movements are generated.

1.2 Problem description

Regarding robots’ missing manipulation capabilities to date, they cannot easily perform actions
like hand-wash dishes or peeling vegetables [Billard and Kragic, 2019]. This is because even
when robots can handle some variations in their environment regarding object manipulation,
these variations are still limited. For example, robots can manipulate objects with specific
properties but have yet to handle soft or deformable objects reliably and efficiently. Furthermore,
they still need improvement regarding stable and optimal gasp related to the proper object

orientation. These issues mainly concern the position of fingertip contact on the object surface
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and, importantly, the purpose of that grasp. Finally, some of these limitations come from
the robot’s perception capabilities. For example, robots still have issues detecting transparent
objects, partially hidden ones or if they are transformed as an effect of one action. For this to
be overcome, prior knowledge can be handy. One example is information about deformation
models produced by manipulation such as inserting, cutting or bending. Robot knowledge can
also include object properties, such as shape, weight, material, viscosity, friction coefficient and
so forth. For example, a cup has important physical properties, such as it is hard and fragile
because it is made of ceramic. With this knowledge, the robot can also improve its perceptual
processing by generating and ranking grasp candidates. The same can happen with manipulating
tools by using features from the objects.

Figure 1.1: Robot asking itself how to perform an action.

Primarily, this thesis project aims to provide Personal Service Robots (PSRs) with cognitive

knowledge-processing capabilities so they can decide if and how manipulation actions should
be adapted so that knowledge is suitably integrated and expanded by each execution to improve
performance. For example, when the robot is asked to bring a bowl of soup. First, it has to
serve the soup in a bowl by measuring an amount that is a sufficient portion for a person and not
too much that can spill. Then, when the bowl is served, the robot should add a restriction to
the action carrying. Finally, the robot must always obey a specific maximum acceleration and
hold the bowl upright to avoid spilling anything (Figure 1.2). Serving on the table might be
easier in some cases, but the robot should know that the pot might be too heavy to be transported
to the table and if not, the same constraints apply.

Another example of constraints the robot must follow is when a robot serves a drink (Figure 1.3).
When the robot is pouring juice from a box container into a glass, it should consider the box’s
orientation so that the opening faces the glass but is not too close to it to avoid splashing the
liquid. Then, while tilting the container, it should consider that the angle change is slow so as
not to spill or splash juice, but the box can get enough air in to allow liquid flow. Also, the robot
must be aware that the box deforms when the liquid is coming out, and it has to apply a bit more
force slowly to keep it stable but not too much. Finally, the robot should detect when it serves
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Figure 1.2: Robot bringing a bowl of soup to the table.

the right amount of liquid for a person, but not too much that it will be transportable without
spilling it.

Figure 1.3: Robot serving juice from a box container into a glass.

Before baking a cake, the batter must be prepared before it can be put in the oven (Figure 1.4).
The constraints, in this case, are related to the speed of the hand. The robot has to whisk the
ingredients after pouring them into the bow] at different speeds. The first is the speed of the
movement of the whisk, such as it must be a little slow as it would splash the ingredients in the
kitchen and make a mess, but if it is too slow, it will take very long. The robot must also select
the right speed depending on the ingredients already inside the bowl, e.g. the butter with sugar
can be mixed at high speed, but the velocity has to decrease when flour and milk are added.
Also, the range of movement depends on the size of the bowl.

Figure 1.4: Robot mixing ingredients.

Now, think about a robot commanded to bring a cup of tea. The robot must solve the task by
performing different actions in this example. Actions have a hierarchy, e.g. pouring hot water
into the cup; the robot must reach, grasp, lift and turn the water kettle. These so-called basic
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or atomic actions are referred here as sub-actions. The combination of different sub-actions
constitutes one action and the union of actions builds a plan. Sub-actions are one level above
body part movements. Considering that motion involves increasing or decreasing the angle
of the joints [Saladin, 2004]. Two examples of body movements are flexion and extension.
For example, bending the head or spine is flexion, while any posterior-going movement is an

extension. These movements occur at the shoulder, hip, elbow, knee and wrist joints.
With the ideas presented previously in mind, the hypothesis guiding this work is that imple-
menting knowledge-processing memory models using cognitive science, neuroscience and

psychology concepts allows a Personal Service Robot (PSR) to perform manipulation tasks in a

human-like way. These modules especially support PSRs when performing complex manipula-
tion actions, e.g. using tools in a human-like way, meaning by experimenting and simulating.
During manipulation, the robot can reliably handle failures. Furthermore, it can perform actions
where the plan is unknown beforehand.

PSRs require to process an enormous amount of knowledge to act in human environments,
especially performing caregiving tasks autonomously. This thesis work provides cognitive
knowledge-processing capabilities, so PSRs can acquire, store and process knowledge from
actions. This allows them to improve their performance and avoid failures. This type of

processing capability is only sometimes available in robotic architectures.

This thesis work contributes to cognitive robotics by describing the development of four primary
human memory categories shown in Figure 1.5 (blue) and their application to robotic systems.
Semantic Memory (SM ), Procedural Memory (PM) and Episodic Memory (EM ) are general-
purpose storage and retrieval systems. Furthermore, the Working Memory (WM) adapts and
recalls (semi-autonomously) relevant memories given a current situation, which is a relatively

new notion.

Long Term Memory

Short Term Declarative
Memaory

Procedural | | Episodic | | Semantic

Memaory Memary | | Memaory

Figure 1.5: Knowledge-processing memory modules.

Regarding planning capabilities, it is important to notice that manipulating objects is easier for
robots. We tend to forget that humans are born with basic grasp reflexes [Thibaut and Toussaint,
2010] that improve thanks to imitation and testing of our limbs. The human adult-equivalent
object manipulation and planning take around seven years to develop, between 3 and 10 years
old. Still, some dexterous manipulations may pose a challenge even to humans. However, one
can find ways of achieving such manipulation goals through training and exploration, even if the
result is only sometimes optimal. Likewise, a robot could train and explore by testing its joints
while manipulating objects to balance between prior and newly acquired knowledge. However,
robots must already include some capabilities to perform manipulation actions and leamn the
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missing ones. For example, if the robot knows only how to grasp a cup, it should be able to
expand its knowledge and then pour a liquid from that cup into another container.

When comparing human and robot manipulation capabilities, another big difference appears.
While humans have a hand with five fingers that include flexible and soft skin full of sensors,
many robots use a parallel jaw gripper instead (see Appendix Table A.1 and Table A.2), often
without sensors [Billard and Kragic, 2019]. Only this body part difference makes it much harder
for robots to accomplish in-hand manipulation tasks in a human-like way.

It is also important to notice that even when hand control is considerable for manipulation, this
act involves not only that type of control. Manipulation also requires the usage of the arm, torso
and, in many cases, the entire body. Knowing how to use its own body to act reliably is still an
open problem in robotics. To overcome these issues, the robot’s cognitive capabilities should
not just include those mentioned above but also the robot should be able to know and consider
its capabilities and limitations while performing a task. This way, the robot can act more reliably
and recover from failures.

1.21 Manipulation action knowledge acquisition

If we follow the human approach of imitating and testing, learning to plan can take a long time to
develop for a robot, more than ten years. However, in the case of a robot, we can provide already
processed knowledge. But what would be a good source of this knowledge? One good example
of cognitive capabilities is humans, as they have a remarkable ability to store and retrieve an
enormous amount of knowledge needed for a given situation. Furthermore, the robot will act
in human environments and has to consider it. For example, if | am carrying objects from an
open fridge in both hands, I can use my elbow or another part of my arm to push and close the
fridge door instead of my hand. As human is already being taken as an example, this work can
also use demonstrations from them. These demonstrations need to include enough information
so that the robot can obtain trajectories, orientations, locations, velocities and accelerations.
However, more than just having this information is needed; the robot also must know that when
a hand approaches an object on a cupboard, that hand is reaching that object. That way, when
the robot must reach the same or a similar object, it can know the movement features required to
achieve that. But, identifying actions from human examples is not a trivial problem: it requires a
system capable of differentiating similar action trajectories, such as reaching for an object and

retracting a robotic arm.

This work proposes to use action structures from human examples, such as pouring or putting the
dishes inside a dishwasher (Figure 1.6), to improve and generate new combinations of actions.
Hence, a Personal Service Robot (PSR) performs caregiving tasks. This use of human examples

is known as imitation learning or, more specifically, Programming by Demonstration (PbD). It
is based on the idea that humans imitate others by observing and approximating their behavior
[Brooks et al., 2004], and robots can do similarly. This work uses it from the robot’s viewpoint
and 1s called Learning from Demonstration (LfD).
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In the specific case of robots, they can extract the information they need from such demonstra-
tions by identifying actions and extracting some of their features, such as grasping contact points
between the manipulator and the object. These features give the intuition of how to perform
those manipulation actions as commonsense knowledge. These actions require a structure to
be included inside the robot’s knowledge, which is represented in a hierarchy referred to as a

taxonomy.

Virtual Reality

Figure 1.6: Use of examples by a robot to perform a task.

1.2.2 Knowledge-processing memory modules

This work contributes to the cognitive knowledge-processing area of robotic manipulation.
In this thesis, the author presents knowledge-processing memory modules integrated into
the cognitive architecture CRAM [Beetz et al., 2023]. CRAM is a complete framework for
implementing cognitive high-level robot control programs to enable robotic agents to execute

their tasks more robustly, reliably and flexibly. However, alongside the reasoning engine of
CRAM, P5Rs require more know ledge-processing capabilities to integrate more knowledge into
their plans. In general terms, robots need advanced cognitive capabilities to predict where, how
and why to manipulate objects using prior knowledge. In this sense, generating a well-defined
plan structure is essential by using prior knowledge and storing current knowledge for future
executions is important. It does not only mean that the robot will call the respective sub-actions
at specific points in time, as done in simple scripts. However, it should use more sophisticated
reasoning and decision-making systems to determine when and how often to execute them. This
includes the preparation for future executions, such as the locations where the robot stands or
places objects needed in future actions visible to the robot. For example, not to place objects
at locations where they are occluded from others which are required later. More specifically,
creating a high-level execution plan means calling the right components in the proper order and
finding parameters that maximise the performance of the resulting actions and prevent errors.
This also includes prediction mechanisms to integrate the future course of action.

To provide PSRs with the capabilities mentioned before, various memory models extend the
cognitive architecture in this work. Cognitive science models, including neuroscience and
psychology, inspire these memory models. It is based on the biological idea that cognition is
mainly concerned with manipulating and utilising memory [Baxter and Browne, 2011]. This
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extension allows the robot to perform tasks in a human-like way by managing knowledge as
required, i.e. acquiring, storing and looking for knowledge to act in human environments. With
this work, PSRs, with their cognitive architecture, can accomplish vaguely specified tasks such
as bringing me a glass of water by deciding how to grasp a bottle, open it and fill a glass.
They can also choose which type of grip to apply for each specific object, how to reach for it,
where to hold it, etc. To accomplish that, robots obtain the missing information from different
sources, such as internal (inferring) and external (perception systems) methods, to act according
to the combination of all the knowledge. PSR also produce new knowledge through internal
structuring, associations and logical inference mechanisms, similar to the methods presented by
Alami et al. [2006]. In this case, memory is not just a repository of sensed data; but includes an
active process that transforms factual knowledge into linked structures. As four different types
of memory are involved in this work, knowledge should be stored inside the correct type of
memory to be managed in a human-like way. Following this idea, this work presents a memory
manager based on a model from cognitive science. This model uses the working memory as an
interface that compares current and previous action executions to provide knowledge about how
to act.

As mentioned, PSEs can only serve humans with further expert intervention, especially in
handling failures. These errors include the need for more information about executing unknown
or known tasks in a human-like way. The memory modules presented in this work handle
failures related to unknown tasks by looking for similarities in the structure of actions. Then,
the execution plan is built based on the basic actions involved; finally, that plan is simulated
and evaluated. In the case of other types of failures, this module uses stored knowledge from

previous executions to compare both cases and then decide how to change the plan, if necessary.

One crucial question that has triggered research in cognitive and neuroscience is how humans
control movement. [t is known that the brain is involved in the production of movement and
relies on memory. The brain produces plans to minimize negative consequences (failures).
Memory allows people to learn from their surroundings and, more crucially, from previous
experiences. So, to optimize cognitive capabilities, memory modules must be constructed
appropriately.

The design of such memory modules for a robotic system is detailed in this thesis. These
models are based on an accepted division of the human memory system [Tulving, 1985], with
Short Term Memory (STM) and Long Term Memory (LTM) that store the robot’s percepts and
information gained from previous experience. There are three modules of LTM considered
in this work. Procedural Memory (PM) stores knowledge needed to perform robot motions.
Semantic Memory (SM) saves factual knowledge unrelated to a specific time and location. And
Episodic Memory (EM) preserves individual system experiences. The STM, Working Memory
(WM ), is likewise intended to have an active storage space containing task-relevant knowledge
and holds information representing the current percepts of the system.

Now that the memory modules are defined, it is essential to decide the charactenistic of each
of them, such that they can process knowledge for a PSR and maximize the potential of the
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cognitive architecture that uses them. These modules cannot only recall information that will
likely be needed during manipulation but also reduce the execution time.

1.2.3 Knowledge storage

Storage is part of knowledge-processing. The stored knowledge should be rich and deeply
represented such that it holds the complete set of beliefs of the robot. In this case, Knowledge
Bases (KBs) already exist and are used by robots. They exhibit opportunistic behavior to
identify unplanned occurrences in the environment and introduce new knowledge directly to
the system. However, integrating new knowledge coming from the robot control programs
is non-trivial. For example, the detection that results from the perception system needs to be
related to object instances inside the Knowledge Base (KB)s. Also, using multiple KBs with
different representations by the robot is non-trivial. MNevertheless, all of them are working
together to accomplish the current goal. This adaptability will be determined by the agents’

internal organization and connectivity patterns.

If we still take the human as an example, one issue arises. This issue is that the organization of
knowledge in the human brain continues to be under discussion. There are two theories: the
object visual property and the connectivity-constraint account. The first ones emphasize the
role of non-categorical information in the visual input, such as eccentricity, size, rectilinear,
and curvature features (e.g., Levy et al. [2001], Hasson et al. [2002], Konkle and Oliva [2012],
Srihasam et al. [2014], Freud et al. [2015], Magri et al. [2019], Yan et al. [2023]). On the
contrary, the connectivity-constraint account proposes that the category-specificity in the ventral
stream is primarily driven by the innate connections with other brain regions that process
nonvisual properties of the corresponding categories (e.g. Riesenhuber [2007], Martin [2009],
Mahon and Caramazza [2011], Chen and Rogers [2014], Mahon [2015], Riesenhuber [20207).
Other works suggest that object-directed actions and functional knowledge are represented in
different areas of the human brain (e.g. Pobric et al. [2010], Pelgrims et al. [2011], Evans et al.
[2016], Andres et al. [2017]). As knowledge related to objects is stored in different areas of the
brain, this thesis work implements the four processing memory modules and three KBs; each

KB is specific to the types of memory, as shown in Figure 1.7.

Procedural | Episodic  Semantic
Memaory Memory | Memory

|

Procedural | Episodic | |Semantic
KB KB KB

Figure 1.7: Processing memory modules with their Knowledge Bases.
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1.2.4 Testing scenario

As manipulations related to caregiving are embedded inside the complexity of preparing and
providing a meal, these are the test scenarios used in this work. Pick and place sub-actions were
already presented by Flanagan et al. [2006] and are used in this work. That sub-actions list is
then extended here in the context of tasks for preparing meals, as these sub-actions were not
present in previous work. This extension uses semantic primitives in linguistics, which mean
the same in many languages [Wierzbicka, 1992, 2021].

The extended system was tested on five robots with the examples presented in Section 1.2. The
robots were also tested on two more tasks: picking and placing two objects and bringing a drink.
These examples show capabilities related to serving and preparing meals in human environments.
The robots’ execution is compared to each other. This comparison includes execution time,

number of failures, and number of sub-actions performed (repetition).

1.3 Contributions

In general terms, this work’s contributions are mainly in knowledge acquisition and represen-
tation, and cognitive robotics. This is done by creating memory-based processing models for
Personal Service Robots (PSEs). Specifically, the contributions of this work are:

* The creation and extension of Knowledge Bases (KBs) for storing prior, current and
conceptual knowledge
— The creation of a Procedural Knowledge Base (PKRB) to store action sequences in
the form of skills.
— The creation of an EKB to store the occurrence of events in the form of experience.
— The extension of a Semantic Knowledge Base (SKB) to include more concepts about
actions and objects.
= A robust human activity recognition (HAR) system to model actions as bottom-up action-
sub-action pairs that does not require explicit programming and handles variations.
* The creation of knowledge-processing memory modules extends the CRAM cognitive
architecture so that prior knowledge is integrated into plans and current knowledge is

stored for future executions.

One first source of knowledge for PSRs is humans when demonstrating how to manipulate
objects. For the robot to get knowledge from human demonstrations, a system capable of
recognizing actions and representing them in a structured manner is required. In this case, the
human activity recognition (HAR) system implemented in this work uses machine learning
techniques to identify and classify actions into two levels. This hierarchy allows the robot to
identify the lowest level as sub-actions. Furthermore, this system also enables the extraction of
sub-action features related to object manipulation and body positioning, e.g. distance between
the object and body, manipulation type, etc.

10
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Learning from Demonstration (LfD) is strongly linked to the human activity recognition (HAR)
system as it connects humans’ executions (acquisition) and the robot’s knowledge-processing
system. The data acquisition was made with a 3D Virtual Reality (VR) system. The memory
modules follow the way humans infer and execute an action. This allows the robot to build
execution plans better. Then, those plans are interconnected with the robot’s memory to obtain

the knowledge required for performing actions.

Memory has a strong connection with cognition and learning. It allows the acquisition, storage,
retrieval, use and mix of information, knowledge and experience [Tulving and Szpunar, 2009,
Tulving, 2016]. In this thesis, Working Memory (WM ) denotes a complete implementation that
is an interlocutor between the environment and other memory modules. It retrieves knowledge
from memory modules based on the current context. This memory model balances flexibility to
be specific enough to accomplish retrieval accurately and quickly. It also evaluates heuristic
rules such as where to position yourself best to detect an object that is visible or if you should
first look for objects at places where you believe they are. In case of failure, it uses prospection
to simulate possible actions that can solve the issue. The WM is relatively automatic from the
perspective of the systems that manage goals, plans, and task execution. Episodic Memory (EM)
has a retrieval system for specific experiences, depending on the context. Procedural Memory
(PM ) retrieves knowledge of previously executed actions similar to the learned skills. Semantic
Memory (SM) retrieves knowledge about concepts, objects and materials. Each memory module

has an evaluation method to retrieve the relevant knowledge for the current context.

Part of the knowledge, specifically commonsense knowledge, is used in this work and stored in
a low- and high-level hierarchy as episodes that include details of performed actions and events.
Part of this knowledge is used to extend an Episodic Knowledge Base (EKB) with previous
experiences. After the performance of actions, a Procedural Knowledge Base (PKB) is updated,
which includes skills required by the robot to perform tasks. This includes trajectories, used
body parts and the effect of action related to the execution goals.

The Semantic Knowledge Base (SKB) stores concepts about objects and actions. The PKB and
EKB are created and then expanded in this work. On the other hand, the SKB uses KNOWROB
[Tenorth and Beetz, 2013, Beetz et al., 2018] as a base and is expanded using interactions with
the environment. All this knowledge is then available for the robot.

The memory extension proposed here makes the cognitive architecture transferable to different
situations so that various robots can also use it. This is possible since the extracted represen-
tations of the observations are given in an abstract form, allowing a better generalization of
the demonstrated tasks. This property makes this cognitive architecture superior to classical
approaches, where the task is learned for a specific scenario or a particular robot.

Learning capabilities in robotics are linked together with machine learning algorithms. There are
two types of leaming [Nilsson, 1996, Tapeh and Naser, 2023]. The first one is called supervised
learning, which uses known values associated with sensor inputs, for example. One use of
this would be that if we want to identify the crack an egg action, the inputs required are the
contact between the egg and surface and the broken shell to know that the following action is
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to separate the shell. The output value associated is a cracked egg when this information is
available. The second type, unsupervised learning, has a training set of inputs from which the
associated values are unknown. The model tries to classify the inputs meaningfully when the
training is performed. Both methods require a training and testing phase. The examples are
introduced to the learning implementation during training to produce a useful model.

There is a trend to use an unsupervised learning approach called deep learning. In recent years,
models have already been pre-trained with large amounts of unlabeled data [Tapeh and Naser,
2023]. This makes it possible to use such models for different applications with less further
data for a specified task. However, compared to deep learning, this model prefers to use a
combined approach, called semi-supervised learning, which uses a small number of labelled
examples and many unlabeled ones. This data was collected during this work because the large
pre-trained models mostly include text or image data. This approach provides the variability
and frequency of specific necessary samples required during training, which include actions
and sub-actions. Even more, this memory-based model has an interface capable of collecting
knowledge about the hierarchy and features of actions performed by a PSR. Then, when a task is
executed successfully, it integrates the knowledge obtained into the permanent memory, called
Long Term Memory (LTM). These memory modules and cognitive architecture integration are
tested in various simulated robotic platforms presented in Appendix A.1.

1.4 Reader’s guide

Inside each chapter, there are some typographical conventions to highlight different elements.
One of them is underlined words. This means that the corresponding word definition is included

in the glossary at the end of this document in case the reader is interested in this information.
The second is italics to indicate new terms introduced for the first time. Finally, the reader can
find monospace highlighting in the following chapters to identify program elements the robot
uses. This convention includes program listings and paragraphs to refer to program elements,
e.g. variable or function names, databases, data types, environment variables, statements and

keywords.
The chapters of this work are divided as follows:

Chapter 2 introduces general notions about robotic systems development. It also presents the
foundational state of the art in cognitive systems and the memory modules built and used in this

work with their description.

Chapter 3 gives an overview of the implementation presented in this thesis. It describes its
components. In the specific case of this work, the module combines human activity recog-
nition (HAR) and a memory model for Personal Service Robots (PSEs) to perform complex
manipulation tasks.

Chapter 4 presents concepts about knowledge in general and knowledge representation. It also
describes the HAR system representation as episodes, including their procedural details and

12
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how they can be used for future executions. Finally, it provides the structure of the sub-action
and action plans library and how prior knowledge can be integrated.

Chapter 5 presents the human activity recognition (HAR) state of the art and implementation.

The latter uses a combination of machine learning techniques.

Chapter 6 includes the concepts around memory. It also describes the memory management
approach used in this work, which consists of implementing a mode] following the ideas from

cognitive science research for memory.

Chapter 7 includes the conclusions and future work.
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Chapter

Foundations

Robots require specific capabilities to be called Personal Service Robots (PSRs) and assist
humans in their daily lives. This work aims to make such a robot capable of performing

caregiving tasks in human environments. To achieve that, robots should be capable of gathering
the required knowledge to perform tasks in a human-like way. Current robotic platforms
use different techniques and are being used in various scenarios, such as nursing homes or
households. Therefore, it is of interest for this work to understand how currently available robots
represent and perform actions. For this to be possible, it is essential first to introduce a little
about the complexity behind building such systems; see Section 2. 1. Robotic platforms equipped
with the body to perform complex manipulation tasks [Abdo et al., 2016] in households are
presented in Figure 2.1. They also require their different components to communicate and
interact with each other; see Section 2.2. Some robots can leam; for that, they use machine
learning approaches introduced in Section 2.3.

As the robot’s control becomes more complex, robots require cognitive capabilities to perform
tasks autonomously, which is necessary especially for PSRs if we want to use them to perform
caregiving tasks: see Section 2.4. This is why the area of cognitive robotics emerged with the
idea of applying models for the makeup of biological brain machines [Christaller, 1999], natural
intelligence has only been seen in biological systems, in different living forms and degrees.
Therefore, many people have been asking how it might be possible to build an intelligent
agent that operates in a human-like way. Some approaches are presented in a literature review

about cognition in robotics. In addition, cognitive architectures using memory models and

cognitive robots as research areas are shown in Section 2.4.3.
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21 An introduction to Personal Service Robots

A robot has different applications in industry, education and, more recently, households. In
the case of this work, the focus is on robots able to manipulate objects in everyday human
environments, such as households. These robots are known as service robots and, depending
on their use in homes as helpers, collaborators and/or companions alongside other capabilities,
can be called more specifically Personal Service Robots (PSRs). Such robots require a body
(hardware) with certain features. Also, a formal definition of PSRs is given in Section 2.1.2.

241 Body design

The design of a robot’s body depends on the range of tasks it is expected to solve [Siciliano and
Khatib, 2007, p. 67-68]. This includes the robot’s mechanical and actuator systems, as well as
its geometry, building materials and sensors. An actuator or effector allows robot movement,
e.g., a motor inside a joint. As PSRs are required to solve complex tasks, they also need more
flexibility, usually more sensors and actuators, which generally increase their price. A robot’s
design involves engineering, technical, and application-specific considerations regarding task
requirements rather than simply a broad specification. The industry is making a noticeable effort
to balance flexibility and price, as shown in Appendix A.1. Even though most available robots
are still commonly bought by research institutions, the industry is also being directing their

production to other customers in recent years.

The robots must also acquire a world model by sensing and interpreting their surroundings.
There are various ways to classify sensors, depending on what they measure and how they
do it [Siciliano and Khatib, 2007, p. 90]. One class of sensors usually present in robots is
exteroceptive, which measures information about the external environment, e.g., distance to
an object, interaction forces, tissue density, etc. They are classified further into contact or
non-contact sensors. Proprioceptive sensors measure physical properties in a robot, such as
speed, acceleration and joint position. Another way of classification for sensors depends on
whether they are passive or active. An active sensor emits a signal to the environment and
measures the response. On the other hand, a passive sensor relies on a signal appearing from
the environment. Finally, sensing and estimating refer to the process of transforming a physical
sensed measurement into a computer representation for further processing by the perception
system. Perception is a higher-level process that allows sensor data requested by the task to be
interpreted and integrated to produce a world model and then facilitate planning.

21.2 Personal Service Robot definition

It is important to note that a Personal Service Robot (PSR) is expected to play two primary roles,
according to Chen et al. [2017]. The first is as tools, where they are expected to offer physical
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assistance, mainly for the disabled and elderly. Their second role is as partners, where they are
expected to interact with people naturally and provide services similar to human caregivers.

The International Organization for Standardization (ISO) is responsible for defining functional-
ity metrics. According to the ISO/TC 299 Robotic Technical Committee [Elfving et al., 2012],
one classification for PSRs, and interesting for this work, is robots for domestic tasks, which

includes companions, assistants, humanoid robots, vacuuming, lawn-mowing and floor, pool

and window cleaning.
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Figure 2.1: Personal service robots’ latest version at present and first release year.

As P5Rs are planned to be present in humans’ everyday life, safety for such robots was first
defined by ISO 10218-1:2011. This norm specifies that a robot shall be designed to ensure
either a maximum dynamic power of 80W or a maximum static force of 150N, which limits the
robot’s motor force. This limitation controls the robot’s speed, torque and motion, so if there is
an impact, it will not hurt or injure a person. For a robot to enter these ranges, its design has to
take into account specific factors; for example, if the robot has a 2kg arm and carries an object of
0.5kg while moving at 1mv/s, it must decelerate at 60m/s? to limit its force below 150N in case of
emergency. In other words, knowing that the maximum force of the robot can be Finr = 150N,
the total mass is the robot’s plus the object 2kg + 0.5kg = 2.5kg and the force can be calculated
with Newton’s Law F' = ma, the deceleration is a = Fipaz /m = 150/2.5 = 60m/s>,

Requirements for PSRs include more than just features regarding their physical design. Their
control systems should allow them to solve everyday chores. Some examples of the chores a
PSR should solve are present in the quantitative database stored by the Research Institute of
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Human Engineering for Quality Life in Japan (HQL). It includes a set of 44 task types that
the robot should be able to perform to provide support on a daily life basis [Iwata and Sugano,
2009]. These tasks include chores such as carrying a bucket filled with water from the floorto a
sink, cooking, wiping a window, folding clothes and handling something, etc. Another study in
the Program of All-Inclusive Care for the Elderly (PACE) identified 36 high-priority tasks, of
which 14 are related to everyday activities that a PSR should be able to perform [Johnson et al.,
2017]. For this work, only tasks related to manipulation are taken into account, such as getting a
drink, reaching things on high shelves or the floor, finding and bringing items and preparing
meals. The robots presented in this chapter should be able to manipulate objects and perform
at least one of such tasks; see Figure 2.1. The coverage of this work includes specific actions
presented in Section 5.1.3, in which cooking-related tasks mentioned in the database would be
solved.

Some interesting ideas are also taken from Kerzel et al. [2017]. Their work mentions that
PSRs should have anthropomorphic bodies, mainly to operate in human environments. For this
reason, only robots with anthropomorphic features presented as Degrees of Freedom (DoF ),
e.g.,arms, neck, hip, etc., are considered. Another restriction for this review is regarding the
robot’s mobility, which excludes robots without a mobile base. Finally, only robots released after
2000 are considered to narrow the search. Robots fulfilling these requirements are presented
in Figure 2.1, including colored circles; a blue one marks the robots from industry and a red
one the ones from academia. There are also other colored circles. The green circle marks the
PSRs that participated in robotic competitions, such as the ones presented in Appendix A. PSRs
tested already in real houses deserve recognition as they crossed the bridge between end-users
and prototypes; for that, the pink circle is used to mark them. More information on the robots
shown in Figure 2.1 is listed in Appendix Table A.1 and Table A.2. In the case of both tables,
also command and processing types and middleware are included. The information presented
in Figure 2.1 was obtained from an extensive literature survey. Both research institutions and
industry have developed robots. Table A.1 and Table A.2 present manipulator features and
communication interfaces preferred by robot builders. While industry is moving to use fingers
more than grippers as end-effectors of the manipulator, academia seems more looking for
functionality to test their algorithms. In the case of this work, the framework proposed is tested
in different robotic platforms taken from Table A.1. Those robotic platforms have different
configurations, such as one arm, two arms and an end-effector gripper and fingers. These
selected platforms use the Robot Operating System (ROS) middleware as a communication
interface and development platform; see Section 2.2.

Figure 2.1 marks robots participating in robotic competitions. According to my observations,
close to the creation of the RoboCup@Home category, there was an increasing number of

releases of PSRs. The competition allows the interaction of different robotic developers and,
in some cases, collaboration. Even more, if two robots from different teams collaborate while
solving the task of one specific test, both teams receive extra points [Matamoros et al., 2019].
However, to my knowledge, no literature conclusively proves that robotic competitions accelerate
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the development of such robots. In general, robotic competitions can facilitate testing PSRs
while performing specific tasks and potentially trigger collaboration between roboticists.

2.2 Robotic communication software

The robot’s control systems inside an architecture must communicate with each other, e.g..for
data and command exchange. The system able to provide such communication is often
called middleware. Some examples are the Common Object Request Broker Architecture
(CORBA) [Zhen et al., 2009], Real-Time Innovations (RTI) [Castellote and Bolton, 2002],
Data Distribution Service (DDS) [Bellavista et al., 2013], Network Data Distribution Service
(NDDS) [Pardo-Castellote and Schneider, 1994], Agent Development Environment (ADE) [Mehra
and Nissen, 1998], Reconfigurable Context-Sensitive Middleware (RCSM) [ Yau et al., 2002], yet
another robot platform (Yarp) [Metta et al., 2006], Robot Operating System (ROS), to mention

S0me.

The Robot Operating System (ROS) was developed by Willow Garage [Quigley et al., 2009]
and is used more frequently in robotics, as shown in Appendix Table A.1 and Table A.2 and
this work. Contrary to its name, it is a middleware providing a structured communications layer
above a host Operating System (05). It was designed with the idea of fulfilling service robots’
development needs. This middleware supports a large number of software integrations, not just
for service robots but for any kind, which increased its usage in academia and industry. ROS is
language-neutral and multi-lingual as it supports and can mix different programming languages
such as C++, Python, Octave, LISP and others in various states of completion. ROS already
integrates some open-source projects such as drivers, navigation systems, simulators, vision and
planning algorithms, among many others. Furthermore, ROS’ organization into packages allows
researchers to collaborate by sharing their implementations as packages. These are likely to be a
few reasons why ROS is used in many robotic platforms today.

2.3 Robotic learning

There are many ways in which machines, such as robots, can learn. These methods are presented
in Figure 2.2. A suitable leaming method produces hypotheses that predict the classifications of
unseen examples [Russell and Norvig, 2003, p. 660]. A prediction is good if it turns out to be
accurate; to verify the quality of a hypothesis, the predictions are checked against the correct
classification. A set of examples known as the test set is required for this verification process.
Next, all the collected samples are divided into two disunite sets, the training and test set. Finally,
the learning method is applied to the training ser. When training is finished, hypothesis & is
created. Then, we can verify if hypothesis h is correct by measuring the percentage of examples
in the test set that is correctly classified by h. The result of this procedure is a trained model that

includes a set of data that can be processed to give an average estimated quality as a function of
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the size of the training set. This function can be plotted on a graph, showing the learning curve
for the method on a specific domain that depends on the examples.
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Figure 2.2: Machine leamning process.

Machine learning uses computational methods to acquire new knowledge, skills and ways to
organize existing knowledge [Tyugu and Tyugu, 2007, p. 80]. The types of these methods
are shown in Figure 2.3. Some of them were created in the early days of Al research. These
methods were simple systems of parametric learning used for building adaptive systems. The
role of predefined knowledge and symbolic learning was understood later. New approaches to

massively parallel learning appeared when high-performance computing started and massively
parallel hardware was developed.

Figure 2.3: Hierarchy of learning methods.

A parametric learning algorithm’s behavior can be defined by a simple transition graph with
linear branches for external states, known as an automaton [Tyugu and Tyugu, 2007, p. 80]. Its
output depends on the branch of the graph’s current state.

Symbolic leamning of concepts is performed by building hypotheses and validating them based
on the available knowledge [Tyugu and Tyugu, 2007, p. 84]. Essentially, it is a search in a
hypothesis space that includes all of them.

Parallel learning algorithms are suitable for execution on parallel hardware [Tyugu and Tyugu,
2007, p. 98]. The efficiency of a particular parallel algorithm depends on the particular domain
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where it will be applied. This type of algorithm aims to develop a hypothesis h that is good
in some sense. This means that the hypothesis classifies unknown data with close to 100 %
accuracy or has an error score close to 0. An acceptable accuracy or error depends on the

domain; e.g., a tumor-classifier model might not be accurate enough.

Selecting which method to apply depends on the nature of the problem and the feedback
available from the method [Russell and Norvig, 2003, p. 650]. The field of machine learning
usually distinguishes three cases: supervised, unsupervised and reinforcement learning.

Supervised learning involves a function that learns from examples of inputs and outputs. For
example, the machine gets a set of images containing people using a mixer and has to build a
function to detect the action mixing by the distance between the mixer and the container. The
teacher provides the correct output values of the examples. In this case, the environment is fully
observable to the machine; this means that it can observe the effects of its actions and can use

supervised learning to predict such effects.
On the other hand, if the environment is only partially observable, the problem is easier as the

machine might not see the effects of its actions immediately. Then, unsupervised learning can
be applied in this case. It involves learning patterns from inputs when no specific output values
are supplied. For example, the machine can classify different actions from images depending on

the tools used in each of them.

Reinforcement learning is the most general of the three categories. Instead of getting the output
values of the input, the machine must learn from reinforcement. For example, if a robot tries to
serve a drink without spilling the liquid elsewhere, there is desirable and undesirable behavior.
The desirable behavior is to get all the liquid inside the second container, which will be rewarded
if achieved. The undesirable behavior is to spill the liquid elsewhere, giving back a punishment

or no reward.

In this work, four algorithms of machine learning are used. These algorithms are presented in
more detail next.

2.31 Clustering

An unsupervised leamming method is clustering [Murphy, 2012, Ch. 25]. Its goal is to discover
groups of similar examples within some input data; see Figure 2.4. There are some approaches
to clustering algorithms. One of them is similarity-based clustering. In this one, the input to
the algorithm is an NN dissimilarity matrix or distance matrix I). A dissimilarity matrix D
measures the distance between objects 1 and j. This approach allows the inclusion of domain-
specific similarity or kernel functions easily. These functions transform the data into a specific

form.

Another approach is feature-based clustering. The input is an N D feature matrix or design
matrix X. Its advantage is that it applies to noisy data.
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Figure 2.4: General clustering result example.

Another approach used in this thesis work is hierarchical clustering, where the nested tree of
partitions is created. This approach is deterministic and does not require the specification of K
(number of clusters). In particular, this thesis work uses an agglomerative hierarchical clustering
approach. It works in a "bottom-up” manner, as shown in Figure 2.5. This means that each
object is initially considered as a single-element cluster (leaf). Then, at each step, two clusters
that are the most similar are combined into a new, more significant cluster (nodes). This process

iterates over until all points are a member of just one single big cluster (root).

Figure 2.5: Agglomerative hierarchical clustering example.

2.3.2 Decision tree

Decision trees are one of the least complicated yet most successful forms of supervised learning
algorithms [Russell and Norvig, 2003, p. 653]. A decision tree returns a decision, which is the
expected output value, after receiving as input an object or circumstance characterized by a
collection of characteristics. The input and output can be discrete or continuous. A decision tree
has two functions: classification and regression. When the output is a discrete value, the tree’s
function is called classification. On the other hand, leaming a continuous function is called

regression.

A decision tree has nodes marked by attributes, attribute values or decisions [Tyugu and Tyugu,
2007, p. 116]. An attribute always marks its root. Each path starting from the root passes
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through a node with an attribute value and then alternates through the nodes marked by attributes
and their values. Finally, it ends with a node labeled by a decision drawn from the values of
the attributes met along the path. One graphical representation of a decision tree is given in
Figure 2.6.

Figure 2.6: Decision tree graphic representation.

Decision trees were developed in the sixties [Russell and Norvig, 2003, p. 674]. The Elementary
Perceiver And Memorizer (EPAM) was one of the earliest systems. It was intended as a cognitive

simulation model of human concept learning.

The Iterative Dichotomiser 3 (ID3), developed in 1986 by Ross Quinlan, added the idea of
using information content to provide a heuristic function [Friedman et al., 2001]. Information
content was based on information theory developed by Claude Shannon to aid in studying
communication. The algorithm creates a tree with multiple branches and finds for each node, the
categorical feature that will yield the most significant information gain for the target categories.
The algorithm is based on the observation that a path from the root to a decision is, on average,
the shortest if the most discriminating attribute is tested at each step [Tyugu and Tyugu, 2007, p.
117]. The most discriminating attribute can be defined in precise terms as the attribute for which
fixing its value changes the entropy of possible decisions at most. The entropy H is calculated
to measure the amount of uncertainty in the data S by

H(S) =) —p(z)logy(p(x)) @n

reX

where X is a set of classes in 5 and p(x) is the percentage of elements in class x in the set 5.
H(S5) = 01if the set 5 is completely classified. The entropy is calculated for each attribute. The
smallest H(S) value is used to split the set S on the iteration.

Then, the information gain I G(A) is calculated to measure the difference before and after the
set S is divided on an attribute A, defined by

IG(S,A) = H(S) - _ p(t)H(t) 2.2)
teT
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where T is the subset created by splitting S by an attribute A, p(t) is the probability of the
number of elements in £ to the ones in S and H (t) is the entropy of a subset t.

Later, the C4.5 classifier was introduced by Quinlan [Quinlan, 1993]. C4.5 is the successor
to ID3. It removed the restriction that features must be categorical by dynamically defining
a discrete attribute that partitions the continuous value into a discrete set of intervals. C4.5
converts the trained trees into sets of if-then rules. Then, the accuracy of each rule is evaluated
to determine the order in which they should be applied. The set S = {54, 59, ...} is the training
data of already classified samples. Each sample s; corresponds to a p-dimensional vector
(14,724, ..., Tp;i), Where the ; represents attribute values or features of the sample and the
class in which s; falls. C4.5 selects the data attribute for each tree node that divides its set of
samples into subsets that are enriched in either one specific class or another. Then, the splitting
criterion is the normalized information gain (/G described in Equation 2.2). The attribute used
to determine the decision is the one with the largest normalized information gain.

The Classification and Regression Trees (CART) is a method introduced by Breiman et al.
[1984]. This tree is very similar to C4.5. It is distinguished because it allows numerical target
variables (regression) but does not calculate rule sets. Instead, CART builds binary trees by
selecting the feature and threshold that yields the most information gain at each node.

Further reading about decision trees and their application in this work can be found in Sec-
tion 5.2.2.

2.3.3 Reinforcement Learning

As mentioned before, reinforcement learning is based on a machine that receives a reward or
punishment depending on its behavior [Russell and Norvig, 2003, p. 763]. Animal psychologists
have carefully studied reinforcement for over 60 years. In machines, the idea is that the machine
does not know which action to take without some feedback about if that action is good or bad.
The machine must know that something is good when receiving positive feedback. This kind
of feedback is called a reward or reinforcement. The machine should be able to recognize this
reward as such and not as a part of just another sensory input.

Three algorithms can be considered part of this learning type [Russell and Norvig, 2003, p.
164]. A utility-based approach is where the machine must have a model of the environment to
make decisions, as it must know the states to which its actions will lead. With this approach,
the machine learns a utility function on states and uses it to select actions that maximize the
expected outcome. The (-learning approach allows a machine to learn an action-value function,
or the predicted utility of performing a certain action in a given condition is provided by the
Q-function. It can compare the values of its available choices without needing to know their
outcomes; because of this, it does not require a model of the environment. This also has a
downside, as the machine needs to know where its actions lead; it cannot look ahead. In a reflex
approach, the machine learns a policy that maps directly from the states to actions. Policies

allow the machine to act.

24



2.3. Robotic learning

Reinforcement learning can be separated into two types of leamning. The first one is passive
reinforcement learning, for which the task is to learn the utility of states or state-action pairs.

The second is active reinforcement learning, where the machine has also to learn what to do.

Passive reinforcement learning

In passive learning, the machine’s policy  is fixed in its state s so it always executes the action
m(s) [Russell and Norvig, 2003, p. 765]. The goal is to learn how good the policy is, which
means to learn the expected utility function U™ (s) associated with each state 5. The utility is
defined as the expected sum of rewards obtained if the policy 7 is followed as

U™(s) = E[>_7*R(se)|m, 50 = 3] 2.3)
t=0

where - is a discount factor or interest rate, which describes the agent’s preference for current
rewards over future ones. For example, when ~ is near 0, the rewards in the future seem
insignificant. Otherwise, when -y is near 1, discounted rewards are equivalent to additive rewards.
Discounting is used as it appears to be present in the animal and human decision-making process
[Russell and Norvig, 2003, p. 617]. Finally, F(s;) is a reward function related to the expected
agent’s reward in its current state. s; is the agent’s state after executing the policy (7) for t steps.

E is the probabilities sum of a current state s’ given an executed action and is calculated by

E= Z P(s'|s, m(s)) (2.4)

Active reinforcement learning

A machine using active reinforcement leaming must decide what actions to take [Russell and
Norvig, 2003, p. 771]. First, the machine will need to learn a complete model with outcome
probabilities for all actions, rather than just the model for the fixed policy. It also needs to
consider that it has a choice of actions. Then, the utilities it needs to learn are those defined by
the optimal policy. They obey the Bellman equations as follows

U(s) = R(s) + ".-‘maxZT[s?a, sHU(s") (2.5)

where H(s) is the reward function on state s, then an addition is made of the -y is a discount factor
times the maximum possible resulting state s’. This is obtained by calculating the transition T’
from a state s to a resulting state s’ when applying an action a, all multiplied by the utility of
that resulting state [/ (s").
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To solve this equation, it is required to apply the Bellman update equation infinitely often to
reach an equilibrium described by

Uiti(s) + R(s) + ",rmaxz T(s,a,s"\Us(s" (2.6)

Then, the final utility values must be solutions to the Bellman equations and corresponding
optimal policy. This process is performed in the algorithm called Value-Iteration.

If there is no policy m available, the machine can use the Q-learning method. This way, the
machine can learn an action-value representation instead of learning utilities [Russell and Norvig,
2003, p. 775]. This approach has the benefit that the machine does not need a model for learning

or action selection. In this case, the utility values can be obtained by

Ufs) = mExQ[a,s} (2.7)

where ()(a, s) represents the value of acting (a) in the state s.

The Q-values can be calculated using the equation

Qa,s) = R(s) + '}fz T(s,a,s") max Q(a', 8" (2.8)

The updated model for Q-values calculates when an action a is executed in a state s that leads to
a state s', described by

Qla, s) + Q(a, s) + a(R(s) + '}-fn‘frthl:a’, §') — Qla, s)) (2.9)

where o is the learning rate.

This approach’s drawback is that it learns more slowly than the previous one.

2.3.44 Artificial Neural Networks

An Artificial Neural Network (ANN) provides another form of massively parallel learning and
comprises simple units called neurons capable of generalization [Bishop, 2006, Tyugu and
Tyugu, 2007, Tapeh and Naser, 2023]. Generalization refers to the network’s production of
reasonable outputs for the inputs not encountered during training (learning). ANNs can find a
good approximate solution to complex (large-scale) intractable problems.

They work well to solve pattern recognition problems and can be implemented in either the
hardware or software. They are commonly represented as a graph; see Figure 2.7. Each graph
node has an associated state x and threshold ¢. Each edge has an associated numeric value called
weight w. The network learns from the examples by building a mapping between inputs and
outputs for the problem. The goal of such a system is classification, which takes an input vector
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Figure 2.7: Neuron process representation.

x and assigns it to one of K discrete classes Cf, where k = 1, ..., K. Classifications or learmning
in different types of ANN usually are performed using backpropagation [LeCun et al., 1998].
By adjusting the network’s weights (how much a certain input contributes to the outcome) and
biases (which characteristics are chosen), backpropagation can identify the circumstances in
which mistakes are eliminated from networks designed to imitate human neurons [Orr and
Miiller, 2003, p. 10]. In this case, the states taken by output nodes are evaluated by each output
node. The evaluations are propagated back to other layers. The weights of edges that supported
the right decisions are increased, and the weights that kept wrong decisions are decreased. This
method applies to ANNs with a small number of layers, 2 or 3.

The objective is to keep adjusting the weights and biases until the intended and actual outputs
are identical. The artificial neuron then fires and transmits its resolution to the following neuron
in line. One neuron’s contribution to the answer is merely a portion of it. Up until the group of
neurons produces a final output, each neuron transmits information to the one behind it in the
chain. This is called the gradient-based learning method. The classes are taken to be disjoint, so
each input is assigned to only one class in the most common scenario. For that to happen, ANNs
include a cost and activation function, weight, neurons and layers. All of them are introduced

next.

Neuron

An artificial newron approximates the neuron found in the biological brain. They can be either
physical devices or mathematical constructions. The development of artificial neurons started
with the idea of reverse-engineering how the biological brain processes signals. Its connections
and components are based on biological analogies by using brain terms such as neurons and
axons as names. However, in practice, they are nothing more than a sophisticated linear
regression, which is a particular form of function approximation to model a given set of random

variables. 5till, these algorithms are effective against complex problems and quick for predicting.

The perceptron is the most straightforward representation of a neuron and can be seen as a
single-layer ANN. It is an iterative algorithm that tries to determine the best values for the

weight vector w by successive and reiterative approximations. The importance of this vector is
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that it can help predict the class of an example when it is multiplied by the matrix of features
x and added to a constant term, called the bias (b). The bias can increase the classification
accuracy as it does not depend on the input. The natural specialty of the perceptron is binary
classification. The output of the perceptron is obtained by

out; =y = Z[mkwk +b) (2.10)
k=1

where y;. is the predicted value, w is the weight, m is the number of inputs, k represents the

classes, and b is the bias.

The total error of the perceptron is obtained by

Error = E' = =) "yi(z] wi +b) (2.11)

where y; is the expected classification value.

In other types of ANNs, and as mentioned before, the bias b can be a scalar, variable, diagonal

matrix or an estimate of the inverse second derivate of the cost function.

Neurons in an ANN are a further evolution of the perceptron as they can take many weighted
values as inputs, sum them, and provide the summation as a result, just as a perceptron does.
However, they also offer a more sophisticated summation transformation, something that the

perceptron can not do. A graph model of this can be seen in Figure 2.7.

The neuron model was developed by observing nature. This way, scientists noticed that neurons
receive signals but do not always release a signal of their own; this depends on the amount
of signal [Haykin, 2010, p. 17]. When a neuron acquires enough stimuli, it fires an answer.
Similarly, artificial neurons give a result after receiving weighted values, sum them and use an
activation function to evaluate the result. This is the reason they are called a non-linear method.
For example, the activation function can release only zero values until the input reaches a certain
threshold.

Interconnected neurons make a network with each neuron’s inputs and outputs connected to

other neurons. In some cases, they are interconnected by layers.

Weight

The weight is a free parameter normally modified to lessen the difference between the desired
and actual response of the network generated by the input signal [Bishop, 2006, p. 2]. During
training, the weight is repeatedly multiplied by the input examples in the network set. This stops
when the network reaches a state where no further significant changes in the weights appear. To
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update the weight, it takes a random misclassified input x; and output y; values and adds it to
the total value by

w' = w4+ (T * Y (2.12)

where 7 is the learning rate, in the case of the perceptron, which value goes from 0 to 1. The
form of the leamning rate 7 needs to be selected carefully. It can be a scalar constant, variable,
diagonal matrix or an estimate of the inverse second derivate of the cost function; this depends
on the method selected.

Activation function

The activation function is a transformation applied after the weight to each value of the input
vector = and then adding each result to obtain an output. The transfer or activation function
defines the output of each neuron in terms of the sum of weights w and inputs  product over all
incoming edges of the node k defined by

i = f(_ Whm * Tm — tm) (2.13)

where w,,,;. is the weight for the edges, z,, is the current state from the previous layer and £,,, is
the threshold of the node m. Other common activation functions are sigmoid and hyperbolic
tangent.

It can be of type sigmoid, hyperbolic tangent (tanh), Rectified Linear Unit (ReLU), etc. ANNs
use the sigmoid or hyperbolic tan functions often.

The sigmoid function has an s-shape [Orr and Miiller, 2003, p. 14]. It is described as a strictly
rising function with a smooth transition between linear and non-linear behaviour. The logistic

function described by is an example of a sigmoid function is presented by

flz)=——— (2.14)

which is an increasing function that asymptotes at some finite value as *oc is approached.

The hyperbolic tangent function also has an s shape and is defined by

f(z) = tanh(z) (2.15)
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To generate an output, the activation function computes the neuron’s induced local field. For
instance, the activation function can yield zero values unless the input achieves a specific
threshold or enhances value by rescaling it closer to the threshold.

The difference between these two activation functions can be seen in Figure 2.8, where the values
the functions can take differ. For the sigmoid function the values go between 0 < f(z) < [ and
for the hyperbolic, they go between —I < f(z) < L.
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Figure 2.8: Activation functions graphs.

Cost functions

The cost function or loss function, is the predicted error. It measures the loss incurred in
taking any available decision or action [Bishop, 2006, p. 41]. In other words, it measures the
discrepancy between the predicted value of y;. and the true value of y;. The goal of the training
is to minimize the average loss of the model. Two error types can arise [Bishop, 2006, p. 180].
First, a false positive (aka false alarm) occurs when we estimate a positive value y = 1, but
the truth is negative y = 0. On the other hand, a false negative (aka missed detection) happens
when we estimate a negative value y = 0, but the truth is positive y = 1.

The Mean Squared Error is the most widely used cost function [Orr and Miiller, 2003, p. 10]. It
is used to choose the parameter values so that the hypothesis h(x) is close to the true value y;

for the training examples, where m represents the number of training examples.

m

MSE = % > e —m)? = % > (h(w:) — yk)? (2.16)
i=1 i=1

Layer

An Artificial Neural Network (ANN) is a hierarchical model including newrons and layers to
approximate parts of the biological brain. ANN perform operations, also known as layers, on
the input data depending on connections, weights and parameters, as well as neurons [Vidal
etal., 2017].

A layered neural network organizes its neurons in the form of layers [Haykin, 2010, p. 17]. In
its most basic form, a layered network contains an input layer of nodes that is connected directly
onto an output layer of neurons (computation nodes), but not vice versa; see Figure 2.9a. In the
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2.3. Robotic learning

case of multilayer networks, the intermediate layers are called hidden layers; see Figure 2.9c.
The focus of attention of Figure 2.9 is restricted to signal flow from neuron to neuron. It uses a
reduced form of representation by omitting the details of the signal flow inside the individual
neurons. The input nodes provide the input signals; each neuron is represented by a single node
and the links interconnecting the nodes do not show weight. This representation only provides
directions for signal flow. The input layer is not counted because there is no processing inside it.

¥

Outout kaver
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{a) Single layer {b) Two layers (c) Three layers

Figure 2.9: Different number of layers with two inputs X1 and X2 and one output Y.

ANNs can be classified based on their general structure into Forward-pass Neural Networks and
Layered Newral Networks [Tyugu and Tyugu, 2007, p. 101]. The first type, Forward-pass Neural
Networks, can be represented as acyclic graphs. Their nodes can be classified as input, output
and internal nodes. It is important to note that input nodes do not have incoming edges, output
nodes do not have outgoing edges and internal nodes possess both kinds of incident edges; see
Figure 2.7. The second type, Layered Neural Networks can be represented as layers, where
nodes can be divided into n layers so that each layer contains only nodes of one type. Each
node in such a graph belongs exactly to one layer, where they are strongly connected. Both can
be combined to create a Forward-pass Layered Neural Network, in which the states of output
nodes can be interpreted as decisions based on the states of the input nodes.

There are different types of layered networks. For example, the networks presented in Figure 2.9
are of the Feedforward type. On the other hand, the first type of layered neural network is a
Single-Layer Feedforward Network [Haykin, 2010, p. 21]. In this case, an input layer of source

nodes projects directly onto an output layer of neurons.

The second type is a Multilayer Feedforward Network [Haykin, 2010, p. 22]. In this case, the
hidden layers appear. They are computation nodes corresponding to hidden neurons or hidden
units, which are called that way because they are not seen directly from either the input or output
of the network. Their function is to intervene between the input and output. If one or more
hidden layers are added, the network can extract more higher-order statistics from its input.

The third type is the Recurrent Network [Haykin, 2010, p. 23]. A Recurrent Neural Network
(RNN) is not only of type feedforward as the previous ones. One example is a Recurrent Neural
Network (RNN) with a single layer of neurons from which each neuron gives its output signal
back to all the other neurons’ inputs; see Figure 2.10a. In this case, there are no self-feedback
loops in the network. This is a circumstance in which a neuron’s output gets recycled back
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into its input. Another model of a RNN uses hidden neurons; see Figure 2.10b. In this case,
the feedback connections originate from the hidden and output neurons. The feedback loops
involve using particular branches composed of unit-time delay elements z — 1, which results in

a non-linear dynamic behavior.
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Figure 2.10: Recurrent Neural Network with one feedforward.

They can maintain a hidden state which keeps track of previous elements in the sequence
described by

= f(hidden; i, x:) (2.17)
The steps followed by RNNs are presented in Figure 2.11. In the first step, a hidden state h; is
usually a matrix of zeros so that it can be fed into the RNN together with the first input value
of z;. The hidden state and input data will be multiplied then with weight matrices Win. The

result of these multiplications will then be passed through an activation function. Then the result
is fed back into the RNN with the following input value of x;. This process continues until the

model stops producing outputs.

)= = | flxg > fex) > o) > fix)

b 6660

Figure 2.11: Recurrent Neural Network process.

RNNs can use an approach known as Long Short Term Memory (LSTM) units to modify the
architecture and then work with longer sequences of inputs. For that to happen, the LSTM takes
in 3 different pieces of information, including the current input data, hidden states and Long
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2.3. Robotic learning

Term Memory (LTM ), which includes more information. It requires input and forget gates to
control whether information is saved or deleted at each time step before it is sent to memory.
The process is presented in Figure 2.12.

The input gate i manages the information to be passed to the LTM by using two layers, i; and
ig. The layer has a sigmoid function with a weight W;; and bias b;; described by

iy = (Wi - (he_1, @) + b)) (2.18)

The second layer takes the Short Term Memory (STM) and current input z; and passes it through
an activation function to regulate the network. The STM is also known as the hidden state, which
will be used from now on. This function is normally hyperbolic: in this case, it is described by

iy = tanh(Wiz - (he_1, ¢) + bi1) (2.19)

The outputs from these layers are then multiplied by #;npw: = i1 * i2, and the result represents
the information inside the LTM and output. Later, to obtain the output, the RNN takes the
current input z;, the previously hidden state h; ; and LTM to produce the new hidden state
(5TM). For that to happen, a sigmoid function with different weights will pass the previous
hidden state and current input again.

O1 = o(Wousput1 - (hi—1, T¢) + boutpue1) (2.20)

Then, the new LTM passes through an activation function creating (5. The result of both of
them is multiplied to obtain the hidden state and output values h;, Oy = Oy = Oa.
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Figure 2.12: Recurrent Neural Network with LSTM process.
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Further reading about RNNs and their application in this work can be found in Chapter 5,
specifically in Section 5.1.3.

2., Robot’s action execution control

Robotic action execution requires a sequence of collision-free movements from a start to a goal
position across mobile or static obstacles, known as a plan and still an open problem [Siciliano
and Khatib, 2007, p. 109]. A plan can also be seen as a set of actions with conditions or
constraints to pass from one state to another by collecting facts from a KB. In humans, planning
is related to thinking of a combination of actions required to achieve a goal or to obtain the
desired results [Das et al., 1996]. In this work, a plan is seen as in the case of humans. Various
actions must be performed in a sequence to complete a task successfully. This sequence of

actions constitutes a plan.

Robots are required to build and execute plans to accomplish a task. They can achieve that
by precisely controlling their body parts, which is accomplished by software commanding the
robot’s hardware. As expected, robot software systems tend to be complex, normally called
architectures, structure design, or frameworks. This complexity is due to the need to control
various sensors and actuators (hardware) in real-time in the face of significant uncertainty and
noise from the environment [Siciliano and Khatib, 2007, p. 187-188]. Robots must achieve
tasks while monitoring for and reacting to unexpected situations. To achieve it, robots require
structured software for execution, monitoring and control, an architecture. Different architectures
exist, each has advantages and disadvantages. As may be expected, they have changed over the
years. For this reason, a bit of history is required to understand how their evolution happened
and which features are important while choosing which to use or build.

2.1 Robotic architectures

First, it is helpful to know that the first robotic architecture and programming began in the late
1960s with the Shakey robot at Stanford University [Siciliano and Khatib, 2007, p. 89]. Shakey’s
architecture had three functional elements: sensing, planning, and executing. This approach
was called the Sense-Plan-Act (SPA) paradigm. As the plan was built after sensing information
was available, the reaction of the robot was slower than it was. In the early 1980s, the reactive
planning architecture [Nilsson, 1984] emerged, in which plans were generated quickly and
relied more directly on sensed information instead of internal models as Shakey did. The most
influential one was Brooks’ subsumption architecture [Brooks, 1987], the first one built from
layers of interacting finite states. Since then, many other architectures have been created based
on the same idea of using layers, usually two or three, to separate processes. This makes the
architectures modular and compact, where functionalities are structured and separated. Layers
can be represented as a vertical or horizontal stack of sheets with different components; see

Figure 2.13. As this model is generalized, elements between layers can repeat. Normally, the
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bottom layer receives the information from the environment through the robot’s sensors. The

high layer usually performs high-level processing.
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Figure 2.13: Representation of layers in a vertical fashion with different components each layer can
include.

2.4.2 Cognitive architectures

In recent years, the idea appeared that to be able to solve more complex tasks, it is necessary
to provide a robot with cognitive capabilities. Some research is going in this direction by
testing neuroscience models of human cognition in robots; this type of robot is known as a
cognitive robot. A cognitive robot does not just increase the capabilities of robots but also helps

to understand how such processes work in the human brain.

There is no unified theory or definition of cognition, and it still needs to be better understood
how it works. There are some definitions related to human cognition. One example is the work
by Postman [1951], which talks about a self-sufficient process providing adaptable behavior
in a changing environment. On the other hand, Franklin and Graesser [1996] mention that
cognition includes Short Term Memory (STM) and Long Term Memory (LTM ) in the processes
of categorizing and building concepts, reasoning, planning, solving problems, learning, and
creativity. In the work by Pecher and Zwaan [2003], cognition is considered to be grounded
inside the human body, which interacts with the environment to represent and understand the

world. Perception and action are considered central in that interaction with the environment.

One definition related to robots is presented in the work by Vernon [2014]. His work defines
cognition as a process by which an autonomous system, biological or artificial, is capable of
perceiving its environment, learning from its own experience, anticipating the consequences
of its actions, acting to achieve goals and adapting to changing circumstances. So, for a robot
to be called cognitive, it should be able to adapt, understand, anticipate and act in a changing

environment. This definition is the one used in this work.

According to Barsalou et al. [2007], there is a dependency between all the basic processes in
the brain, including perception, action, reward and learning. Human cognition emerges from

deep dependencies between basic systems and evolves socially. Similarly, Ramirez Amaro
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[2014] mentions that when learning a new task, the main source of information for agents is
the observation from different sources. That is why it depends on the application and social
interactions to develop. However, when humans are in isolation, they can adapt to new situations
with the re-use of learned models to infer how to perform an unknown action. This is only
possible by understanding what was previously observed by agents while performing a certain
action and then extracting semantic information from such observations. Agents, humans or
robots, are goal-directed and according to such goals, they manage priorities based also on
motivation and opportunity. Then they can perceive, categorize and make inferences from the
obtained information, but they also perform memory retrieval. In this sense, they do not learn
how to perform an individual task, but how to coordinate tasks. A cognitive architecture is the
control system used normally by a cognitive robot to coordinate such tasks.

Since the 1950s, cognitive architectures have been enormously developed, even if not often tested
in robots. These approaches model the human mind and build systems capable of reasoning,
adapting to new situations and reflecting on their actions [Kotseruba and Tsotsos, 2018]. The
work presented by Sun [2004] defines a cognitive architecture as a framework that models
cognition through a structure that includes modules division and their relationships. Cognitive
architectures are designed for a specific purpose. In this work, the extension of the cognitive
architecture has the mission to develop an adaptive Personal Service Robot (PSE).
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Figure 2.14: Cognitive architectures taxonomy based on representation and processing. Reprinted from
"40 years of cognitive architectures: core cognitive abilities and practical applications” by Kotseruba,
luliia and Tsotsos, John K. 2018, Artificial Intelligence Review, p. 9. Copyright 2018 by Springer.

The work of Kotseruba and Tsotsos [2018] presents 84 architectures classified as symbolic,
hybrid and emergent depending on their way of representing knowledge and processing methods:
see Figure 2.14. Symbolic approaches represent concepts that can be modified using predefined
instructions, in many cases if-then rules. That makes them fast to implement. One disadvantage
is for these approaches is that the creation of an initial KB requires a long time. On the other
hand, many of the emergent approaches are biologically inspired. That makes them ideal for
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understanding biological systems. One disadvantage is that they require to be trained to produce
useful behavior. Hybrid architectures integrate world knowledge, such as concepts or sensing
information, with reactive actions, normally applied to safety reactions like "move when you
are too close to an obstacle while navigating” [Arkin and MacKenzie, 1994]. They emerged
as a need to include symbolic knowledge, such as representations of the environment, in the
construction of robot behaviors, which means they use prior knowledge for plan formulation.
The review presented by Kotseruba and Tsotsos [2018] noted that there was a particular interest
in symbolic architectures until the early 1990s. However, after the 2000s most developments
went in the direction of hybnid architectures. In the same way, this work uses a hybrid approach
for building its framework.

On the robotics side, one of the first steps towards integrating more reactivity and deliberation
was the reactive action packages (RAPs) created by Firby in his thesis [Firby, 1990], which
included three layers. Independently of Firby’s, Bonasso et al. [1996] developed another
three-layered hybrid architecture that included robot behaviors in the bottom layer. This layer
guaranteed consistent semantics between the agent’s internal states and its environment. It was
called 3T (three-tiered) and was capable of three control processes: planning, sequencing and

real-time control. This architecture has been used on many generations of robots.

Another example of a hybrid approach is the Distributed Integrated Affect Reflection and
Cognition (DIARC), which has been under development for more than 15 years [Scheutz et al.,
2019]. Compared to other cognitive architectures like State, Operator And Result (SOAR) [Laird
and Mohan, 2014] or ACT-R [Lebiere et al., 2013], DIARC is a distributed architecture based
on a component scheme that allows it to be instantiated in many ways. DIARC is similar to the
CogAff [Sloman, 2002] architecture. Both can be used for different cognitive systems, including
robots. DIARC has been tested in speaking robots during Human-Robot Interaction (HRI), but
only a little in manipulation tasks.

2.4.3 The use of memory and learning In cognitive architectures

This section presents a comparison of hybrid cognitive architectures based on their memory and
content, as well as their learning, perception and motor capabilities. Memory can be seen as
a cognitive process to encode, store, retrieve and mix information. It is essential for learning
[Tulving and Szpunar, 2009]. More details about memory are discussed in Chapter 6.

Global memaory

Long Term Memory
Short Term Declarative
Memory = Memory
Sensary Working || | Procedural ||| Episedic | |Semantic
memaory Memaory Mermory Memaory || Memory

Figure 2.15: Representation of memory types used in hybrid cognitive architectures.
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The types of memory considered are sensory, working, semantic, procedural, episodic and
global: see Figure 2.16. Kotseruba and Tsotsos [2018] presents the definitions of these types of
memories. Sensory or perceptual memory catches inputs from the sensors and pre-processes
them before sending them to the other memories. Working Memory {WM) stores information
about the current task temporarily; it is for this reason that it is considered a Short Term Memory
(STM). Procedural Memory (PM) stores implicit knowledge which is related to motor skills,
routine behavior, etc. and is part of the Long Term Memory (LTM). Episodic Memory (EM)
includes knowledge about experience and autobiography. It is considered to be part of the
Declarative Memory, which is part of the LTM. Semantic Memory (SM) stores concepts and
facts. It is also considered to be part of the Declarative Memory and LTM. Global memory does
not separate memories into short- and long-term, instead, it stores all the information together.
These memory types are represented in Figure 2.15 with relations and interconnections found in
the literature.

Different cognitive architectures use a combination of memories depending on their model of
cognition and application. Figure 2.16 shows which specific memory types are used in which
cognitive architecture. From them, 20 hybrid cognitive architectures use the same types of
memory as this work, e.g.,Working Memory (WM ), Semantic Memory (SM), Episodic Memory
(EM) and Procedural Memory (PM). They differ in the way they use their EM and WM as
shown in Table 2.1.

In the case of Working Memory (WM), some cognitive architectures use it as an activation
mechanism or filter to decide if knowledge should enter to the other memories, similarly to the
approach presented in this work, marked with an asterisk in Table 2.1. As WM has a limited
capacity, it can update fast and keep a flow of the current information. It connects to other
memory types to store information in the long-term and is capable of decision-making. The
second usage of WM in cognitive architectures is a processing system for the world state built
by the sensed input [Kotseruba and Tsotsos, 2018]. This allows the architectures to perform
actions depending on the state of the world in a limited time interval. Some other cognitive
architectures applied to robots use the WM for a spatiotemporal integration to interact with the
environment. This allows the robots to have a sense of space and form when interacting with
objects, which makes it possible to detect successive changes in a broader time interval. This
model is similar to the previous application. The difference is that this model allows robots to
reason about the effects of the actions they perform in the environment. Some psychology areas
believe that information is added to the WM via a condition-pair pattern matching process, such
as if-then rules. These conditions specify what to do in each state [Anderson, 2013].

In the case of Episodic Memory (EM), cognitive architectures do not use it as much as the
WM [Kotseruba and Tsotsos, 2018]: see Figure 2.16. The first type of usage for EM isasa
coordinator. This model uses this type of memory to extract or learn new semantic or procedural
knowledge, which saves and uses action experiences for future behavior, similar to this work.
Other architectures using EM take advantage of storing previous experiences to improve future

executions without sharing such knowledge with other memory types.
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Figure 2.16: Comparison between hybrid cognitive architectures related to their use of memory.

Most cognitive architectures use Procedural Memory (PM) to store long-term facts about how
to perform actions [Kotseruba and Tsotsos, 2018].

Semantic Memory (5M) also stores long-term facts, in this case about objects and relationships
between them [Kotseruba and Tsotsos, 2018]. Semantic knowledge is typically implemented
in a graphic representation inside an ontology, where nodes are concepts and edges are their
relationships. This is similar to the use given to the SM in the framework presented in this work.
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Table 2.1: Cognitive architectures using Working and Episodic Memory with its types.

Working M y Episodic M /
orking Yilemory Cognitive architecture pisodic Yemory

usage type usage type
ACT-R [Anderson, 1996]
CLARION [Sun, 2016] *Coordinator
MNovamente [Goertzel and Pennachin, 2007]
SOAR [Laird and Mohan, 2014]
CELTS [Faghihi et al., 2013]
DUAL [Kokinov et al., 1996]
NARS [Wang, 2006]

Sigma [Pynadath et al., 2014]
ARMAR-6 [Asfour et al., 2019]
MIDCA [Cox et al., 2016]

REM [Murdock and Goel, 2008]

. 1Cub Ruesch et al. [2008] )
Spatiotemporal Experience
ISAC [Kawamura et al., 2008]
Ymir [Alberts, 1995]

ASMO [Novianto and Williams, 2014]
CHARISMA [Conforth and Meng, 2011]
CogPrime [Goertzel, 2012]

Other GMU-BICA [Samsonovich et al., 2009]
LIDA [Ramamurthy and Baars, 2006]
Metacat [Marshall, 2002]
MLECOG [Starzyk and Graham, 2015]

*Activation

mechanism

World state

integration

Sensory Memory receives and pre-processes incoming sensory data. This type of memory has
been used to solve continuity and maintenance problems, such as identifying and retaining
objects. Only the Attention-Driven Cognitive Architecture (ARCADIA) uses this approach
[Bridewell and Bello, 2015]. This memory has been also used for perceptual binding and feature
extraction for visual data in the Learning Intelligent Distribution A gent (LIDA) architecture
[Ramamurthy and Baars, 2006]. It is not clear how other architectures use this type of memory.
In this work, the implementation of a Sensory Memory is not included as the work of pre-
processing perceptual information is part of the perception system; see Figure 3.2.

Some cognitive architectures using a Global Memory, that represents all knowledge in the same
structure, are RoboCog and its successor CORTEX [Romero-Garcés et al., 2015], Distributed
Practical Reasoning Architecture (DiPRA) [Pezzulo et al., 2007], Non-Axiomatic Reasoning
System (NARS) [Kili¢ and Wang, 2015] and Interaction-Oriented Cognitive Architecture (I0CA)
[Pineda et al., 2010].

40



2.4. Robot's action execution control

From the 19 cognitive architectures included in Table 2.1, only the fist four share similar usage
of memory types related to this work. However, they have yet to be tested in PSRs. The only
system using memory concepts tested in one service robot is SOAR [Puigbo et al., 2013]. In this
work, memory modules extend the cognitive architecture CRAM [Beetz et al., 2010b, 2023],
which is tested in various service robots. CRAM uses a plan-based control system in which a
plan executive uses a SM to obtain knowledge about motions. That knowledge is integrated into
designators, which store descriptions of entities such as objects, motion, grasps or poses. These
designators are parameterized using vague information and then refined when more is available.
CRAM also uses EM for improving its plan generation using experience. This work extends
the memory capabilities of CRAM. More reading in this extension is presented in Chapter 3
and Chapter 6.

In the case of learning, the classification presented by Kotseruba and Tsotsos [2018] is declar-
ative, perceptual, associative, non-associative and priming. Declarative learning refers to a
collection of facts and their relationships. Perceprual learning changes its output depending on
the sensory input, which means that it learns on-line depending on the changes in the environ-
ment. This can be seen as a reactive approach, as it modifies the behavior of the agent depending
on the sensed information. Associative learning makes decisions based on rewards and punish-
ments. Some computational models of associative learning are Reinforcement Learning (RL)
introduced in more detail previously in Section 2.3.3. Non-associative learning does not require
a connection between the input and response, Le. the response does not depend on the stimuli.
This type of learning is used in some social robots and Human-Robot Interaction (HRI) as it
avoids extreme responses. Priming learning is based on the idea that the input can affect the

identification or classification process. This type of learning is seen more in visual systems.

As can be seen in Figure 2.17, many cognitive architectures do not use learning. This has
implications in the adaptability of those architectures to a changing environment, as they require
an expert to introduce more features and behaviors. It is the interest of this work to look at
the ones using associative leamning, and more specifically Reinforcement Learning (RL). They
are presented in Table 2.2. One application of RL is a selector of actions or behaviors based
on their success or failures [Kotseruba and Tsotsos, 2018], which is similar to this work and
marked with an asterisk. Another application is as an associator for states and actions. In the
case of SOAR, it uses RL alongside chunking, which is a learning mechanism for acquiring
rules depending on experience and goals [Laird, 1988].

This work is interested in using cognitive features for robotic manipulation. It is important to
know that object manipulation involves arm control to reach and grasp an object. In this sense,
many architectures implement some form of arm control for reaching. However, gripping is
more challenging as it depends on many factors, which include the features of the end effector
(hand with fingers or gripper) and the properties of the object. Some architectures used for
object manipulation are ISAC [Kawamura et al., 2008] for soft objects, DIARC [Scheutz et al.,
2019] for objects with different grasping types and iCub [Ruesch et al., 2008] adapting to cans

of different sizes, boxes and a ruler.
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Figure 2.17: Comparison between hybrid cognitive architectures related to their learning processes.

All the cognitive architectures presented have impressive features. However, they cannot re-use
their capabilities or accumulate knowledge when applied to new tasks. Instead, every new task
or skill is demonstrated using a separate model, a specific set of parameters or KB [Kotseruba
and Tsotsos, 2018]. On the other hand, the framework proposed in this work adapts to new

situations without the need for new models of the actions. This feature gives an advantage over
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other cognitive architectures. Another advantage is the fact that it can adapt to different robotic
platforms when other ones either were built specifically for one robotic platform or none at all.

Table 2.2: Cognitive architectures using associative learning and their type.

Associative . .
. Cognitive architecture
learning type

4D/RCS [Albus, 2002]
ACT-R [Lebiere et al., 2013]
CHREST [Lloyd-Kelly et al., 2015]
CoJACK [Ritter et al., 2012]
FORR. [Gordon et al., 2011]
NARS [Wang, 2006]
RALPH [Ogasawara, 1991]
REM [Murdock and Goel, 2008]
1Cub [Ruesch et al., 2008]
ISAC [Kawamura et al., 2008]
Chunking SOAR. [Laird, 1988]
ASMO [Novianto and Williams, 2014]
CARACaS
CHARISMA [Conforth and Meng, 2011]
CLARION [Sun, 2016]
CoSy
CSE [Henderson et al., 2013]
DiPRA [Pezzulo et al., 2007]
DSO [Ng et al., 2012]
GMU-BICA [Samsonovich et al., 2009]
LIDA [Ramamurthy and Baars, 2006]
MLECOG [Starzyk and Graham, 2015]
PolyScheme
Sigma [Pynadath et al., 2014]
Ymir [Alberts, 1995]

*Selector

Associator

Other
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2.5 Receiving instructions in natural language and parsing them

To make the framework complete, the robot needs to be able to receive instructions in a natural
human way, such as language. It is for this reason that a natural language parser is required to
transform the input instructions into commands that the robot can understand; see Figure 2.20.
A parser usually works in a sequence. First, it scans the inputs and produces tokens or a
sequence of characters that match the input by following specified rules. Then it analyzes
their grammatical components and produces a result. One example is presented in Figure 2.18,
wherein, in this case, each word is classified. In this example, there is only one verb bring and

three nouns (me, glass and water).

Input/Command/Sentence: Bring me a glass of water

noun_phase verty_phase
proper_noun verh oA noun_phase
determiner nominal
NOUn Preposition  non
(You) bring me a glass  of wiater

Figure 2.18: Parser example of instruction with an implicit subject or proper noun.

For parsing, a lexicon or an inventory of specific knowledge is required for semantic distinctions
inside the grammatical classes. For example, nouns tend to denote objects, verbs actions and
adjectives object properties. Even if they are not perfect, these grammatical classes can have the
most commonly-shared semantic features of a class [Vinson and Vigliocco, 2002, Laird and
Mohan, 2014].

In this work, the Probabilistic Action Cores (PRAC) framework [Nyga and Beetz, 2018] is used
for parsing natural language instructions. It is capable of learning specific probabilistic KBs and
reasoning about action or hand-labeled instructions; see Figure 2.19.

PRAC can compute the plan instantiation with the best likelihood of achieving the desired action
from the provided instruction. Its main components are a specific plan library, KB and dictionary
that can be trained off-line. PRAC’s dictionary provides all possible word meanings that can
occur in natural language instruction. Those meanings are defined in the WordNet [Miller, 1995]
dictionary, which comprises more than 117,000 concepts. PRAC's Action Core Library contains

a collection of verbs (action cores), which represent how that action can be constructed on a
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Figure 2.19: PRAC key concepts and their role in inferring most probable instruction. Reprinted from
"Cloud-Based Probabilistic Knowledge Services for Instruction Interpretation” by Nyga, Daniel and
Beetz, Michael. 2018, Robotics Research 2, p. 653. Copyright 2018 by Springer.

conceptual level. This concept level can be in terms of conjunctions of logical assertions over
the predicates as action core(a, Action), theme(a, t), source(a, s),destination(a,
d), etc. as seen in Figure 2.20. Additionaly to using probabilistic reasoning methods, PRAC
uses the principles of analogical reasoning in semantic networks [Nyga et al., 2017]. This is
done by building the mentioned KB of semantically annotated instruction sheets found in the
Web.

Finally, PRAC’s plan library contains action-specific plans in a computable way from PRAC's
Action Core Library. However, it depends on a system having a plan library already, as the plans
themselves are considered black boxes in PRAC’s reasoning. The plans at the end have to be
defined by a human.

ActionCorela, Pouring)
PRAC substance{a, Water)

Glve me water —s- W_p{qw}—h Destination(a, Glass)

Sourcela, Battle)
CQuantity{a, Milliliter)

Figure 2.20: PRAC usage example.

As it can be seen in Figure 2.20, PRAC’s plan instantiation output for pouring water into glass
requires further work to be applied to the robot control. If the robot does not have a specification
of the movements required for pouring, it would not perform such action. In this case, sub-
actions required by the action pouring are added with the level of specification required by
the arm controller. In this case, sub-actions are one level above the muscle or joint movement
specification. The Working Memory (WM ) is responsible for further processing and refinement

to formulate an executable plan.
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2.6 Summary of this chapter

In this chapter, some requirements that are needed by a Personal Service Robot (PSR) are
presented. One of these requirements is complex manipulation capabilities, which is the focus
of this work. P5Rs need to be tested in scenarios before having them available in homes.

Even when robots already have these capabilities, they still lack more complex manipulation

skills required for caregiving tasks. By taking this into account, an extensive search of robotic
platforms in industry and academia was performed with the idea of looking at the manipulation
hardware available and their way of complex handling manipulation. This helped to select the
robotic platforms to test the proposed architecture extension.

Finding out that only a few PSRs, a total of 5, were already tested in real homes gives the
intuition that manipulation capabilities still require more work. PSRs manipulation requires
a solid hardware infrastructure and system features such as knowledge acquisition, planning
and driver control. For this reason this thesis work focuses on the high layer to provide and
store sufficient knowledge for PSRs to perform complex manipulation actions. The scope of
this work includes building a structure of actions in a plan for the robot to perform.



Chapter

Overview of the knowledge
processing memory modules

As mentioned, particular capabilities are still required to use Personal Service Robots (PSEs)
for caregiving. By keeping that in mind, previous Section 2.1.2 presents the physical capabilities
needed by PSEs to assist humans in their daily lives. Furthermore, Section 2.4 shows the
required control capabilities to solve such tasks.

The type of tasks involved in caregiving include serving food and cooking actions, which are
the main focus of this work. However, it is not only about how these actions can be executed but
also how their execution can be improved. One example of a serving action, presented before,
is pouring a drink (Figure 3.1). The considerations of the robot include the angle of the box
container and the container receiving, speed of angle change, box container deformation and

amount of liquid.

A

Figure 3.1: Robot pouring juice from a box container into a glass.
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As mentioned, the capabilities required by the robot to solve the task are included in a cognitive
architecture. Furthermore, five robots were selected to test the ideas behind this thesis work.
Now, it is time to introduce the extended cognitive architecture to enhance the capabilities of
these robots.

This work proposes extending the cognitive architecture CRAM [Beetz et al., 2023]; see
Section 3.2. This extension adds knowledge processing modules based on memory models of
the human brain and a HAR system to introduce the data from demonstrations. These cognitive
modules and their interconnections are illustrated next in Figure 3.2. The modules extending
CRAM are marked in color pink.

This work uses the ROS middleware shown previously in Section 2.2. The PSR uses all these

modules to act in either real or simulated environments.

COG

KnowRab 2.0

W,

m'|

[:MIMW
‘CRAM Plan axscutien

o
o Semantc KB
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Figure 3.2: Memory-based knowledge processing modules inside the cognitive architecture CRAM.
Modified from "The CRAM Cognitive Architecture for Robot Manipulation in Everyday Activities”
by Michael Beetz, Gayane Kazhoyan and David Vernon. 2021, IEEE Transactions on Cognitive and
Developmental Systems, p. 9. Copyright 2021 by IEEE.

CRAM uses CRAM-PL, a reactive programming language that provides a set of control
structures for modular programming. [t permits activities to be effectively executed by stating
what action must be carried out but not how. This action specification is written vaguely. When
individuals ask someone to perform something, they usually offer ambiguous directions. When
the ambiguity is resolved with more descriptions of the action, the chances of successfully
executing it increase. This means that actions are filled with specifications from the incoming
information of the world state.

Actions are divided into primitive movements in CRAM-PL, each including parameters whose
values define the motion’s exact nature. CRAM employs information to translate from desired
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Lisp Code 1 Move head designator.

| (an object {(type plate) (color white)) :: Object designator
? (a location {(on table) (in kitchen)) :: Location designator
3 (an action (to grasp) (an object (type plate))}) ;; Action designator

action results to the most likely motion parameter values. In the case of objects, such information
includes shape, weight, type and components, among others. The action can consist of the grasp
type, for example.

CRAM uses designators to describe entities such as objects, motions, grasps or poses. A
designator is an element of the plan that is a placeholder for yet-to-be-determined information.
The designator is resolved and the related information is determined at run time based on the
current context of the action. There are four designator types: action, object, location and
motion. Action designators focus on achieving some goal state, e.g., setting the table for a
meal or placing dirty dishes in the dishwasher. Locarion designators are concerned with poses
in general, e.g., a list of positions and orientations where a robot should stand to perform some
manipulation. On the other hand, motion designators are related to the physical movements
and the control of some actuators, e.g., moving the end-effector to a given pose or opening
the gripper. Finally, object designators are concerned with the properties of objects in the
robot’s environment, e.g., the pose of the object and its physical characteristics. They provide
an interface to the perception system since the pose of an object will typically be determined at
run time.

Designators can be seen as objects containing sequences of key-value pairs symbols. Each pair's
value element acts as a placeholder for information required by the plan or for the execution of
a motor command. As mentioned in previous chapters, the information is acquired by resolving
the designator at run time by querying knowledge from Knowledge Bases (KBs) and accessing
sensor data through the perception executive.

Examples of designators can be seen in the Lisp Code 1. The object designator requires features
like type or color. The location designator gets a specification of locations inside a room and the

room. Action designators can include other designators inside, such as an object one.

As mentioned, the designator is resolved by querying knowledge from the plan, using the KBs
or obtaining sensorimotor data via perception. The robot body moves in a defined trajectory

when a motion designator is resolved.

To execute a task, the plan modules communicate with the robot’s control system, including
functionalities such as object perception, robot navigation and localization. The structure of an
action plan created in CRAM can be seen in the Lisp Code 2. This plan was modified by this
thesis work to add the sub-actions. First, the plan’s name is given (plan-name), followed by a list
of parameters (parameters-1ist) required by the plan. Then, when the list of preconditions

(required-preconditions) is satisfied, the plan can be executed with its specific values
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Lisp Code 2 Generalized CRAM plan.

(def-plan plan-name ( parameters-list )
(when ( required-preconditions )
(perform

{an action

(type Taction-category)

{ key-1 value-1 )

{ key-2 value-2 )

o e O R N PR LN

e s R A

(key-1, key-2, etc.). Finally, plans include an action-category comesponding to action verbs,
e.g., fetch, place, pour, cut.

The structure of the execution plan is generated inside a memory module called Working Memory
(WM ), which has not been used before. This module chooses the best option by computing the
probability of success based on previous episodes in the Episodic Memory (EM) and Procedural
Memory (PM) modules. This thesis work accommodates plans into actions and sub-actions,
in which each task has specified action or motion plans. The difference between movements,
sub-actions and actions are defined in a taxonomy, where actions and sub-actions are classes.
Movements are defined as features of the sub-action. An advantage is that when sub-actions are

combined, they provide flexibility to the plan’s structure and allow multiple interconnections.

The Plan Executive interprets the action plan in a process called contextualization into steps
[Kazhoyan et al., 2021]. It receives the sequence of actions and monitors the action execution. It
can use a Heuristics module to receive a symbolic location description to find a specific pose in
the robot’s environment. It also communicates with the Perception system to receive symbolic

descriptions of objects seen in the environment.

Considering the pick-up plan presented in Lisp Code 3, the sub-actions are inside the action
picking-up. The first step is to insert the arguments required for the picking-up action. In this
case, it can be the object’s type to be manipulated. The argument or arguments are designators.

With the with-robot-at-location construct, the plan language ensures that the robot is
located appropriately for action execution. This depends on the object, robot capabilities,
environment and task context. For this example, the robot should stand in a location where
it can perceive and reach for the object. When the robot is appropriately positioned, the plan
continues its execution. If the robot is not at the appropriate location, the execution is suspended,

repositions itself, and only then continues the execution.

Then, the action plan is instantiated by adding the parameters needed to execute the motion plan,
e.g., which arm, trajectory and grasp pose to use. Next, a query is created to retrieve the values
for these parameters to the Procedural Knowledge Base (PKB). This query can be seen in Lisp
Code 4. This step returns the robot body motions to achieve the goal of the underdetermined
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Lisp Code 3 Pick-Up plan.

| (def-plan pick-up (Tobject-to-pick)

2 (with-robot-at-location (?location-at-which-to-pick)
3 (perform

4 {an action

5 {(type picking-up)

6 (object (am object (type Tobject-to-pickl))
7 {arm Tarm-to-be-used)

8 ;3 Sub-actions

9 (perceive Fobject-to-pick)

10 (reach ?location-at-which-to-grasp)

11 (grasp Tgrasp-pose)

12 (lift ?lift-pose-to-be-used)

13 (retract Tarm-used)

14 )]

15 )]

16 )]

17 )

action description and the associated instantiated extended plan. The Procedural Knowledge
Base (PKB) samples a joint distribution of the motion parameter values and the related outcome
from previous executions. The query arguments are the key-value pairs that were not passed
as arguments to the pick-up plan.

Finally, Action Executive executes the plan. In this case, the interface with Movelt! produces
the robot’s movements. Movelt! is explained in more detail in Section 3.1.4.

Additionally, CRAM has an implementation, that was not done in this work, capable of a fast
plan projection to predicted parameters that could lead to a successful execution [Kazhoyan
and Beetz, 2019]. This projection is used only as a suggestion to the planner as it requires an
accurate representation of the world. This is why knowledge processing memory modules were
preferred for this work implementation.

Action and sub-action selection is based on relevance, which is how well the action corresponds
to the current situation [Kotseruba and Tsotsos, 2018]. This is done by checking pre- and
post-conditions of actions before applying them. The action and sub-action selection also
depends on a score given to the pair depending on their contribution to achieving the current
goal. The score is given by the performance of the action in the past and the potential to improve
the behavior in the future via Reinforcement Learning (RL).

Similarly to previous plan creations, the plan is a sequence of calls to perform actions by calling
its respective subplan [Kazhoyan and Beetz, 2017, Kazhoyan et al., 2020b]. However, in this
thesis implementation the separation between action and sub-actions is defined by a more
significant granularity than previously. This is done by using definitions from joint movement

and atomic actions instead of force-dynamic events.

Unlike some hybrid approaches introduced in Section 2.4.2, this work assumes that knowledge
can be available during plan formulation and execution. The most significant contributions

of this work are the biologically inspired memory concepts and their interconnection; refer to
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Lisp Code 4 Feich and place.

I (query-variables (7location-at-which-to-pick,
Tlift-pose-to-be-used)

w] LA P L 2

E]

to-succeed (
(with-robot-at-location (?location-at-which-to-fetch)
(perform

)

(an go
(type navigate)
(location (7?location-at-which-to-fetch)
3
(an action
(type picking-up)
(object (an object (type 7object-to-be-fetched)))
(arm Tarm-to-be-used)
(grasp 7grasp-pose)
(lift-pose ?lift-pose-to-be-used)
3
(an go
(type navigate)
(location (?location-at-which-to-deliver)
3
(an action
(type putting-down)
(object (an object (type Tobject-fetched)))
(arm Tarm-used)
(lower-pose 7lower-pose-to-be-used)

)

tarm-to-be-used, 7grasp-pose
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Chapter 6 for more insights. According to work by Vernon et al. [2016], memory keeps what
has been achieved through learning and development. It ensures that a cognitive system adapts
to new circumstances. Memory allows a cognitive agent to prepare to act.

This work also presents how manipulation actions are represented on two levels, actions and
sub-actions. This representation is stored in episodes, an Episodic Knowledge Base (EKB), a
Procedural Knowledge Base (PKB) and Semantic Knowledge Base (SKB), depending on the

level of the representation.

To start, this framework uses concepts of memory from neuroscience. As human examples are
used, it is also fair to use an approximation of human memory models. Even more important
than the concepts used is how they work together to achieve the expected result.

Section 3.1 presents work that this thesis applied to complement the functionality of the cognitive
architecture. Finally, section 3.2 presents the implementation made for this thesis work and is
marked in pink in Figure 3.2.

31 Existing systems

311 KnowRob

KNOWROB is used as the Semantic Knowledge Base (SKB) in this work as it provides an action-
centered KB [Tenorth et al., 2014, Tenorth and Beetz, 2017], which integrates various types of
knowledge (static encyclopedic, commonsense, task descriptions, environment models, object
information, observed actions, etc.) from different sources (manually axiomatized, derived from
observations or imported from the web); see Figure 3.3. All representations are combined with
semantic properties, such as classes they belong to and features. For example, the cup belongs
to the class container and has a handle. In the case of actions, they are represented by their
associated motions. Sub-actions are not described as such but as sub-events. These sub-events
are defined as instances of an action. For example, the action PickingUp has the sub-events
subEvent :Reaching and subEvent:TakingSth. On the other hand, sub-actions are actions in
the lower hierarchy and hold all features besides the bottom levels.

The advantage of using Ontology Web Language {OWL) [ Tenorth et al., 2010b] is that it balances
expressiveness and reasoning capabilities well. From a robotic platform perspective, it is possible
to translate low-level sensor data into knowledge. OWL is a form of description logic and
distinction between classes and instances. General knowledge about object types is modeled into
classes. Classes may be hierarchically structured and inherit the properties of their (potentially
multiple) parents.

To equip robots with commonsense knowledge, KNOWROB uses the Open Mind Indoor Com-
mon Sense project (OMICS) was created for mobile robots. OMICS [Havasi et al., 2010] and
its previous version ConceptNet [Havasi et al., 2007], contain detailed action-related knowledge
about everyday objects. In the case of robots, one way to represent knowledge is presented in
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Figure 3.3: KNowROB system overview. Reprinted from "Knowledge Processing for Cognitive
Robots” by Tenorth, Moritz, Jain, Dominik and Beetz, Michael. 2010, KI - Kiinstliche Intelligenz 24(3),

p- 235. Copyright 2018 by Springer.

Beetz et al. [2012] as a procedural attachment extracted from logged data trees. A Procedural
Knowledge Base (PKB) uses this type of representation in the implementation created for this

work.

KNOWROE 2.0 provides a query language to retrieve information from episodes. In the
KNOWROB 2.0 ontology, all entities of a particular entity category may be retrieved, and each
can be described using the characteristics provided for that category. Furthermore, the ontology’s

relations may be utilized to limit combinations of entities.

KNOWROBE uses a weak closed-world assumption. It is a closed-world assumption weak because
the robot is still required to detect novel objects from the environment. During its reasoning
processes, the robot assumes to know all objects but concurrently monitors its percepts for new
objects and updates its belief state whenever a new object is detected. The KB of the robot
is populated with object models that consist of CAD models, including the part structure and
possible articulation models, a texture model and encyclopedic, commonsense, and intuitive
physics knowledge about the object.

Additionally, KNOWROB supports semantic maps [Bozcuoglu et al., 2018]. They are semantic
descriptions of environments represented in the ontology format. They include knowledge
about objects with their physical properties and pose information. For example, an object A of
type Fridge can be inferred to be a container because it is defined as a superclass in the human
household knowledge ontology inside KNOWROB.
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One disadvantage of KNOWROB is that its classes are mainly created manually and require an
expert to provide them. In this work, a different approach is evaluated in which knowledge is
added to other KBs automatically and tested by a robot.

31.2 Episode or NEEM

The system-generated episodes are known as narrative-enabled episodic memories (NEEMs).
A NEEM comprises two parts, which are experience and narrative. The NEEM experience
records low-level data such as the agent’s sensor information, such as pictures from a camera
and forces from a gripper, and the agent’s and its observed objects’ postures. NEEM experiences
are related to NEEM narratives, symbolic tales about the occurrence. These narratives include
information on the activities, the context, the intended aims, the observed impacts, and so on.
The NEEM experience and NEEM narrative are so rich in information that the agent can repeat
an episode to relive the witnessed behavior. NEEMs are experiences gained by experimenting,
reading, observation, mental modelling, etc.

The primary purpose of a NEEM is to design a model to represent experience data. Also, it is to
provide a standard vocabulary for annotating experience data across diverse activities, scientific
fields and acquisition modes. The vocabulary is more than simply a collection of atomic labels;
each label 1s defined in an ontology [Euzenat and Shvaiko, 2007]. These definitions are written
so that a knowledge base equipped with such ontology and a collection of NEEMs can answer a
series of competence questions about an activity. The NEEM model is explicitly specified as an
OWL ontology [McGuinness and van Harmelen, 2004]; see Chapter 4 for more details.

One good reason to use NEEMs is that they are another source of information besides encyclo-
pedic knowledge, e.g., KNOWROB. They are user for robots to be capable of reasoning about

which parameters led to successful executions and which conditions resulted in failures before.

31.3 NalvPhys4RP before RoboSherlock

Personal Service Robots (PSEs) need methods for recognizing them and their location (pose) to
manipulate these objects. For it, the robot requires perception, which is a process that transforms

input information from the sensors into internal representations that can be used by the robot
[Kotseruba and Tsotsos, 2018]. Human sensor types are vision, hearing, smell, touch and taste.

In robots, standard sensors are related to vision, touch and, in some cases, hearing.

To process the sensor information, CRAM uses the NAIVPHYS4RP system [Kenghagho Ken-
fack et al., 2022, Beetz et al., 2015]. NAIVPHYS4RP integrates various perception algorithms
to answer relevant questions to solve the task. Such questions can be related to objects in the
environment. It is also capable of reasoning about those objects. NAIVPHYS4RP can solve some
issues associated with the robotic perception mentioned before. It can deal with transformations
from the objects (batter to a pancake, for example) by combining perception, representation and

reasoning.
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Figure 3.4: Example of ROBOSHERLOCK execution. Reprinted from "RoboSherlock: Unstructured
information processing for robot perception” by Beetz, M., Bilint-Benczédi, F.,, Blodow, N_, Nyga, D.,
Wiedemeyer, T. and Marton, Z. C. 2015, Proceedings 2015 in IEEE International Conference on Robotics
and Automation, p. 1552. Copyright 2015 by IEEE.

Lisp Code 5 Perceive query.

| detect (an object
(category Tcategory)
{ key-1 value-1 )

{ key-2 value-2 )

[ L Y N P U

NAIVPHYS4RP uses the Unstructured Information Management Architecture (UIMA) to split
processes into several expert modules called Annotators, which analyze the incoming data.
One of these annotators is capable of combining prior knowledge with results from a CNN to
distinguish objects with similar appearance [Richter-Klug et al., 2022].

One of the central data structures from UIMA is the Common Analysis Structure (CAS), which
is filled with data during runtime and erased when it ends. When a hypothesis is generated, it is
assigned to a data structure called Subject of Analysis (SOFA) with n unique name. It collects
and organizes all the information coming from different components. NAIVPHYS4RP’s output
is represented as events. Events represent dynamic situations in which the state of the world can
change [Tenorth, 2011, p. 44]; in this case, they represent the robot’s belief. Multiple events
can be assigned to one perceived object to describe the perception results of the current state
compared to the expected condition to achieve an action.

As seen in Figure 3.4, NAIVPHYS4RP uses KNOWROB to obtain features of actions. This
represents the importance of the connection between perception and semantic memory in action
execution. When NATVPHYS4RP results are ready, they are sent to the Working Memory (WM).

A general way of sending information requests to NAIVPHYS4RP is presented in the Lisp
Code 5. If we take the example of a cup, the result is (category container), (shape
cylinder), (color red) as part-of the object’s description. The category property permits
the application of self-defined categories, e.g., a container in the case of the cup mentioned
before. NAIVPHYS4RP can also complete perceptual tasks such as identifying items that meet
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criteria, such as "a container that can store a liter of fluid,” by integrating visual detection with

knowledge-enabled reasoning and other computations, as computing volumes.

31.4 Movelt!
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Figure 3.5: Movelt! move_group architecture. Reprinted from "Movelt!: An Introduction” by Chitta, §.
2016, Robot Operating System (ROS): The Complete Reference (Volume 1), p. 3-27. Copyright 2016 by
Springer International Publishing.

Movelt! [Chitta et al., 2012] is a system capable of motion planning, generating trajectories and
monitoring of the environment for many different robotic platforms. It includes the controllers
for the motor systems of the five selected robots in this thesis work.

Movelt! transforms the plan into motions for the motor system to perform and is available in the
middleware Robot Operating System (ROS). This makes possible the connection to the extended
cognitive architecture presented here.

The high-level system architecture for Movelt's principal node, move_group, is shown in
Figure 3.5. This node acts as an integrator, bringing all the components to give the robot’s
system a set of ROS actions and services. The user interface allows access to actions and

services provided by move_group.

Movelt interacts with various motion planners. The motion planners are accessed via a ROS
Action or service (provided by the move_group node). This enables Movelt to employ a variety
of libraries as planners, allowing it to be readily extended.

In response to your motion plan request, move_group will produce the desired trajectory. The
arm (or any set of joints) will be moved to the target place using this trajectory. Note that the
output of move_group is a JointTrajectoryAction, not simply a route; that obeys velocity and
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acceleration restrictions at the joint level using the desired maximum velocities and accelerations

(if provided).

3.2 Knowledge processing memory-based models

The cognitive architecture CRAM [Beetz et al., 2010b] extension combines theones of cognition
and functionality. This extension includes adding memory modules to process knowledge, as
shown in Figure 3.2 in pink. This means it covers some of the desired features that Vernon
et al. [2016] presented, such as physical embodiment, sensorimotor contingencies, perception,
prospective action, declarative and procedural memory, leamning, internal simulation and au-
tonomy. However, its main focus is the high layer defined by the memory types used and their
interconnections, explained in more detail in Chapter 6.

In the following sections, the modules extending CRAM are presented. They start with the
WM in Section 3.2.1. Later, EM is shown, including the HAR implementation for using human
examples in Section 3.2.2. Finally, it continues with the PM (see Section 3.2.3) to finalize with
the SM (see Section 3.2.4).

3.21 Working Memory to interconnect memories

In this work, the Working Memory (WM ) 1s the link between Long Term Memory (LTM ) and the
Short Term Memory (STM). The difference between this approach and other hybrid cognitive
architectures is that the WM is not considered to belong only to the Short Term Memory (STM)
but also to share features of the Long Term Memory (LTM ). In the case of Working Memory
(WM), some cognitive architectures use it as an activation mechanism or filter to decide if
knowledge should enter the other memories. Furthermore, this memory can extract knowledge
from Episodic Memary (EM), Procedural Memory (PM) and Semantic Memory (SM) to build
an action structure for execution.

WM keeps track of the execution until it is finished and can update fast by keeping current
information flowing. It connects to other memory types to store information in the long
term. WM is also used as a processing system for the state of the environment built by the
perception system, in this case, ROBOSHERLOCK. These features allow the system to perform
actions depending on the current state of the world in an adequate time interval. WM includes
an integration of spatiotemporal knowledge to interact with the environment. For example,

furniture’s dimensions, cutlery, dishes, etc.

This allows the robots to have a sense of space and form when manipulating objects and detecting
changes. WM will enable robots to reason about the effects of their actions.
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3.2.2 Episodic Memory to get previous experiences

This thesis work saves and uses actions executions to use in future behavior. In this case,
Episodic Memory (EM) is a coordinator of previous executions. EM gets knowledge from the
Semantic Memory (SM) and shares knowledge with the Working Memory (WM).

In this case, robots build representations of the world and store them as episodes. They include
when, what, which and where actions happened in a sequence. Some episodes come from

human demonstrations, and others from robot executions.

Human demonstrations are an initial source of knowledge for unknown actions or complex
manipulations where the robot can not find a suitable solution, for example, when an object
keeps falling, breaking or spilling. In the case of human demonstrations, action-sub-action pairs
are segmented from a Virtual Reality (VR) environment where humans can perform actions. The
segmentation is performed by a HAR system implemented in this thesis work.

Sub-action features can be used during the planning and the actions hierarchy via reasoning
using queries. The segmented pairs provide information regarding sub-action features, such as
velocities, distances, success in limited cases, objects acted on, etc. The final representation
includes those pairs and the events, including other sub-action features, such as hand used, grasp
type and object acted on. The WM stores the episodes from robots. The robot can improve
further when it uses the episode’s information for future performance.

EM can create its Episodic Knowledge Base (EKB) by previous actions and their results to
the most recent ones. That way, this KB keeps an updated version of the episode’s results by
including the one that performed best, worst, time of accepted execution, etc. In this KB, the
most successful task has a higher priority to be selected.

EM retrieves information from the EKB and the episodes in particular cases required by the
WM. EM cannot change episodes but extract their features. This process happens every time the

robot finishes executing a task.

Like I mentioned before, human examples are used in this work. The implementation to store

them is presented next.

Human Activity Recognition implementation

This work uses the observations of humans while performing actions in VR using the system
presented by Haidu and Beetz [2016]. This system records the position and orientation of three
body parts, i.e., the head, right and left hand. The recorded data includes raw and high-level data.
Inside the raw data, the position and orientation of all objects in the environment are tracked
over time. The system is extended by adding more objects to its environment.

A HAR system recognizes and classifies action and sub-action pairs using human examples. This
implementation uses machine learning techniques described in more detail in Chapter 3. The

implementation can recognize some action features, including—but not limited to—grasping
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Figure 3.6: HAR process steps.

types as the procedural features from those actions. The process is described in Figure 3.6, from
the data acquisition to the result of the action-sub-action pair.

After going through a process of human activity recognition (HAR) where actions are recognized,
the actions are represented in an execution tree as episodes, see Figure 3.7. In this representation,
the sub-action is shown as the center, surrounded by the action it belongs to and its features.
Each sub-action includes the action it belongs to and details related to procedural features, such
as grasp types and grasp position choice, used when taking an object, source of the object, etc.

The episode representation stores lower-level information like object positions in the environ-
ment, their poses, etc., and temporal synchronization using global time. The representation
of logged actions builds upon the Semantic Knowledge Base (SKB) via a belief state, which
provides a structure to represent tasks and their spatial and temporal context. This includes the
events, objects, environment maps and body parts.

[ Action: Opening-Drawer ]

ObgectActedOn: FridgeDrawer

‘ Sub-action: Pulling-Drawer }—b GraspType: Frontal

Trayectory: (x1,y1,...)

Figure 3.7: Sub-action tree representation in episodes with its action and features.

Compared to previous implementation of planning inside CRAM using brute-force search and
heuristics [Koralewski et al., 2019], this work uses imitation leaming and learning based on

experience.
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3.2.3 Procedural Memory in action representation

Procedural Memory (PM ) is implemented to store long-term facts about how to perform actions.
This knowledge comes directly from the Working Memory (WM) after the execution of a task.
Then, it is stored inside a Procedural Knowledge Base (PKB). PM updates its KB after every

task execution.

PKB’s first entry comes from the actions and knowledge present in the Semantic Knowledge Base
(SKB). Actions and sub-actions are stored in the PKB. Sub-actions include properties such as
bodyPartsUsed, subEvents and nextMotion. Actions include features such as prevAction
and nextAction.

The entries of the SKB are improved over time. The information stored afterward takes into
account stability by taking into consideration the execution time and success returned by the
WM. The representation inside the SKB is defined in three levels. The first is the top-level
where objects and their relationship with actions are defined as abstractions and symbols. The

second is called a mid-level sequencer, in which actions are chained in a structure for execution.

Opening-Drawer FridgeDrawer Closing-Drawer

Reaching

—>[ GrippingAPartOfFurniture ]

—)[Fullingmnﬂﬁurniture]

—»{ ReleasingGraspOiSomething ]

Reaching

-’{Er'ippintharthFumirum]

—»[PushingAPmﬂFFurnimfe]

-){ ReleasingGraspOlSomething ]

RetractingAnirm

Figure 3.8: Procedural Knowledge Base representation.

This representation allows the Working Memory (WM) and Procedural Memory (PM ) to ac-
cess procedural knowledge by object, action or sub-action. This access type depends on the

requirements of the system during execution time.

3.2.4 Semantic Memory representing objects and actions as concepts

Semantic Memory (SM) stores long-term facts, in this case, especially about actions, objects
and relationships. The SKB has a graphic representation inside an ontology, where nodes are
concepts and edges are their relationships. This work relies mainly on the work by Tenorth et al.
[2010a] regarding KNOW ROB inside the SKB.

KNOWROEB was missing some information about concepts from fluid dynamics and the naming
of cooking-related actions and movements from joints. For this reason, this thesis work updated
and extended it by verifying knowledge about physics concepts, actions, sub-actions, motions
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and objects, as presented in Chapter 6, Section 6.2.4. In KNOWROB, actions are represented as
events initiated by agents to achieve the desired effect. This makes it possible to describe these
events using the same structures as exogenous events like sensor readings or the expression of
a dialog partner. However, in previous inplementations, intermediate subtasks were defined
for perceiving, reaching, grasping and 1lifting an object. Now, they are described as
subAction and directly associated with the overall goal.

In this work, knowledge obtained from the execution of manipulation actions is compared with
the one already present in the SKB, which includes KNOWROB. To be able to add, extend
and update knowledge in the SKB, this work created a verification function inside the SM.
This function receives the classes and properties and verifies if there are already inside the
SKB. In a first instance, they were defined manually offline and integrated. However, this
implementation permits that new information coming from the WM or perception system to
be added automatically into the SKB. This means that the WM is in charge of submitting new
knowledge to the SM to be integrated later into the SKB.

The SM is in charge of managing the knowledge inside the SKB. If the concept is missing, it is
added. If the concept already exists and it is the same, nothing happens. However, if the concept

exists and is contradictory, a new round of tests is performed to select which one to keep.

When an instruction is received from the parser, Working Memory (WM) can read the concepts
related to the actions of interest present in the SKB and extracts information about objects and
actions. The EM and pm also make use of the knowledge present in the SKB to give meaning to
their knowledge.

3.3 Summary of this chapter

This chapter presents the memory extension of the cognitive architecture CRAM. [t starts by
introducing CRAM’s functionality and part of the extensions implemented. Then, it explains
the functionality of modules used but not implemented in this work. Last, it explains the
architecture’s modules implemented and how they receive and send information to each other.

This chapter also provides a direction to the other chapters where more information can be found
on the specific implemented modules.



Chapter

Knowledge handling by Personal
Service Robots

As mentioned in previous chapters, a Personal Service Robot (PSR) requires knowledge of how

to perform manipulation actions in human environments. In this sense, knowledge is the source
of representations of that environment. Such knowledge should be general enough, as it is
needed when there is a task in which questions should be answered [Lally et al., 2014]. In
human brains, representations support inference and decision-making. For this reason, it is
necessary to build representations in robotic platforms, as a programmer can not add every
situation they might encounter while executing a task.

There is already some effort to include knowledge in robotic platforms. This happens because
knowledge of action outcomes allows agents to perform well in complex environments [Russell
and Norvig, 2003]. Agents (robots) using knowledge for this purpose are called knowledge-
based agents. Knowledge, in that case, can be expressed in very general forms, combining and
recombining information to suit different purposes. A knowledge-based agent can combine
general and current knowledge about the environment to infer hidden aspects of its current
situation before selecting actions. This agent can learn new knowledge about the environment
and adapt to changes by updating the relevant knowledge. In some cases, it is by building and
storing concepts into knowledge bases: see Section 4.1.1.

For this work, we are interested in representing manipulation actions in an extended manner,
referred to as commonsense knowledge. How manipulation actions, in particular, are performed
in detail corresponds to the commonsense that humans develop since infancy while interacting
with objects inside the environment. It is possible to derive this kind of knowledge from activity
models from human examples.However, these models still require further observations to be
complete by learning relations between them [Tenorth et al., 2010a].
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The premise of this chapter is that for high-level cognitive processing, a machine has to be
capable of generating, representing and storing knowledge. The works by Newell [1982],
Newell et al. [1989], Anderson [1996] and Anderson et al. [2004] provide explanations for
the relationship between these processes in human cognition and computer systems emulating
them. Their work strongly influenced on recent Knowledge Representation (KR) models, as
well as this work. This work uses the combination of Long Term Memory (LTM ) and Short Term
Memory (5TM ) to emulate human cognition.

As we want robotic platforms to be able to perform everyday chores, we must equip them with
the knowledge and systems to manage this knowledge. This chapter is about using Knowledge
Bases (KBs) to represent, combine and share knowledge between machines and how robots can
act on that knowledge. To represent the required knowledge, a robot first needs to understand
the meaning of the type of knowledge. It is essential to define how this representation can be
processed and retrieved; see Section 4.1.1.

The ideas from Tulving [2007] about the hypothesis of indifference to cognition, behavior, and
experience hold that their relationship depends on what they are and the particular circumstances
under which they occur.

This chapter discusses concepts about knowledge, its representation, levels of representation
and commonsense knowledge. This chapter first introduces definitions from different sources,
including roboticists, about knowledge and its types. Specifically, Section 4.1 presents general
concepts regarding knowledge and its representation and the available knowledge bases. The
purpose of this introduction about knowledge, its types and representation is to provide a back-
ground to build the cognitive architecture implemented in this work. This cognitive architecture
uses knowledge acquisition and representation to provide tools to a PSR for performing complex
manipulations. In Section 4.2, knowledge representation and update are presented for the
different types of memory (see Chapter 6).

41 Concept of knowledge

There might be confusion about the difference between information and knowledge as different
definitions exist. In a meeting with 57 leading scholars from 16 countries, it was claimed that
data, information and knowledge have a sequential order [Zins, 2007], which is used in this
work. In the case of the concept of data, it is taken as the raw material of information by some
people, but in other cases not. For this reason that the concept of raw data appears as source data
or atomic data, which has yet to be processed for use, meaning no interpretation is made. When
this data is processed, information emerges and has a meaning and purpose. In the same way as
data, processed information produces knowledge. Information and knowledge different because
the second includes a semantic value. For this reason, it has a higher level in the hierarchy. In
the case of humans, knowledge gives them the capacity to understand and explain concepts,

actions and intentions.
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Other concepts of knowledge used in this work consider the philosophical definition presented
by Hobbes [1651] as the evidence of truth, which must have concepts identified by a name used
to create concluding propositions. One example is cognitive capabilities, in which ideas picture
objects with mental properties. Furthermore, this concept was complemented by the Language of
Thought Hypothesis (LOTH) [Fodors, 1975, p. 214]. In this hypothesis, thought representation
and validation are supported by the principles of symbolic logic and computability; this means
that reasoning can be formalized into symbols or patterns.

In general terms, the implementation made for this work considers that knowledge is composed
of basic units called concepts [Ramirez and Valdes, 2012, p. 46]. These concepts are associated
with other concepts that consider type, directionality and name. Associations and concepts are
built dynamically and become stable through time.

A concept represented of a mental object with attributes expressed through a specific language
and represented through computable symbols or patterns [Ramirez and Valdes, 2012, p. 53].
The Classic Theory of Concept Representation [Osherson and Smith, 1981] also considers the
descriptive capabilities of concepts. Furthermore, context is considered to embody semantic
knowledge [Ramirez and Valdes, 2012, p. 62]. In other words, it is how groups of concepts
are associated. When combining several domains into a mixed context, a context may have
contradictory knowledge. In this case, the framework uses a flexible low, restriction model
included in the Ontology Web Language (OWL) [McGuinness and van Harmelen, 2004]. OWL
establishes in its first two levels mainly treelike structures. In the implementations, there are

limited searches, which do not compromise the model’s flexibility.

According to Collins [1995], commonsense knowledge in humans is inside the body. This
means that the way we cut up the physical world around us is a function of the shape of our
bodies. For this reason, this type of knowledge, abilities or skills cannot be transferred simply
by passing signals between the biological brain and the computer. Then the knowledge from
human examples has to be processed, represented and reasoned. Furthermore, the same behavior

may be the same in many action executions.

In computer science, it is accepted that knowledge can be processed, which includes storage,
change and use by the computer [Tyugu and Tyugu, 2007, p. 6]. One definition says that
knowledge is the content of data for a user who understands that data.

For a machine to handle knowledge, a knowledge system is required to represent and make
inferences [Ramirez and Valdes, 2012]. This is part of the function of the cognitive framework

implemented in this work.

411 Knowledge representation

Knowledge is available in the environment and the interaction between agents, e.g., humans
and robots. One kind of interaction is natural language. However, extracting knowledge can
be challenging as it is typically semi-structured or unstructured or needs more information
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[Chen et al., 2012]. Another type of interaction between an agent and objects has been recorded
in videos where people perform a task, i.e., YouTube. These videos present the problem of
having only a specific viewpoint; further, occlusions exist between objects during manipulation.
Solving these issues related to the computer vision area is not the focus of this work. For this

reason that we use human examples from virtual environments in this work; see Chapter 5.

New knowledge can be acquired by associating previous knowledge with new one [Ramirez
and Valdes, 2012, p. 64]. After knowledge is represented from the human examples, new
representation units are integrated with the main already known one by following a constructivist
principle. This means knowledge is constructed upon more knowledge and retained in a Long
Term Memory (LTM). This principle is used in this work.

As mentioned before, Knowledge Representation (KR) is required. In the human brain, knowl-
edge is represented inside mental models that structure and organize that knowledge by describ-
ing, explaining and predicting its purpose, form, function or state [Phillips et al., 2016]. These
models define how people interact with their environment and are continuously modified and
updated as new information is acquired, mainly unknown information. There are two theories
about how the human brain represents knowledge [Handjaras et al., 2016]. The first is the
modality-specificity theory, which suggests that concept acquisition is modulated by low-level
sensory inputs, e.g., visual, auditory or tactile, combined with motor functions. The second is
called domain-specificity theory and suggests that knowledge may have an abstract organization
of semantic attributes independently of sensorimotor processing. Even when these theories
do not agree on the level of abstraction, both agree that knowledge is organized into semantic
categories. However, the question of how the organization of conceptual knowledge is scaled
in the human brain remains unsolved. Altogether, these results confirmed that category-based
information is a dominant component in the definition of concepts of both groups. In the case
of domain concepts, they are represented categorically in semantic memory within dedicated
neural substrates [Vigliocco et al., 2002].

Knowledge Representation (KR) was initially derived from Artificial Intelligence (AI) to represent
knowledge symbolically and manipulate it in an automated way by reasoning programs [Paulius
and Sun, 2019]. This definition was extended for robots as how they represent knowledge about
actions and their environment and enable them to include semantic concepts to their internal
components for solving tasks, allowing them to reason and infer. The types of KR models
are strongly linked to the kinds of knowledge, such as distributed, symbolic, non-symbolic,
declarative, probabilistic and rule-based, among others. Each is suited for a particular type of
reasoning, such as inductive, deductive, analogy, abduction, etc. [Russell and Norvig, 2003]. A
representational view of the mind is presented by Clark and Grush [1999], in which intelligence
is referred to as the problem-solving computation of internal representations of real-world
structures, facts and hypotheses. In this work, internal states are seen as representations and
related to the system’s structure and the task performed.

In computational systems, knowledge is commonly represented in three ways. The first one rep-

resents knowledge as symbols, such as labels, strings of characters, frames, etc. Those symbols
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can be manipulated using a predefined instruction set, for example, if-then representing the
known facts about the world [Kotseruba and Tsotsos, 2018]. The disadvantage of this type of
representation is that it needs to deal with a changing environment flexibly and robustly. Another
area of improvement is the requirement of an initial knowledge base, which can take a long time
to be created. The second type of representation is sub-symbolic, which is generally associated
with the metaphor of a neuron. In this case, the knowledge is represented as numerical patterns
and distributed in neuron-like objects. And the third type of representation combines elements
from both and is called hybrid representation.

In the computational area of Al, there are mainly five types of knowledge representation, as
shown in Figure 4.1. Structural Knowledge represents relations between objects and concepts.
Declarative Knowledge represents object facts. Heuristic Knowledge represents the rules
of thumb. Meta Knowlege represents knowledge about knowledge. Procedural Knowledge

represents procedures as rules that include conditions.

Meta

Figure 4.1: Knowledge types in AL

Knowledge Representation (KR) is reducible (can be transformed) to knowledge objects. These
objects can be formulas or texts in a suitable language or by a state of some system [Tyugu
and Tyugu, 2007, p. 6]. There are commonsense theories of the world in which objects have
properties called measures [Russell and Norvig, 2003, p. 329], including height, mass, cost and
so on. One type is an intrinsic property, which represents the object’s substance rather than
it as a whole. For example, when an object is cut in half, both new pieces keep the same set
of intrinsic properties like density, boiling point, flavor, color, ownership, etc. Another type is
an extrinsic property, which is not kept when the object is divided, like weight, length, shape,
function, etc. In KR, the object’s category definition is represented using a class of only intrinsic

or extrinsic properties. For example, the weight and volume of that object.

It is also essential to represent actions. Not only single actions but also help to represent
and reason about action sequences [Russell and Norvig, 2003, p. 330]. Action representation
describes conceptual representations of events in terms of schemata, which are structured
knowledge representations of types of things and events one has encountered in the past [Zacks
et al., 2000]. Schemata represent typical feature values for an entity type and relations amongst
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those features. Activating a schema provides information about what objects will likely be
present, what steps will probably be performed, and in which order. If we want a robotic
platform to complete everyday chores, we have to equip this system with vast knowledge and
systems that can manage this knowledge.

Temporal

higher-order B tional

=

Samantic
network

Figure 4.2: Knowledge representation methods.

To represent knowledge, some methods are used for the different types of KR presented in
Figure 4.1. They are shown in Figure 4.2. The main classes are rules-based, calculi, logic and
connectionist. All of them are introduced next. It is crucial to notice that some of them are
connected. For example, description connects rule-based and logic, and clausal connects calculi
and logic.

Rule-based

Rule-based systems use symbolic representation models focused on procedural knowledge.
They are usually organized as a library of rules in the form of condition-action [Ramirez and
Valdes, 2012, p. 50, e.g., if a sub-action is found, stop; else, keep looking. They are mainly used
for representing skills, learning and solving problems, especially when procedural knowledge is
present [Newell, 1982].

A robot can use causal rules to represent actions and consequences. Rule systems might also
be used for declarative knowledge generally with classification purposes, e.g., if an object uses
electrical energy, it is an electrical device. One example of using a rule-based representation is
presented by Paulius and Sun [2019].
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There is a compact way to represent a small number of production rules called decision tables.
A decision table requires three kinds of subtables, a table of conditions, a selection matrix and a
table of values. The table of conditions includes atomic conditions (predicates) for selecting
production rules. The selection matrix combines them into complete conditions. Finally, the

table of values contains the results of a selection that can be either values or actions.

On the other hand, a decision tree is a simple way to represent knowledge for decision-making
[Tyugu and Tyugu, 2007, p. 127]. It is a tree with nodes marked by attributes, attribute values or
decisions. An attribute always marks its root. Each path starting from the root passes through
a node with a value of the attribute of the root and, after that, through the nodes marked by
attributes and their values. It ends with a node labeled by a decision drawn from the values
of the attributes met along the path. One example of its use in robotics is the work by Yang
et al. [2015a], which represents action sequences as tree data structures a robot can execute.
They represent a specific action by the items being used and the consequence of acting. Similar
to the implementation made for this work, each action can also be broken down into smaller
sub-actions or sub-activities. The second example is the work by Ryoo and Aggarwal [2009],
where the representation describes human activities in a hierarchy divided by their temporal and
spatial structure. In this case, the activity is decomposed into multiple sub-events and specified
by its temporal, spatial and logical relationships. The definition of an event and sub-action
differs in this work as they must clearly distinguish between an atomic action and a sub-event;

here, it is called a sub-action because it implies various movements.

Logic

Logic is the primary vehicle for representing knowledge [Russell and Norvig, 2003, p. 4]. As
this representation is always definite, each proposition is either true or false in the world. Logic
has the advantage of being a simple example of representation. At the same time, it is general
and handles formalism [Tyugu and Tyugu, 2007, p. 12]. However, it has some limitations
discussed later with the specific types of logic. Logic must define the semantics of the language
[Russell and Norvig, 2003, p. 200]. Semantics is associated with the meaning of sentences.
In logic, the language’s semantics defines each sentence’s truth for each possible world. The
logic language uses expressions to represent computations and denote objects that are called
terms. Terms are built from variables and function symbols. Aromic formulas represent relations
between objects. A collection of atomic formulas form clauses.

There are different types of logic. A very simple logic type is propositional logic [Russell and
Norvig, 2003, p. 204]. The syntax of propositional logic defines the allowable sentences. The
atomic sentences (indivisible syntactic elements) represent a single proposition symbol. Each
symbol stands for a proposition that can be true or false. Complex sentences are constructed
from more straightforward sentences using logical operators, such as negation, (not), conjunction
(and), disjunction (or), exclusive disjunction (xor) and implication (if then). The semantics in
propositional logic define the rules for determining the truth of a sentence for a particular model
[Russell and Norvig, 2003, p. 206]. A model fixes the value-true or -false for every proposition
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symbol. Unfortunately, there are better languages than propositional logic to concisely represent
knowledge of complex environments [Russell and Norvig, 2003, p. 210].

Other examples are special-purpose logic, such as temporal logic, which assumes that facts hold
at particular times and that those times (which may be points or intervals) are ordered. First-
order logic is part of special-purpose logic and is expressive enough to represent commonsense
knowledge [Russell and Norvig, 2003, p. 240]. First-order logic assumes that the world consists
of objects with certain relations between each other that do or do not hold. The essential
syntactic elements of first-order logic are the symbols for objects, relations and functions. The
symbols can be of three types, constant (standing for objects), predicate (standing for relations)
and function. First-order logic has functions STORE and FETCH to inform and interrogate a
KB, the first one stores a sentence and the second returns all found sentences for a given rule
[Russell and Norvig, 2003, p. 278]. The weight of each feature is the one corresponding to each

first-order clause.

Thus, special-purpose logics give certain kinds of objects (and the axioms about them) "first-
class” status within the logic rather than simply defining them within the knowledge base.
Another one is higher-order logic, which allows assertions about all relations, including first-
order logic sentences as objects in themselves. Unlike most special-purpose logic, higher-order
logic is more expressive because any finite number of first-order logic sentences cannot express

some sentences of higher-order logic.

Connectionist

According to connectionist theories, semantic knowledge representations have their roots in the
description of interconnected concepts connected through associations [Ramirez and Valdes,
2012, p. 45]. These theories focus only on the presence or absence of associations and their

quantity. This work uses mainly a connectionist approach.

A connectionist way of representation is a knowledge fripler, which can represent three kinds
of knowledge [Tyugu and Tyugu, 2007, p. 33]. The first are facts, which are ground formulas
whose meaning may vary. The second is patterns, which are, in essence, an atomic formula with
variables. The last ones are rules, which include a condition and action parts.

On the other hand, linguists noticed that the structure of a sentence could be represented as
a semantic network [Tyugu and Tyugu, 2007, p. 36]. The network represents the sentence’s
meaning in terms of the definition of words and the relations between the words. Words of the
sentence are nodes bounded by arcs expressing relations between the words. This meaning
approximates the meaning that people can assign to the sentence.

One example of visualization as a semantic network is used by the Memory Map (MM) system
[Ramirez and Valdes, 2012, p. 56]. This map represents the interaction between concepts and
skills in different contexts; for example, a concept’s meaning may change according to the

context (semantic environments). The implementation of the MM is a directed graph, very
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similar to the more flexible types of semantic networks and ontologies, the last ones introduced
later on.

Marvin Minsky postulated a hypothesis that knowledge could be represented in bundles which
he called frames [Minsky, 1974]. A frame is a data structure for representing a stereotyped
situation. They can be considered a type of semantic network which mixes declarative and
procedural knowledge. Frames are capable of including procedures within each symbol, which
makes them different from other networks. This means that each symbol contains a procedure
called a demon and a group of attributes describing of the situation. Frames try to emulate
human memory by storing situations that include procedural and declarative knowledge. Their
properties were described informally [Tyugu and Tyugu, 2007, p. 38]. The first is a concept, a
knowledge module about something such as a situation, an object, a phenomenon and a relation.
Frames contain little knowledge, such as components, attributes and actions taken when defined
conditions are met. These pieces may be concrete values of attributes, more complicated objects,
or even other frames. A slot is filled when a frame is applied to represent a particular situation,
object or phenomenon. An essential idea developed in connection with frames was inheritance.
Inheritance is a convenient way of reusing existing knowledge in describing new knowledge.

There are other ways of knowledge representation, for instance, an Artificial Neural Network
(ANN) [Tyugu and Tyugu, 2007, p. 37]. Knowledge in an ANN is partially encoded in the
structure of the net and partially in the weights of connections. For more details, refer to
Section 2.3. One example of this representation is the work by Cruz et al. [2015], where the
effect of actions is represented to detect failures and improve the robot’s behavior. Affordances
anticipate the impact of the ANN. Affordances are action possibilities between the agent and its
environment, presenting relationships between the agent and the object’s components.

Ontology

Knowledge is richly and explicitly interconnected in human memory rather than structured as
a set of independent or only implicitly connected facts. This knowledge requires a language
for defining objects and interpreting their meanings. This can be done by ontology. One
definition of an ontology is a system of interrelated concepts used to present knowledge in
some knowledge domain [Tyugu and Tyugu, 2007, p. 34]. Another definition relevant to Al
considers an ontology to be an explicit specification of a concept, an abstract, simplified view of
the world, i.e., what exists can be represented [Gruber, 1993]. Ontologies are not about truth
or beauty; they are agreements made in a social context to understand and accomplish some
objectives and be guided by them [Gruber, 2003]. Aristotle defined an ontology in philosophy
as the study of attributes that belong to things because of their nature [Guarino et al., 2009]. In
experimental sciences, ontology focuses on the nature and structure of items independently of
further considerations and their actual existence. Their nature and structure can be described in
general categories and relations. In the case of Computer Science, an ontology is described as a
special kind of information object or computational artifact Computational ontologies formally

model the structure of a system, iLe., the relevant entities and relations that emerge from its
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observation, which is used in this work. The ontology engineer analyzes relevant entities and

organizes them into concepts and relations represented by unary and binary predicates.

The purpose of an ontology is then to define a scope of concepts and terms used to label and
describe the robot’s working space in a format that humans also understand. An ontology
typically provides a vocabulary to describe a domain of interest and a formal specification of
the meaning of the terms in that vocabulary [Euzenat and Shvaiko, 2007]. An ontology, or part
of it, could be visualized in a graph form. However, an ontology can capture very complex
relationships between categories and individuals that graphs cannot [Paulius and Sun, 2019]. For
example, being a subconcept, being a part of, being a property of or being a value of a property.
The ontology organizes everything in the world into a hierarchy of categories or classes. The
organization of objects into categories is a vital part of KR [Russell and Norvig, 2003, p. 322].
This is because even though interaction with the world occurs at the level of individual objects,
much reasoning occurs at the level of categonies. Categories also help to make predictions about
objects once they are classified. It represents categories in two ways, predicates and objects.
A category or class is a set of members or a more complex object with Member and Subset
relations defined. Categories serve to organize and simplify a Knowledge Base (KB), presented
in the next section, through inheritance. For example, if we consider all instances of the category
Food are edible and we assert that Fruit is a subclass of Food, and Apples is a subclass of
Fruit, then we know that every apple is edible. In this case, the individual Apples inherit
the property of edibility, in this case from their membership in the Food category. Subclass
relations organize categories into a taxonomy or taxonomic hierarchy. The theory of intelligent
reasoning is based on insights about human cognition and the organization of knowledge in
memory comes from Minsky's frame idea [Minsky, 1974], which is primarily an ontological
commitment. This commitment is a view of the world in terms of stereotypical descriptions,

e.g., concepts are described in terms of what is typically true about them.

Ontologies can be written down in various languages and notations; their content is more
important than their structure, which is a set of concepts about the world. Ontologies are
commonly used in developing web services and a semantic web-based on knowledge about
services [Tyugu and Tyugu, 2007, p. 45]. Ontologies can express formal inference rules. When
the system'’s actions are consistent with the ontology s rules, it makes an ontological commitment.
Ontologies use triplets of the type subject-predicate-object, e.g., Apple is subClassOf Fruit.
There already exist some standards to create ontologies. The Resource Description Framework
(RDF ) standard has a vocabulary for reifying triples, which is the process of making a subject-
predicate-object statement into a subject [Segaran et al., 2009, p. 134]. Another standard is
the Ontology Web Language {OWL), which is an RDF language developed by the World Wide
Web Consortium (W3C) for defining categories and properties [McGuinness and van Harmelen,
2004]. They can also enable more powerful reasoning and inference over relationship categories.
OWL is the current W3C standard for defining semantic web schemes. OWL is also a subset of
first-order logic.
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In this work, OWL and KNOWRORB are used for building KBs. As mentioned before in Sec-
tion 3.2, KNOWROB provides an action-centered KB [Tenorth et al., 2010a, 2014, Tenorth and
Beetz, 2017, Beetz et al., 2018], which integrates various types of knowledge (static encyclope-
dic, commonsense, task descriptions, environment models, object information, observed actions,
etc.) from different sources (manually axiomatized, derived from observations or imported
from the web). All representations are combined with semantic properties. The OWL descrip-
tions are downloaded from the database and parsed by KNOWROB’s knowledge processing
engine. Tenorth et al. [2013] provide a representation language to describe actions and their
parameters, object poses in the environment, and object recognition models. It can also access
meta-information about the exchanged data, e.g., types, file formats, units of measure, coordinate
frames, self-models of a robot’s components and capability configuration. Additionally, the
RoboEarth language [Tenorth et al., 2013] is designed to describe task specifications for service
robots from a high-level view (i.e., without considering hardware or environment details that
are not interesting for the task at hand). The concepts can represent either basic sub-actions,
e.g., navigation or grasping, or other task descriptions. KNOWROB includes the linguistic KB
WorldNet [Miller, 1995], which provides a dictionary of more than 117,000 concepts.

Other systems also use KNOWROB. One example is the automated probabilistic model of
everyday activities (AM-EvA ) [Beetz et al., 2010a], which analyzes daily activities and represents
human actions in raw poses, motion trajectories and activities in a symbolic relational knowledge
base. Similar to this work, it uses the KNOWROB framework to define the hierarchy in the levels
of abstraction of the actions of the observed sequences of motion. However, it differs in the
exclusive use of motion sequences and not other features, such as acceleration and distancing
between body parts and objects. A second example is the work by Ramirez Amaro [2014],
which uses KNOWROB's ontology to enhance a human activity recognition (HAR) system to
identify human motions, focusing on the hands. They analyzed activities such as reach, cut,
unwrap, take, idle motion, put something somewhere, release, spread and sprinkle from a
sandwich-making dataset. It is done by finding the tools used, e.g., knife or spoon, with their
corresponding class and then infers the human activity associated with that class. In a further
implementation, robotic platforms use human examples from virtual environments to perform
everyday activities [Ramirez-Amaro et al., 2014]. Similarly to this work, the action classes are
retrieved from KNOWROB. However, the knowledge goes through a preprocessing phase in this
waork, and the final result is obtained.

On the other hand, the framework presented by Chen et al. [2012] is similar to KNOWROB. The
difference is that this one is open-knowledge-centric and focuses on automatically acquiring and
utilizing open knowledge for online planning. This approach also includes different inference
techniques depending on the type of knowledge.

Similar approaches to KNOWROB are presented in Table 4.1. The comparison is made based
on the language used, in this case, OWL or XML. The table also considers if they are used in

robotics or not.
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Table 4.1: Comparison between Knowledge Base approaches.

Name Representation | Used in PSR
KNOWROB RDF and OWL Yes
OpenRobots Ontology (ORO) RDF and OWL Yes
Hierarchical Task Network (HTN) OWL Yes
cognitive knowledge base (CKB) Triple No

There are three approaches applied to any Personal Service Robot (PSR), Hierarchical Task
Network (HTN) [Di Marco et al., 2013], OpenRobots Ontology (ORQ) |Lemaignan et al., 2010]
and KNOWROB. The three are very similar in technology, representing knowledge in first-order
logic formalism as RDF triples and OWL. This is because they were built in collaboration.
As the cognitive knowledge base (CKB) [Wang, 2015] has not been applied to PSRs; to my

knowledge, it is not used in this work.

One issue found in the use of ontologies is that there is no universal one and different specific
ontologies have been difficult to use together [Ramirez and Valdes, 2012, p. 52]. However, this
work uses some ontologies and overcomes this issue by comparing the classes of each of them.

If there is any contradiction, it is excluded and put on a list for manual verification by an expert.

The limitation of connectionist methods is that they cannot explain higher cognitive processes
and other types of knowledge [Ramirez and Valdes, 2012, p. 45]. Constructivist theories can
overcome this issue with more complex reasoning, such as causality, probability and context.
This is why the same is applied in this implementation in a verification process. This is done by
integrating various layers with a group of associations. The difference between each layer is the
strength of the associations. In this case, the top layer has the concept of an organized structure
and the lowest has ideas.

41.2 Knowledge retrieval and reasoning

After acquiring and representing knowledge, it is crucial to access it and decide if it should
be kept as it is or modified. The use of queries can do knowledge retrieval. A query is seen
as an operation able to return information about a theory without modifying it [[ﬁch& and
Marquis, 2002]. For knowledge management, knowledge can be transformed into a processed
theory, which can then be operated with queries. One example of transformation is forgetting,

which is an important tool to take into account.

KR provides descriptions with different abstraction levels and from various sources and assigns
meaning to those descriptions allowing their combination to perform inference [Tenorth et al.,
2010a]. KR enables an agent to determine consequences by reasoning about the world before
acting on it [Davis et al., 1993]. All representations are imperfect and that imperfection can be a
source of error. To overcome those errors, the reasoning is required. In this sense, reasoning 15 a
process that goes on internally about things in the world.
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In the action domain, category boundaries could be better defined. However, semantic features
describe the inherent characteristics of activities [Ziaeefard and Bergevin, 2013]. The human
body (pose), attributes, related objects and scene context are those features. For this work, it is
essential to acquire and represent knowledge about actions in an extended manner. How actions
are performed in detail corresponds to the commonsense that humans develop since infancy
while interacting with objects inside the environment. For example, some of a physician’s
knowledge is in the form of rules learned from textbooks and teachers, which are patterns of
association that he may not be able to describe consciously. So, this kind of knowledge is not
expressed explicitly at the level of detail a robotic platform requires, and even more, the system
should be able to develop representations after receiving these inputs to build its concepts.

In this case, reasoning intelligently means reasoning in the fashion defined by first-order logic
[Davis et al., 1993]. First-order logic and its subsets ignore that most knowledge is uncertain,
severely limiting its applicability. However, KNOWROB [Tenorth and Beetz, 2013] can overcome
this issue by considering an open-and-closed-world assumption. The closed-world assumption
states that everything that is not known is false. On the other hand, the open-world assumption
states that everything that is not explicitly known is considered valid. With this combination,
an object can be described in various ways. For example, when the robot has to act and some
component is missing, it can simply check whether all required, known components are available

and decline otherwise.

4.2 Knowledge system for a Personal Service Robot

As mentioned before, knowledge is essential in robots. For example, robots need the knowledge
to reason about the world and make decisions based on their information. This includes
knowledge about their environment, its objects, and the tasks they are requested to perform.
Knowledge also allows robots to adapt to new situations and learn from experience. For example,
they can use their knowledge to recognize patterns and make predictions, allowing them to
improve their performance over time. Furthermore, robots that have knowledge can operate
autonomously without constant supervision or control. They can use their knowledge to plan
their actions and make decisions independently, essential for tasks that are too dangerous or
complex for humans to perform. Also, robots can perform tasks more efficiently and accurately
by using their knowledge to optimize their actions, avoiding mistakes and minimizing the time

and resources required to complete a task.

Overall, knowledge is essential for robots to operate effectively in the real world. With knowl-
edge, robots can reason, learn, adapt, and interact with humans and other robots. By incorpo-
rating knowledge into their design and operation, robots can become more intelligent, capable,

and, ultimately, more valuable to society.

One way to store knowledge in robots is in memory, used in this thesis work. Chapter 6 discusses

the use of different memory types. Memory requires a mixture of concepts and associations that
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can be added and modified. For a Personal Service Robot (PSR) to handle them, a knowledge
system must represent and make the inference. One significant element of this system is the
Knowledge Base (KB) that stores such knowledge. In this section, different KBs are explained.
These KBs are Procedural Knowledge Base (PKRB), Episodic Knowledge Base (EKB) and
Semantic Knowledge Base (SKB).

The Procedural Knowledge Base {PKB) stores knowledge about the execution of actions, which
includes their structure, movement patterns, trajectories, etc. The Episodic Knowledge Base
(EKB) stores knowledge about the occurrence of events, comparison of previous actions, sensory
information and executed plans, among others. The Semantic Knowledge Base (SKB) includes
KNOWRORB's concepts and adds further ones presented next. All the KBs are represented
hierarchically as ontologies.

Knowledge is not seen as simply a group of concepts but as an association’s structure. These
associations include information on the relation’s nature, enabling more complex reasoning
processes. The associations have the domain where they are valid. An association can be defined

as a relationship between two representation units, such as concepts.

4.21 Action representation by a Personal Service Robot

Action representation is essential in this work. This is why actions are represented in all KBs
mentioned before. In general terms, people have an organized structure of knowledge about
various actions [Vallacher and Wegner, 1987]. This cognitive representation allows them to
remember and identify actions, and their features and relations to others. The relationship among
actions in an organized structure captures the person’s general knowledge of how to execute an

action. An action can be decomposed into several distinct Sub-actions; see Figure 4.3.

Figure 4.3: Task tree with levels of representation for tasks, actions, sub-actions and movements.

At a basic level, the sub-action consists of discrete movements of one’s hands, fingers, eyes, and
perhaps lower limbs and the entire body. These movements involve increasing or decreasing
the angle’s joints [Saladin, 2004], i.e., flexion and extension. The bending of the head, elbows,
shoulders, knees, ankles or spine is flexion, while any posterior-going movement is an extension.
These movements are performed at the shoulder, hip, elbow, knee and wrist joints. Finally, the
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action as a whole can be seen as integrating these specific sub-actions. With more complex

involved actions, even more levels become distinguishable.

This lower level in the representation is more concrete, providing depictions closer to the
physical substrate of behavior. This level provides a recipe for how an action can be done,
whereas higher levels are more comprehensive than this one and are more detailed. It is possible
to represent one’s action in terms of its components, such as movements and structure of actions
and sub-actions. This is why such knowledge is included in the Semantic Knowledge Base (SKB).
Other components related to performance, e.g., success and repetitive behavior, are included
in the Episodic Knowledge Base (EKB). Both KBs provide flexibility and generalization for
defining actions and sub-actions, which is used for planning.

In the case of actions, they can also be combined into different levels of abstraction until they
form a task. In this case, ontology represents the level of abstraction as the level in the hierarchy.
The actions in the ontology are defined as sequences of graphs. The nodes in these graphs can
be objects, while the edges show properties of a touching relationship between a pair of objects

to connect them.

Table 4.2: Manual and locomotion verbs.

acquire chill | defrost orate locate pill |scramble| stay
add choose | dice orease lock pinch seal steam
apply chop | dilute erill lose poach | search | stew
approach | clear dip grip lower pour | season | skir
arrange | close |dissolve erind make press | select stop
assist coat drain grow | manipulate | produce | separate | strain
attach | collect | drop halve marinate pull serve stuff
bake |combine| dry heat measure | puree | shake say
beat |compare | empty help melt push | sharpen | take
blanch | connect | fetch hit mill put | simmer |thicken
blend | control fin hold mince reach | skeve tilt

boil cook find |incorporate mix regulate | slice touch

bone count fit increase mount | replace | smoke | trim
break cover flip introduce move | release | soak | throw
bring crack fold join obtain | remove | spill | transfer

broil create | form knead operate | retract | spray turn

burn crush fry layer order return | spread use
carry curdle get leave peel rinse | sprinkle | wait
carve cut give let perceive | roast | squeeze | wash

clean collide | pglaze level perform roll stand | waste

change |decorate| go liquidize pick rotate start | whisk
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This work focuses on action verbs; for this reason, it considers action words or verbs from
different sources related to cooking. For this reason, | compiled and filtered various sources
of action names into Table 4.2, which includes only cooking-related actions. This table shows
sub-actions in bold letters to differentiate them from actions. The first source is the Natural
Semantic Metalanguage (NSM), which contains 53 semantic primes or words that can be
identified in all world languages [Peeters, 2006, p. 13]. Semantic primes are the words with the
most fundamental meaning in a language. These primes include only 14 verbs. The second
source is the semantic molecules from Minimal English, which has 250 simple cross-translatable
words of a highly reduced version of this language [Goddard, 2018, p. 8]. Semantic molecules
are words strongly linked to the primes for building complex concepts [Goddard, 2018, p. 16].
This adds 12 verbs. A third source is the nonuniversal but useful words of Minimal English,
which are related to things that matter to people. They add eight verbs. The rest comes from
the manual verbs study by Gijssels and Casasanto [2020]. Their result shows the use of one or
two hands while executing actions. The resulting manual and locomotion verbs are shown in
Table 4.2. They represent the actions and sub-actions (bold) present in the KBs. As presented
in previous chapters, all actions are broken down into these sub-actions. KNOWROB already
included 23 actions, and 123 were added to the Semantic Knowledge Base (SKB). From the
sub-actions, ten were added, and eleven were already present in the KB. It is important to note
that all actions can be broken down into sub-actions, both presented in Table 4.2.

Other representations from actions and sub-actions are episodes. Episodes can be from human
demonstrations or robot executions. In the case of human examples, they include positions
in time for the hands (end effectors), head and objects inside the VR environment. All these
positions are associated with sub-actions and one level above action. These positions form
a trajectory, which the robot can test. One example is in Figure 4.4, where the trajectory of
topping a pizza is presented. This trajectory shows the right-hand position recorded while the

actions were performed.

In general, episodes serve as an initial source of knowledge for the KBs, except for the Semantic
Knowledge Base (SKB). In this Figure, the trajectory marks the starting point in the bowl
containing the cheese to a spreading position for the cheese on the dough. The robot can use
this example when it has not performed this task before.

Actions and sub-action representation in episodes

In a cognitive architecture, it is crucial storing action executions in episodes because it allows
the system to learn from past experiences and use that knowledge to inform future decisions and
actions. Cognitive architecture can learn from experience and improve by storing past episodes.
For example, suppose a robot encounters a new situation similar to a past experience. In that
case, it can use its stored episodes to make decisions and take actions that were successful in the
past. Episodes can also help make better decisions and plan more effectively by analyzing past
experiences and identifying patterns to predict what might happen in the future. This can help

the system make better decisions and plan more effectively in complex, dynamic environments.
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Figure 4.4: Trajectory extracted from a human demonstration for putting cheese on pizza dough.

Furthermore, episodes can also help adapt and be a more flexible response to environmental
changes. For example, suppose a robot encounters a new situation, unlike anything it has
encountered before. In that case, it can use its stored episodes to generate a plan of action based

on past experiences.

In this thesis work, episodes store motions related to manipulation actions are described by
patterns that include a set of constraints or properties between the tool used and the object in
the world. These objects are not referred to specifically, but their generics, e.g., main axis,
specific part. This information is grounded in the object used during the task execution. In
KNOWROB [Tenorth et al., 2014] and this work, these constraints are represented as classes
in an Ontology Web Language (OWL) file. OWL represents knowledge based on formal logic
by providing a way to represent knowledge in a structured and machine-readable format. This
language is used in this thesis work because of its rich expressiveness for complex concepts and
relationships. It allows the representation of classes, properties, individuals and axioms, which
can be used to capture the semantics of the manipulation action domain used in this work. It
also allows automated reasoning and inference over the knowledge represented, which can help
in tasks such as consistency checking, classification and query answering. Furthermore, this

representation can integrate knowledge from different sources and domains.

The hierarchy followed in this work follows the idea that combined motion patterns build a
sub-action, multiple sub-actions make an action and various actions make a task. This means
all tasks are divided into three levels of hierarchy to sub-actions, translating to a sequence of

movements.

To define if a sub-action was executed successfully, we follow the idea that actions can fail. In
this case, minor variations in the choice of parameters can determine the success; for example, if
a glass is securely grasped, falls out of the hand due to a too-low grip force, or gets broken by the
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robot. Side effects can be inherent to the actions or caused by failures, e.g., collisions with other
objects. These failures are detected by the event happening in the environment. For example, if
the Touching event is absent, the object falls while transported. These events depend on the
detection from the perception system, but they are also verified by the Working Memory (WM)
depending on the action goals.

This work uses a realistic physical simulation, which gets parameterized with the robot’s
environmental knowledge. A detailed semantic robot model describes its size, kinematics,
dynamics, and capabilities of actors and sensors. Plans can be executed within this simulated
environment and changes in the world are logged with a God’s eye view and translated into
logical statements. A simulation is only an abstract model of reality and will not always produce
the exact result. However, it will likely be much better than what logical inference on a limited,
axiomatized model will yield. The simulations provide a cost-effective, low-risk and flexible
way to test the manipulation actions to improve the robot’s plans. In this case, the robot performs
actions similar to humans; for example, using a similar sequence of actions, trajectories, or arm

postures can make it easier to understand the outcomes and produce better plans.

4.2.2 Semantic Knowledge Base

The Semantic Knowledge Base (SKB) aims to capture the meaning of concepts and their relation-
ships to other concepts. It does this by representing knowledge in a structured format designed to
capture the meaning of concepts and the relationships between them. Its representation uses an
ontology, a formal specification of the concepts and relationships in the service robot’s domain.
The ontology includes a hierarchy of concepts, with more general concepts at the top and more

specific concepts at the bottom.

The system can extract entities and relationships from the ontology by identifying entities such
as places and objects and associations such as is a, part of, located in and so on. This knowledge
is extracted by querying for specific entities or relationships to infer new knowledge based on
the existing knowledge in the knowledge base. Furthermore, the SKB can also be updated and
refined over time by refining the ontology based on real-world data.

As mentioned, the SKB stores concepts about different areas, such as static encyclopedic,
commonsense, task descriptions, environment models, object information, observed actions, etc.
All representations are combined with semantic properties, such as classes they belong to and
features, e.g., the cup belongs to the class container and has a handle. In the case of actions,

they are represented by their associated sub-actions and their movements.

This SKB uses a dynamic hierarchy. This means that concepts can be modified and added and
their associations to other concepts and properties. Each concept can belong to multiple classes.
This KB also has unlimited granularity. As the concepts can belong to different classes, it
forms a network structure where there can be an infinite number of levels. This also allows the

structure to avoid redundancy, i.e., the concept is used for different knowledge structures.
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As mentioned before, KNOWROB is used as a base of the SKB. Here, more concepts about
specific objects found in the Epic kitchen 100 [Damen et al., 2018] are added to this implementa-
tion. This dataset is used because it is the most extensive collection to date in standard kitchens
from different cities. Inside this dataset, there are 2032 nouns of 31 classes. These classes
are explicit appliances, baked goods and grains, cleaning equipment and material, containers,
cookware, crockery, cutlery, dairy and eggs, drinks, fruits and nuts, furniture, materials, meat
and substitute, prepared food, rubbish, spices and herbs and sauces, storage, utensils, vegetables
and others in the dataset. Some nouns belong to more than one category. Some other nouns
refer to the same object; for example, there may be a commonly used brand name for a grocery
object. For this reason, I performed data cleaning to add the corresponding objects to the
correct object type instead of having a different value, e.g., v6@ is a type of maker:coffee.
Other nouns are part of existing objects; in that case, they are kept as the interaction with them
is important to consider, e.g., door :microwave and oven:microwave. All these nouns were
transformed to the naming convention of KNOWROB, which means capitalization, removing the
colon separating the name (door :microwave in Epic Kitchen syntax) and changing the word
order when necessary (MicrowaveDoor in KNOWROB syntax). The Epic Kitchen 100 dataset
provided 1750 new nouns to the SKB.

To add nouns to the SKB, each noun of the Epic Kitchen dataset was compared with the ones
already present in KNOWROB. This was done with the check process described before in
Chapter 6. Each noun is compared to an OWLIndividual to verify its existence in the SKB.
This comparison is performed automatically by using the SM verification system. This function
received the list of nouns and categories. If the noun does not exist, its category is obtained
from the dataset and added to the KB. If the noun exists, its category is compared with the
existing one and either a new connection is added, or kept as it is. Some categories added were
grains, crockery, dairy, fruits, nuts, meat, substitute, rubbish, spices, herbs, utensils, vegetables
and cleaning material. The categories of the nouns added are presented in Figure 4.5. Blue
represents the nouns already present in KNOWROB, and orange represents the new additions.
This process serves to include information from other datasets into the KB.

Verbs were also added to the SKB; in the same way as for nouns, verbs were compared with the
ones already present inside the KB. The categories of the verbs added are access, block, clean,
distribute, leave, manipulate, merge, monitor, order, retrieve, sense, split and transition. In
total, 856 verbs were added to the KB, from which 723 came from the Epic Kitchen 100 dataset
and 133 from Table 4.2 (actions and sub-actions), their type is presented in Figure 4.6. In the
same way, as in a previous figure, verbs already shown in KNOWROB are presented in blue and
new additions in orange.

Similarly to the verification process mentioned above, a verification is performed to add knowl-
edge to the SKB. First, the robot generates a recording from the execution described in an OWL
format. These are referred to as episodes. Then, some questions are asked about the execution,
primarily related to the actions’ structure and the success level. If the sub-actions were executed
successfully, they are added to a temporal structure that is compared to the KB's existing one.
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Figure 4.5: Epic Kitchen dataset noun additions to Semantic Knowledpe Base.
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Figure 4.6: Action additions to Semantic Knowledge Base.

If the action-sub-action pair does not exist yet; it is added following the existing taxonomy
structure. If the pair already exists, a comparative process takes place. If they are different, the
robot has to execute the pair from the KB and then both executions are compared to select the
one with the best results.

Even though not all the new nouns and verbs are used in this work, this extension serves for
future applications. One example is the inclusion of various cleaning materials and equipment.
The PSR requires them to be more useful cleaning tasks house environments. However, the
focus of this work is cooking actions.

Overall, the SKB provides a way to represent and reason about knowledge in a structured format
that captures the meaning of concepts and their relationships. This is useful for the domain of
PSRs as they have to reason about complex relationships between entities.
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4.2. Knowledge system for a Personal Service Robot

4.2.3 Procedural Knowledge Base

The Procedural Knowledge Base (PKB) describes how to perform manipulation actions. [t
contains a set of procedures and heuristics used to perform a particular action. Each procedure
specifies a set of actions and sub-actions that can be taken in response to a particular condition

or event.

Procedural Memory (PM) is related to skills. It is important to note that skills depend on the
executor’s knowledge [Russell and Norvig, 2003, p. 240]. This means that how the system
behaves depends on the knowledge it contains about how to execute actions. This is why
procedural knowledge is required by a Personal Service Robot (PSR) to perform manipulation
actions. As mentioned before, the Procedural Knowledge Base (PKB) stores knowledge about
skills. 5kills in this work include cognitive and psychomotor domains; as the machine does not
have emotions yet, the affective domain is excluded [Bloom et al., 1971]. The cognitive domain

includes interactions between concepts and other skills. Skills are process-oriented, related to

actions and sub-actions commonly described using verbs, see Table 4.2. Figure 4.7 presents
some examples of the verbs in the table as follows: the sub-action release is represented as
ReleasingGrasp0fSomething, reach as Reaching, push as PushingAPartOfDevice, pull as
PullingAPartOfDevice, retract as RetractingAnArm and grip as GrippingAPartOfDevice.
Sub-actions (orange) have features represented in the figure by lines of a different color for
clarity. These features are previousAction (dashed and dark green), nextAction (continuous
and light green), positionInExecution (continuous and yellow) to build the sequence in
which actions and sub-actions are executed. In the case of the sub-action Reaching, it does not
have a previousAction as it is in the first position in the execution of the action. Similarly,
the sub-action RetractingAnArm does not have a nextAction, has is the last in the execution
of the action. They also have features such as trajectory (dashed and red), executionTime
(continuous and turquoise) that are present in all of them. Some of them have extra features
such as objectActedOn (dashed and dark blue) and graspType (turquoise) that are specific for
PushingAPartOfDevice, PullingAPartOfDevice and GrippingAPartOfDevice. To comple-
ment the knowledge stored in the PKB, grasp postures are added in the graspType (continuous
and black) feature besides trajectories.

When a query is made to the PKB, the system searches for a set action and sub-action pairs that
match the query criteria. This involves evaluating the conditions of each sub-action and selecting
the one most appropriate for the current situation. Once a set of action and sub-action pairs has
been chosen, the system sends them to the WM for the execution of those pairs specified to
perform the task or solve the problem. This involves a sequence of steps or actions that must be

performed in a specific order.

Besides, this work considers the motions and trajectories to represent the actions and sub-actions
[Paulius and Sun, 2019] and details such as the semantic meaning. This meaning includes
changes and consequences of sub-actions in the environment as an effect, which depends on

perception for being detected.

83



Chapter 4. Knowledge handling by Personal Service Robots

Figure 4.7: Simplified example of actions and sub-actions present in the Procedural Knowledge Base.

The associations present in this KB [Ramirez and Valdes, 2012, p. 59] include information on
the nature of the relation, which enables more complex reasoning processes, and where it is
valid. An association can be defined as a relationship between two representation units, such as
concepts and skills.

The PKB is updated and refined over time by incorporating knowledge based on real-world data

as a response for executions of the selected actions and sub-action pairs.

Overall, the PKB provides a way to represent and execute knowledge about performing a
particular action or solving a specific problem. This is useful in this domain because the tasks
and issues are well-defined and can be decomposed into a set of procedures.

4.2.4, Episodic Knowledge Base

The Episodic Knowledge Base (EKB) represents concepts of episodes and events, discrete
experiences that can be recalled or retrieved from memory. The Episodic Knowledge Base
(EKB), as mentioned before, stores knowledge about the experience, in this case, recorded
previous action executions. There is a difference compared to the episodes discussed before. In
the EKB, information is organized around these episodes rather than around abstract concepts

or categories.

When a task is executed, it is encoded into the EKB as a new episode. This involves capturing
different aspects of the experience, such as the time, location, objects involved, and other
contextual details.

In the case of episodes, they store execution information, which includes low-and-high-level
data. They have times, positions, actions and sub-actions from more than the agent but also
the environment. The EKB, on the other hand, stores a compilation of the episodes. This
compilation includes analyzed information from the execution, such as the duration of execution,
success, encountered issues, etc. In Figure 4.8, some of the elements of the EKB can be seen.
The actions are represented in blue. The sub-actions have an orange color. There are global

features that track the agent’s performance, which are marked in dark green. For example,
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4.2. Knowledge system for a Personal Service Robot

the successlevel verifies the percentage of success of all successRate for each sub-action
over time. The successRate is measured by the number of failures against successes and if
those failures were solved. These features serve for future improvements. On the other hand,
local features are related to one-time task execution (light blue) or one episode. For example,
timesExecuted counts the executions of a specific sub-action inside an action, which can be part

of failure solving.

Figure 4.8: Simplified example of global and local features present in the Episodic Knowledge Base.

When a query is made to the EKB, the system searches for episodes that match the query criteria.
For example, a query might ask for all episodes that occurred at a specific ime and place or that
involved a particular object. Furthermore, the system can also use associative links to connect
episodes with common features or contexts. This helps to retrieve related episodes that might
not match the query criteria directly but are still relevant to the task execution needs.

The EKB updates when new similar episodes are added. The system uses this information to
refine its understanding of the context and improve its future recommendations. Verification
is performed to add new elements to the EKB, similar to the process mentioned above for the
Semantic Knowledge Base (SKB). As mentioned above, the robot records its executions and
stores them in episodes. Then some queries are asked about the execution, especially related to
the level of success, repeatability, time of execution and intermediate steps. There are global and
local features attached to actions and sub-actions. Global features allow the system to keep track
of statistics of performance for further improvement, e.g., if a sub-action can only be executed
a few times, and some additional analysis can be performed. Local features store information
related to the specific execution that can add to other statistics and analyses. This analysis can
be performed either by the system or by the programmer. That is how the Episodic Memory
(EM) can know what happened at a specific time, as the day-time information is also stored.
Even if a sub-action was not executed successfully, it is includes its success and the type of
error encountered. If an action-sub-action pair does not exist, it is added following the existing
taxonomy structure. If the pair already exists, it increases the global number of executed times
and adds all the available features of the execution to the particular variables.
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Overall, the EKB provides a way to organize and retrieve information based on discrete events
or experiences rather than abstract concepts or categories. This is useful because context and
personalization are essential for the PSRs’ caregiving tasks.

4.3 Summary of this chapter

This chapter presents concepts of knowledge relevant to this work. One of the main concepts
present is Knowledge Representation. It includes a comprehensive introduction to the types
in which knowledge can be represented in Knowledge Bases (KBs), the main application used
in this work. The KBs created in this work use ontologies, which are also introduced in this

chapter.

This chapter presents the contents of the KBs created in this work. Specifically, the Procedural
Knowledge Base (PKB) includes actions and sub-actions with their structure, movement pat-
terns, trajectories, etc. The Episodic Knowledge Base (EKB) stores the occurrence of events,
comparison actions and sub-actions and executed plans, among others. And finally, the Semantic
Knowledge Base (SKB) builds on top of KNOWROB concepts. With these KBs, the robot’s
knowledge is increased for future executions.
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Chapter

Human manipulation action
recognition from virtual reality data

As mentioned in previous chapters, a Personal Service Robot (PSR) requires particular capabili-
ties to perform tasks successfully in human environments, especially caregiving tasks. Today,

high-performance robot arms are faster, more accurate and more potent than humans. However,
human manipulation capabilities still need to be improved beyond the ones of such robots. The
main reason is that humans’ neural information processing and control mechanisms are much
faster than those in robots.

Before PSRs can perform manipulations, they need to detect which action elements are necessary
for successful execution, for example, a grasp type required to grab a full cup. In particular,
it is interesting for this thesis work to identify the structure of manipulation actions related to
cooking activities to introduce them inside an execution plan. Cooking actions are selected as
they require various manipulation actions that PSRs must master and be considered suitable
workers in human environments | Yang et al., 2015b]. In this sense, a robot should understand
the interaction between perceptual, leamning, reasoning, planning and control mechanisms well.
The robot should select the tool to act on the desired object during manipulation. For example,
the robot should manipulate a bottle differently depending on whether it intends to fill a glass or
put it away. Inside the robot’s control system, concepts should be defined regarding their roles
in actions, experience and knowledge. These concepts could be acquired from the observation

and performance of activities.
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In the case of the observations, the area of imitation learning suggests observing humans.
Therefore, this area is called, more specifically, Programming by Demonstration (PbD) or, from
the robot’s viewpoint, Learning from Demonstration (LfD). In this thesis work, demonstrations
are used as an initial source of knowledge for unknown actions. They are also significant
examples of complex manipulations where the robot can not find a competent solution or can
present a future problem in a human environment that the robot needs to be made aware of when
acting. For example, the orientation of the pan’s handle on the stove might seem insignificant
from the robot’s point of view. However, if the handle is placed towards other burners that are in
use, it can get hot. This can damage the robot’s gripper (depending on its material) or burn a
human hand if touched directly. Similarly, the knife’s orientation is vital to avoid injuries when
passing it to a person.

One problem is that such observations come from action executions that, particularly manipu-
lation actions, present a challenge because of the large number of variations in how they are
performed [Yang et al., 2015b]. For example, as they have other goals, the desired grasping
type could differ for a plate transported with food on top and a vessel from the dishwasher to its

storage locations.

By taking this into account, this chapter presents first an overview of manipulation actions
studied in humans and robots in Section 5.1. There, the definitions of actions and sub-actions
used in all this thesis work are presented. It also offers state-of-the-art systems to classify
actions.

The knowledge needed by PSRs can come from different sources. Since humans are experts in
performing everyday tasks with the human body and adapting to changes, they are a reliable
source of knowledge. This knowledge can come in different ways, such as language instruction,
demonstrations in videos or Virtual Reality (VR), etc. However, this knowledge must be
represented in how the robot can understand. On the one hand, semantic knowledge about the
environment is required to understand the robot’s surroundings. On the other hand, specifics
about how to perform actions and naive physics, known as commonsense knowledge, are also
required when trying to perform such actions. One question is how to represent this knowledge.
One example is to use situations like in the robot Golem [Pineda et al., 2013]. Other options
can be tasks or actions used in this work. Another question is how much information should be
included. Based on these questions, it is essential to explore how different robots represent the
actions they perform. Some of the robots presented in Appendix Table A.2 use a hierarchy to
include concepts about tasks and actions in an ontology, which is also used in this thesis work.
An ontology organizes concepts from the world into a hierarchy of categories. A category is
a member or a more complex object that has a relation to other members. For example, if we
consider all members of the category Food are edible, and then we add Fruit as a subclass of
Food and Apple as a subclass of Fruit, then we know that every Apple is edible. Subclass
relations organize categories into a taxonomy or taxonomic hierarchy. The ontology serves to
represent knowledge, which seems similar to Semantic Memory (SM ) [Kotseruba and Tsotsos,
2018].
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It is essential to give some definitions before entering the rest of the chapter. These definitions
are related to perception motion [Bobick, 1997] and physiology [Saladin, 2004]. Movements
are the most atomic primitives that can be defined as a type of motion. Motion is a definite
trajectory in space and time. In the case of the kinematics of the human body, motion involves

increasing or decreasing the angle of the joints.

An activity analyzes the statistical properties of the movement. Then, activiry refers to sequences
of movements or static states [Bobick, 1997]. It can be seen as a purposeful action or occupation.

Actions are larger-scale events, including environmental interaction and causal relationships
[Bobick, 1997]. An action can be defined in terms of movements similar to an activity. However,
an action includes semantically rich descriptions of causal relations with those movements. In
other words, an action has semantic concepts related to the context of the motion. It requires an
interpretation of the context, which can be seen as a set of constraints on possible explanations

for the observed movements.

5.1 Manipulation actions

Cognition is believed to be interconnected to action [Rosenbaum et al., 2012], as human and
animal object manipulation reflects their intentions. Even more, the way an object is manipulated
indicates the understanding of the object’s functionality and physical composition, e.g. the
Spoon can be used for eating and may be picked up by its Handle rather than its Bowl because
of sanitation or etiquette concerns. Therefore, the definition of an end-state comfort effect i1s
given, in which a person manipulates an object in an initially awkward posture to get a better

final one, in many cases.

Different types of planning are required to perform manipulation actions by considering planning
as the steps needed to achieve a task. One of these types is first-order, which depends on
immediate task demands. Another is second-order, which is modified depending on the next
task to be performed. Most robots are capable of first-order planning. In the case of humans,
planning abilities increase from age 3 to 10, but it is not clear when second-order planning
appears. Still, children’s planning abilities are less robust than in adulthood.

The correct sequence of actions in everyday life is usually learned or selected through experience.
The idea of how to build plans from actions and sub-actions comes from the work by Johansson
and Flanagan [2009]. This work mentions that manipulation tasks can be broken down into
action phases delimited by the mechanical events representing subgoals. Those mechanical
events have specific auditory and visual patterns. Such patterns are related to object properties
and the actuator, the hand in this case. If an error occurs, the representation of the object’s
properties can update the plan for further execution.

But also, the skills required to perform manipulation must be transferred through social interac-
tion rather than book learning [Collins, 1993]. In this thesis work, we use demonstrations and

experience.
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541 Types of actions

According to Aggarwal and Xia [2014] and depending on the environment, human actions have
different forms ranging from simple to complex. These actions are conceptually categorized
into atomic, single, and complex, containing a sequence and group of other atomic actions and
interactions such as person-object and person-to-person. Many human actions are complex: two

examples are assembling furniture or food preparation [Ziaeefard and Bergevin, 2015].

This thesis work focuses on atomic and complex serving and food preparation actions. Complex
actions will be referred to simply as actions, while atomic actions will be referred to as sub-
actions. In one example presented in the introduction, Pouring hot water into the cup requires
sub-actions, such as Reaching, Grasping, Lifting and Tilting the water kettle. This division
is made for representation and planning purposes, detailed in Chapter 4.

Another way of classifying an action is inside everyday actions, also known as usual, which
connotes a routine [Collins, 1995]. Everyday actions follow the rules in their order of execution.
We almost always know when we have broken those rules, for example, when we start mopping
the floor before pouring water into the container to make the mop wet. This type of action is
also attractive to this thesis work as they are repetitive in daily human life and are generally
called chores.

51.2 Actions in real or virtual environments

Actions executed in natural or artificial environments depend on perceived opportunities, not on
the environment [Rosenbaum et al., 2012]. This hints that actions recorded in virtual scenarios,
such as Virtual Reality (VR), might be a good way of obtaining data. Even further, virtual
grasp conditions would map onto the same hand position and grasp type as in the real grasp
conditions. This is because mental representations from grasp postures to be performed are
available even before movement happens. So far, there is no objection to performing a specific
manipulation action in virtual environments. However, using such data as a demonstration

brings some challenges.

Even more, the Virtual Reality (VR) 3D motion caption system (Mocap) is an advantage against
natural execution captured in a video. This advantage is the fact that the data collected would
not need to deal with common vision issues while being processed [Aggarwal and Xia, 2014],
such as the number of camera viewpoints. The motion caption system (Mocap) technique has
mainly been used to animate computer graphic figures for motion pictures and video games,
analyze sequential mechanics of athletes and monitor recovery progress during physical therapy.
One disadvantage is that this technique records only specific point locations, e.g., where sensors
are present. human activity recognition (HAR) and activity recognition systems (ARS) have
emerged thanks to the advancement of this sensor technology. These sensors measure human

movements and interactions while performing activities of daily living (ADL), referred to here
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as everyday actions. The activity recognition systems (ARS) should extract features based on
joint positions and angles to use the Mocap technique.

As mentioned before, the method used to record human examples for this thesis work is the
implementation by Haidu and Beetz [2016]. Their work is extended by adding more objects to
the virtual environment, including their semantic properties into the knowledge base. This is
because, even when the previously created environment includes various objects and properties,
it still needs tools and everyday objects to perform cooking activities. Some examples of these
tools are a hand mixer, pans and pots. Objects such as fruit and vegetables were also missing
from that virtual environment and are added for this thesis work.

5.1.3 Action segmentation, classification and recognition

The control of object manipulation depends on sensorimotor mechanisms that exploit predicted
and actual contact events [Flanagan et al., 2006]. To understand how we give meaning to the
actions performed by others, there is a proposal called the direct matching hypothesis [Flanagan
and Johansson, 2003]. It stipulates that action understanding is achieved by a mechanism that
maps an observed action onto motor representations of that action.

Based on neuropsychological evidence [Ziaeefard and Bergevin, 2015], humans recognize both
the movement (physical) and action (semantic) goals of individuals. Physical goals are related
to the kinematics of specific movements, e.g., Reaching toward the left. Conversely, semantic
goals are related to functional expectations that lead to movement execution, e.g., Reaching
toward a glass, shown in Figure 5.1. Identification and description of activities and actions are

referred to as activity analysis.

Movement sequence

Reaching a Glass
with RightHand

Figure 5.1: Example of Reaching sub-action for a Glass with the RightHand.

According to Zacks et al. [2009] and Zacks and Swallow [2007], to identify an action, it is
required to know its body motion, intention and effects. In this case, event segmentation is
viewed as breaking up continuous activities into meaningful events, a side effect of understanding
and prediction in the Event Segmentation Theory. The human brain and mind can track and
perceive changes in environmental features. This perception of change happens using sensory
characteristics such as color, sound and movement and conceptual features such as cause-and-
effect interactions and actor goals.
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Then, various tests were performed in which people had to segment activities from videos
[Zacks and Swallow, 2007]. These tests found that everyday event timescales go from just a few
seconds to tens of minutes. For example, fine-grained events associated with specific actions on
an object, see Section 5.1.1, take around 10-to 135s, and coarse-grained events related to action
contexts, e.g., goals and causes, take about 40—to 60s. These times serve to verify the action
segmentation performed in this thesis work and are presented in Section 5.2.1.

Traditional HAR methods rely primarily on tracking and motion capture [Ziaeefard and Bergevin,
2015]. Recent approaches use mid-level features such as bag-of-word (set of words) that include
features of actions. The work by Ryoo and Aggarwal [2009] uses a similar approach by
maintaining their representation of the temporal and spatial structure of the target activities.
They represent a high-level human activity in terms of relationships between simpler activities.
They see actions’ and interactions’ temporal relationship as very important to describe them, as
they can be defined by a sequence of subevents using Allen’s interval temporal logic, such as
before, meets, overlaps, starts, during and finishes. This interval temporal logic representation
[Allen and Ferguson, 1994] relates periods to the actions and events and their effects.

The work by Aggarwal and Xia [2014] mentions that the goal of human activity recognition
(HAR) is to detect and analyze human activities from sensor information automatically. One
source of data is Red Green Blue Depth (RGB-D), which requires depth sensors together with 2D
images. This type of HAR development began in the early 1980s. Nowadays, there are sensors
capable of recording the execution of activities in virtual environments. There are three main
types of sensors: accelerometers, magnetometers and gyroscopes. They measure the motion and
direction of the object of the body part they are attached to in the space.

Nowadays, humans can also record demonstrations via teleoperation, e.g., the work by [Seo
et al., 2023]. This means that the human directly controls the robot’s movements and records
them. That way, the robot learns the movements required with their parameters. However, this
thesis work uses a different type of recording that does not require specific equipment mounted
into the robot.

The approach implemented in this thesis work is also similar to the one presented by Ramirez Amaro
[2014] and Diehl et al. [2021], as the activity observation and the intentions are detected one
after the other. The difference with her approach is that the demonstrations stored in a hierarchy
are transferred directly to the robot without an intermediary. On the other hand, in this thesis
work, the Working Memory (WM) serves as an intermediary by receiving the command and
returning the actions and sub-actions the robot requires to solve the task.

Some examples of these semantic features are the description of objects related to their parts (a
cup’s handle), shape (cylinder) and materials (ceramic). In this thesis work, semantic features
are used for human action recognition, similar to the work of Ryoo and Aggarwal [2009] and
Ziaeefard and Bergevin [2015]. The system matches semantical representations with actual
observations. In this thesis work, semantic information is used first and then as a classification

technique.
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Another approach is to use the human pose to distinguish actions, which is also used in this
thesis work. Pose-based techniques are more robust to intra-class variety than appearance-
based methods used in computer vision. Intra-class variety is related to actions that seem very
similar to other ones, for example, Pull and Push, where the difference is the direction of the
movement. However, pose-based methods require selecting the sensors to measure specific
attributes [Alpoim et al., 2019, De-La-Hoz-Franco et al., 2018]. The data coming from the
sensors has to be processed in different stages, such as preprocessing, segmentation, feature
extraction, dimensionality reduction and classification. As HAR systems processing the data
offline provide generally better recognition performances, the system presented in this chapter
works offline.

A very similar system to the one implemented in this thesis work is the Automated Probabilistic
Models of Everyday Activities (AM-EvA), which perceives, interprets and analyses everyday
manipulation tasks and activities of daily life [Beetz et al., 2010a]. The difference between this
work is that subevents such as PickingUpAnObject, Carrying and PuttingDownAnObject
related to the action PuttingSomethingSomewhere are named sub-actions and include more
features.

A more recent and similar approach uses the same type of data and inspects it through openEASE
[Kazhoyan et al., 2020a], which is a web interface for answering queries with a graphical visual-
ization. There, the data is analyzed to segment the continuous data stream of observations into
human action sequences. In this case, the context of the task is known beforehand. Furthermore,
Fuzzy Markov logic networks (FUZZY-MLN) are used as a statistical model to infer the discrete
grasping poses. In contrast, this thesis implementation can recognize the actions and sub-actions
without knowing the context beforehand or prior analysis.

Even when there is success in HAR, some issues are handling intra-class variability and inter-
class similarity of actions [De-La-Hoz-Franco et al., 2018]. This means that individuals perform
the same action in different ways, including various body part movements, and two separate acts
may be too similar in the spatiotemporal details. For this reason, this is still a complex problem
for algorithms using various types of data. Also, in most cases, it is impossible to compare the
different HAR approaches as there is not a standard dataset that allows the validation of many
of these approaches, see Section 3.1.5.

To recognize actions, machine learning techniques can be applied. As mentioned in previous
chapters, there are two main types of leaming, supervised and unsupervised [Nilsson, 1996].
Supervised learning, or learning with a teacher, uses known values associated with an input or
labeled examples. Each example pairs unique input signals and a corresponding desired (target)
response. One example of this would be that given the trajectory of the hand (xq, ..., zn), (y1,
wees Un )y (214 .oy Zn) for the sub-action performed Reaching as a label for that trajectory. Then
trajectories are used to train the model of the sub-action to identify if other trajectories can be
classified as the same sub-action. On the other hand, unsupervised learning, or self-organized
learning, trains a model with a set of data as inputs, from which the associated values are
unknown. The model tries to classify the inputs meaningfully when the training is performed.
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This thesis work uses a semi-supervised learning approach for the HAR system. That means we
take some data with labels combined with those without them. The resulting model predicts
data class memberships based on what it learned during training [Aggarwal and Xia, 2014].
Both types of learning divide the data into training and testing for evaluating the resulting
learned model, see Figure 5.2. A complete machine learning process can be seen in Chapter 2,
Figure 2.2

C:D ML algorithm

Training » training
data hyphotesis
generation
C—:)/' —
Data
cleaning/
preprocessing
"-.._________,.-"\‘Q h J
Test ML algorithm
data > evaluation > Accurscy
e

Figure 5.2: Example of data separation for a learning algorithm.

Among the classification approaches commonly used are Data-Driven Approaches (DDA) and
Knowledge-Driven Approaches (KDA). DDA are based on machine learning techniques with
a pre-existent dataset. KDA build an activity model based on rich prior knowledge from the
application domain. In this work, DDA classification is implemented using a Recurrent Neural
Network (RNN) with Long Short Term Memory (LSTM ). This is because the best accuracies
were obtained when applying the segmentation technique using this type of classifier.

In this case, to understand how Recurrent Neural Network (RNN) works. It is essential to know
some background about how ANNs work, see Chapter 2, Section 2.3.4. A RNN is an ANN that
keeps track of its input data. RNNs are models suited for processing sequential data [Henaff
et al., 2016].

541.4 Learning from Demonstrations

The human activity recognition (HAR) system is used to provide a representation of action-sub-
action pairs inside a Learning from Demonstration (LfD) system. LfD requires observations
recorded by sensors and acquisition systems to store the information. There are common aspects
of LfD among most applications. The first is a reacher demonstrating the desired execution
behavior. Another is a set of these demonstrations provided to the learner (robot), and from
them create a policy to reproduce those behaviors. This typically happens offline. The difference
between online and offline learning is the moment it happens. In offline learning, the data is
processed outside and then given to the learner (robot) or inside before or after execution time.
In the case of online learning, it happens during task execution and inside the learner. They both

94



5.1. Manipulation actions

have advantages and disadvantages. One is that offline learning allows for a more extensive
data analysis. On the other hand, the result is immediately available with online learning. This
imitation technique presented in this work uses external sensors on the demonstrator’s body to

record the execution and an offline method to analyze the data.

Some LfD implementations, like the one in this thesis work, extract the teacher states/actions
from this recorded data and then map the extracted states/actions to the learner. This type of
algorithm aims to reproduce the underlying teacher policy, which is unknown, and to generalize
over the set of available training examples. The examples are sequences of state-action pairs that
are recorded during the demonstration. The policy helps obtain valid solutions and, in that way,
handles similar situations that may not have been encountered during demonstrations. In other
approaches, the reward function is directly learned from the demonstration data [Argall et al.,
2009]. The reward function scores the robot’s behavior by identifying good or bad actions.

The second phase of this approach requires the action plans generated by the robot to be updated.
For doing so, one method is using a planning framework that represents the policy as a sequence
of actions that lead from the initial state to the final goal state. Actions can be defined in terms of
pre-conditions and post-conditions or teacher annotations. Another approach is based on policy
execution failures where the robot recognizes when it cannot complete its task (for example,
due to a physical obstruction) and asks the help of a human. Though in this work, the robot
identifies a task failure, it does not identify the failure cause or modify its policy.

Similarly to the work by Brooks et al. [2004], this thesis work produces a representation. These
representations are created after the demonstration recordings and include tasks and actions
with an added notion of goals. This way, when the robot learns a new action, it also gets the
goals associated with each sub-action, see Section 5.2.4.

Systems using VR-based demonstrations use different mechanisms to recognize actions and
integrate them inside robotic platforms. For example, one system using the same virtual
environment as this thesis work uses statistical models use known context and event to identify
actions with probabilistic methods to increase their level of success [Kazhoyan et al., 2020a],
but requires knowing the executed tasks to identify the actions. In this thesis implementation,
this context is not needed. A different approach by Lucci et al. [2022] uses semantic information
and state machines to detect the actions. However, the tasks are simple (staking cubes) and the
robot cannot recover quickly from an already given post-condition. Another approach using
semantic representation is the work by Diehl et al. [2021]. This work has a high success rate
with staking actions and has yet to be tested for other cooking-related actions. Another approach
by Zhang et al. [2021] uses activity definitions similar to the rules presented in Table 5.2 and
decision trees. However, the success rate is lower and recognizes fewer actions than the system
presented in this thesis implementation. Another approach is the work by Bajracharya et al.
[2020], where a demonstrator can teach a behavior to the robot by setting the parameters for
the actions. On the contrary, this thesis implementation takes the parameters from recognized
sub-actions given by the recording system.
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51.5 Datasets

As mentioned earlier, many human activity recognition (HAR) approaches use different datasets
and are not easily comparable. One classification for datasets is by the types of events or level of
activity detail they present [De-La-Hoz-Franco et al., 2018]. In this case, it is the data generated
after segmentation and classification from data obtained from the VR framework. It provides
events between actors, such as hands, objects, heads, etc. The end dataset includes sequences of
cooking-related actions and sub-actions according to the definition presented in Section 5.1.1.
These sequences include features such as one or various Pre-State, Goal, ObjectActedOn,
GraspType, Hand used, which depends on the specific action. For example, the action go does
not have an ObjectActedOn.

It is essential to have adequate sensors and a data-gathering system to produce the data included
in datasets. One example is incorporating multiple, synchronized information streams from
actors and the environment [Aggarwal and Xia, 2014]. With this kind of system, it is possible to
track positions and orientations from the head and hands of participants. It is possible to record
a video and track all objects with which there is an interaction. In the implementation used in
this work and presented by Haidu and Beetz [20116], the interaction video can also be recorded;
see Figure 5.3. The advantage is that all locations of objects are known; as it is a VR system,
the head and hands are also tracked. However, the fingers are not included, as the controllers
that track the hands do not have this feature.
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Figure 5.3: From VR to episodes.

Another dataset example is HumanEva, which includes seven calibrated video sequences
synchronized with 3D body poses from a motion capture system of 4 subjects performing six
everyday actions (e.g., walking, jogging, gesturing, etc.) [Sigal et al., 2010]. The TUM Kitchen
dataset demonstrates several subjects setting the table differently [Tenorth et al., 2009]. It also
includes motion tracking of the subjects. The work by Ziaeefard and Bergevin [2015] presents
the Willow action dataset, which consists of 454 images and nine types of actions such as
phoning, playing an instrument, reading, riding a bike, riding a horse, running, taking

a photo, using a computer and walking. None of them are related to cooking activities.

Related to cooking, most datasets are for vision and have a third-person view. Some examples are
the YouCook dataset, which includes 88 YouTube cooking videos [Das et al., 2013]. Similarly,
the Max Planck Institute for Informatics provides the Cooking Activities dataset with some
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pose estimation and activity recognition algorithms [Rohrbach et al., 2012]. The largest dataset
to date is the Epic Kitchen, which provides first-person (egocentric) viewpoint recordings in
32 native environments, i.e., the wearers’” homes, in 4 cities [Damen et al., 2018]. It does not
include body positioning information. However, they are not recorded in VR or have depth
information. As mentioned earlier, we take some of the objects of the Epic Kitchen dataset to

have them in our virtual environment.

5.2 Human Action Recognition from Virtual Reality data

The action words or verbs used in this work are presented in Table 5.1. As mentioned in previous
chapters, it includes manual and locomotion verbs related to serving foord and cooking tasks.
Manual verbs include object manipulation. Locomotion verbs require full-body movement.
The verbs are divided into actions and sub-actions. As mentioned, basic or atomic actions are
sub-actions, one level above body part movements. Movements are defined by the increase or
decrease of the angle in the joints [Saladin, 2004]. An action is the combination of sub-actions
or other actions.

The approach used in this thesis work performs action recognition offline with data collected
from the Virtual Reality (VR) of right-handed people. The VR system does not have tactile
feedback from the objects. However, contact events are predicted and monitored, as in the
work by Johansson and Flanagan [2009]. The goal is to produce episodes used by the Episodic
Memory (EM); see Chapter 6, Section 6.2.2.

Data is acquired using the VR system mentioned before. From this system, raw data is recorded,
which includes time, position, and orientation of objects, hands, head and furniture. To limit the
file size, it does not record the position of the hands and head for each time step but only when
there is a change in position. But, it also records high-level data, which includes events and
objects acted on; see Figure 5.4a. The events include the contact between objects, their state,
and if an object was grasped.

The object type, such as Sauce, Spice, Box-Container and ContainerArtifact, among
others, defines the grasping type of the GrippingAnObject sub-action as IntermediateGrasp,
PowerGrasp or PrecisionGrasp. One example is to grasp a teaspoon with precision and an

empty cup with an intermediate grasp type.

For the data preprocessing, raw and high-level data are merged to apply rules and machine
learning methods; see Figure 5.4b. One of these methods 1s a set of if-else rules to segment
sub-actions; see Section 5.2.1. Another method is a decision tree introduced in Section 5.2.2.
Finally, a Recurrent Neural Network (RNN) classifier is also used and tested; it is presented in
Section 5.2.3 and Figure 5.7.

All these methods increase or reduce the confidence of the recognized action and sub-action.
Then, this confidence measure from each of them is compared to then select the highest. Finally,

a representation in the form of episodes is obtained, as shown in Figure 5.4c.
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08

Table 5.1: Manual and locomotion verbs.

Actions Sub-actions
acquire | close fetch knead pick |simmer | approach
add | collect fill layer pill sleeve carry

apply |combine find leave pinch | slice flip
arrange | compare fit let poach | smoke grip
assist | connect fold level pour soak hit
attach | cook form liquidize | produce | spill move
bake | count fry locate puree | spray | perceive
beat | cover get lock put spread press
blanch | crack give lose regulate | sprinkle pull
blend | create glaze lower replace |squeeze push
boil crush oo make remove | start reach
bone | curdle grate manipulate| return stay release
break cut grease marinate rinse steam retract
bring |decorate grill measure roast stew say
broil | defrost grind melt roll stop separate
burn dice halve mill rotate take shake
carve | dilute heat mince |scramble| stuff stir
clean dip help mix seal strain throw
change | dissolve hold mount search | thicken tilt
chill | drain |incorporate| obtain season | trim touch
choose | drop increase operate select | transfer turn
chop dry introduce order serve use wait
clear | empty join peel sharpen | wash whisk
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Figure 5.4: HAR process.

The hierarchy and names of action and sub-action pairs need to be known. For that to happen,
the semantic knowledge is queried to get them. Specifically, the KNOWROB packages' used are
knowrob_actions, knowrob_mongo and knowrob_objects. The knowrob_actions package
includes the description of actions organized in a hierarchy and can consist of sub-actions,
pre-conditions, effects and actors. The knowrob_mongo package integrates the raw data into
the information. The knowrob_objects package includes geometrical and visual properties of
objects, such as color, dimensions and position.

Prolog Query 6 lists of all sub-actions in the lower hierarchy level with their upper level. It

looks for all the actions Act with the property sub-action Sub in the packages to build a list
ActionList. This is only required once.

Prolog Query 7 gets all atomic actions and creates a list with them. This is to verify if any is any
missing because it has no sub-action in Prolog Query 6. It looks for all the subclasses of the
tasks Task that belong to the class knowrob: 'Action’.

After both lists are created, a check is performed to verify the actions and sub-actions repeated
and the ones that only appear once. From them, one final list is created with sub-actions to know

! github.com/lizy azpin/knowrob
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Prolog Query 6 Find all action-sub-action pairs.

| findall(
2 ActionList,(

3 owl_class_properties({Act, knowrob: subAction, Sub),
4 ActionList=[Act,Subl),

5 ActionList

6 ).

Prolog (QQuery 7 Find all actions.

| findall(

2 ActionList,(

3 owl_subclass_of (Task,knowrob:aAction),
4 ActionList=Task),

5 ActionList

6 ).

the lower level already present inside KNOWROB and used for naming. As mentioned, actions of
interest for this thesis work are related to cooking and serving food. The specific actions present
in KNOWROB are boiling food, setting the table, pouring, adding an ingredient, cutting,
opening and closing, loading and unloading a dishwasher and turning on and off a heating
device. Each requires a sequence of sub-actions not present before inside KNOWROB are created
for this thesis work. The final representation was presented in more detail in Chapter 4.

The segmented activities’ features include individual object speeds and accelerations, and
the distance between objects. More specifically, there are 15 variables to describe the actors’
movement, i.e., the speed and acceleration of each hand and the head, pairwise distances between
the tracked points, in this case, the left and right hand and the head, pairwise relative speeds
and accelerations. This is explored in a sub-action segmentation implementation presented in
Section 5.2.1.

The system used here can detect contact events in an execution timeline. The events related
to grasping are GraspingSomething and GraspingMulitpleltems. States of the furniture
are identified by their level of completeness. In the case of doors and drawers they are identi-
fies as FurnitureStateClosed, FurnitureStateQpened, FurnitureStateHalfClosed and
FurnitureStateHalfOpened. There is another identifier for the touching event identified as
TouchingSituation [Haidu and Beetz, 2016]. They help the identification of manipulation
actions while segmenting in this work.

5.21 Sub-action segmentation with if-then and if-then-else rules

The data used in this case includes hands, head, furniture and object positions. Also, the time,
event and object and furniture names are included. The head orientation is significant, reflecting
the attentional focus while acting [Breazeal, 2009]. For that reason, the head position and
orientation are used in this segmentation implementation, as well as the orientation of the hands.
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Segmentation in this thesis is based on the parameter rules used in event segmentation in Zacks
et al. [2009] and Zacks and Swallow [2007]. These rule features are available in Table 5.2.
These rules were obtained by analyzing the trajectories and events by using the querying and
visualizing tool OpenEASE similar to the work by Kazhoyan et al. [2020a]. Cell values in the
case of the object in hand can be T=true or F=false, as at a specific moment, they can be either

of them. In the case of speed, acceleration and Euclidean distance, the values can be:

= [ the value is in a specific range,
= [: the value increases and/or

= [): the value decreases.

* Empty means that they are not used

During the segmentation, rule features are included in if-else statements that give a value of
confidence. These rules also take into account previous actions to increase their confidence
value. That is how the ambiguity between two similar actions decreases, although it is not
erased. This can be seen in Algorithm 1 for Reaching. In case of the same probability for more
than one sub-action, the software selects randomly between sub-actions with the same value.
The result is a list of the sub-actions, in this example Reaching, with its probability. Other rules
are implemented similarly.

This thesis work uses the representation of actions present in KNOWROB. It analyzes the pre-
and post-conditions of sub-actions. The knowrob_actions motion library includes pattern
descriptions such as part of an object and tool usage [Tenorth et al., 2014]. Some descriptions
include velocity, the distance between hand and objects and object orientation. Velocity profiles
are used to detect a movement to apply further rules then. Motion patterns combined can form a

sub-action.

The rules also take into account other features, such as furniture. For example, it was learned
empirically in this thesis work that sub-actions such as Reaching depend on the furniture type,
considering that furniture does not or only partially change location, e.g., drawers and doors
can move somewhat. This means that to reach a specific furniture area, for example, a drawer
or the counter, the distance between the body and fumniture area is different when starting the
Reaching sub-action. For instance, when OpeningADrawer, some space needs to be left for the
drawer to take the space.

The unachieved goals or failures are only automatically detected in the case of an event re-
lated to furniture states, especially the doors and drawers. These states can be identified
as FurnitureStateHalfClosed, FurnitureStateHalfOpened or FurnitureStateOpened.
These states are important for the robot as it would require fully opened drawers.

The sub-action names are obtained mainly from KNOWROB, as mentioned. When the name
does not exist in the knowledge base, it is created following KNOWROB’s naming style.
This is done via a verifying knowledge function; see Chapter 6, Section 6.2.4. As men-
tioned previously, the hierarchy between actions and sub-actions is made by queries to the
KNOWROB semantic knowledge base. However, some levels needed to be created, as in the
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Table 5.2: Segmentation sub-action rule features.

Euclidean Distance

) Speed Acceleration
Subaction Ohbject between
in hand Hand Head
Hand |Head|Hand | Head
Obj. | Furnit. | Head | Obj. | Furnit.
Approaching ToLocation R R D D R D
CamryingWhilel.ocomoting T RandI| 1 D D
FlippingAnOhbject T Randl| R I R R
FullBodyMovementToLocation R R R R R R R
Gripping AnObject T |RandD R D D R R
GrippingA PartOfFurniture T |RandD R D D R R
Gripping APartOfDevice T |RandD R D D R R
HearingASound R
HittingAnObject Randl| R I D I R
HoldingWithOneHand T R R
HoldingWithTwoHand T R R
LiftAnObject T I R I D | D R
LoweringAnObject T D R D I I R
MovingAnObject T RandI I R
Perceiving-Voluntary R
Pulling AnObject T R R I D | D R
Pulling APartOfDevice T R D | D R
PullingA PartOfFurniture T R D D | D R
PushingAnObject T R R D I I R
Pushing APartOfDevice T R D I I R
Pushing APartOfFurniture T R R I I R
RetractingAnArm I R I I I D | R R
Reaching F D R D RD| D I R R
ReleasingGraspOfSomething F RandI R | | R
SayingSomething R
SeparateAnObjectFromAnother | T RandI| R R I R
Stirring T R R I I I R
TiltingAnArm R R R R R
Throwing AnObject RandI | I
Tuming APartOfDevice T R R
Turning AnObiject T R R
WaitForPredefined TimeInterval R
Whisking T R I I R R
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Algorithm 1: System to segment sub-action Reaching from VR data.

Data: event, time, success, object, hand, furniture, pose, orientation
probability Reach + 0
list Probability Reach + emptyList
listSubAction Probahbility + emptyList
while timeSteps available do
process handPosition, handOrientation, handSpeed, headPosition, handOrientation,
headSpeed, handAcceleration, handDistanceObject, handDistance Furniture,
handDistance Head, headDistance Object, headDistanceFurniture;
if not ObjectinHand then
[...] t= Other sub-actions
if handSpeed decreases and headSpeed in range and handA cceleration
decreases and handDistanceObject in range and handDistanceObject
decreases and handDistanceFurniture decreases and handDistanceHead
increases and headDistanceObject in range and headDistancce Furniture in
range then
probability Reach + 0.5 if previousA ction in list{ApproachingToLocation
or ReleasingGraspOfSomething or RetractingAnArm or PushingAnObject
or LiftingAnObject or Reaching) then
| probabilityReach + probability Reach + 0.1
end
end

listProbabilityReach append (probability Reach)

end
end
compare listProbabilityReach with other listProbabilitySubAction

listSubActionProbability append ([Reaching, probabilityReachl]....)
return listSubActionProbability
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case of OpeningADrawer. This action requires Reaching, GrippingAPartOfFurniture and
PullingAPartOfFurniture, which was not present in KNOWROB. This was required to create
demonstrations from actions and sub-actions not included in previously in KNOWROB. By
creating a clear distinction between a movement, sub-action and action, the hierarchy is not only
understandable to robots, but also to humans using the system.

One issue with this approach is the similarity between the rules, which have mis-segmentation
in 30% of the cases. It is for that reason that a complementary approach is required. However,
these results, plus a verification process by looking at the videos, allowed the creation of verified
labeled data used to train the decision tree and RNN classifiers.

5.2.2 The sub-actions classifier by a decision tree

This decision tree is implemented by using the Classification and Regression Trees (CART)
algorithm [Breiman et al., 1984]. It was chosen because it builds binary trees using the feature
and threshold that produces each node’s most significant information gain. This is accomplished
by dynamically defining a discrete attribute that separates the continuous values into a set of
intervals. It converts the tree into a set of if-then rules. Then, the accuracy of each rule is
evaluated to determine the order in which they should be applied.

Mathematically, the CART algorithm can be described by a given training vector z; € R"™,
i =1,....,n and a label vector y € IN (sub-actions). The training vector includes the Object,
Furniture and Event names involved in the sub-action, including if ObjectInHand. It also
includes the speeds and accelerations of the head and hand, and the distances between the head
and object distHeadObj, head and furniture distHeadFur and head and hand distHandHead.

The decision tree recursively separates the samples in a way that the same number n of labels

are in groups G using the equation

T H (Quern(0)) + 52 H (Qrigne(6)) 5.1)

™

G(Q.0) =

where () represents the nodes, Ny, is the allowed depth of the tree or the number of training
samples at the last node, H is the Gini impurity (Equation 5.4) to measure the probability of a
class in the total amount of classes.

It lets the data at node m be represented by (). For each candidate, it splits # = (3, £, ) consisting
of a feature j and threshold t,,. In this case, a parent node splits into two children nodes. The
(e (0) takes the values that are inside the threshold and is defined by

Qrepi(0) = (z,y)|z; <=tm (5.2)
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The second child, (),;,:(#), takes the remaining subset of values and is defined by

Q

_ 5.3
Qe fe(6) 63

Qright(ﬂ} =
The CART algorithm uses a Gini impurity to quantify how often a randomly chosen element
from the set would be incorrectly labeled related to the distribution of labels in the subset. The
impurity at m is computed using the function H(X,;,;) defined by the sum of probabilities p of

node m and classes k as follows.

H(Xm) = Pmk * (1 — Pmk) (5.4)
k

where X, is the training data in node m.

It selects the parameters that minimize the impurity by

t* = argmingG(Q, f) (5.5)

Recurse for subsets Qo5 (6*) and Qyigne(f*) until the maximum allowable depth is reached,
Nm < 5 in this implementation. The absolute maximum depth is N, — 1, where N, is the

number of training samples at the bottom node.

If a target is well classified by taking on values 0,1, ..., K — 1, for a node m, representing a
region H,, with N, observations, the probability of classes and nodes py,; is modified by a
proportion of a class k of observations in node m defined by

1
Por= 5~ D 1wi=k) (5.6)

ricAm

where [ is the indication or characteristic function that maps the elements that belong to the
class K and give them the value 1 and 0 to the rest.

As mentioned in Section 2.3, decision trees can overfir. This happens when the algorithm fails
to fit more data to predict their values. In this implementation, the minimal cost-complexity
algorithm is used to avoid over-fitting. This algorithm is parameterized by v = 0 known as the
complexity parameter. This parameter is used to define the cost-complexity measure F,(T) of
a given tree T and is described by

R.(T) = R(T) + a|T| (5.7)
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where |T'| is the total number of nodes T and F(T') is the total sample Gini impurity of those
nodes. Minimal cost-complexity pruning finds the subtree of T" that minimizes H.(T').

The data was split by using the K-fold cross-validation method [Ojala and Garriga, 2010].
K-fold cross-validation splits the available data into k subsets or "folds." The main advantage of
using k-fold cross-validation for decision trees provides a more accurate estimate of the model’s

performance than a single train-test split.

This method was selected because when using a single train-test split, the model’s accuracy
may depend on which specific observations are included in the training and testing sets. With
k-fold cross-validation, each observation is used for testing exactly once and used for training
k-1 times. This ensures that the performance estimate is more stable and less dependent on
the specific split of the data. In addition, using k-fold cross-validation allows the model to be
trained on a larger proportion of the data, which can help improve its accuracy. This is especially
important when the size of the dataset is relatively small.

As mentioned, the dataset is split into k equally sized subsets or "folds." One fold is set aside as
the test set, and the remaining k-1 folds are used as the training set. The decision tree is then

trained over the chosen training set and evaluated on the test set.

This process is reiterated k times, with each fold used once as the test set and the remaining k-1
folds used as the training set. The decision tree’s performance is then evaluated as the average

of the performance scores across all k-folds.

The k-fold cross-validation process prevents overfitting by training and testing the model on
different subsets of the data. This also reduces the variance of the performance estimate by

using multiple training and test sets.

For this decision tree model, k=10. This is becanse smaller values of k are less computationally
intensive and require fewer data to produce reliable estimates of the model’s performance.

The data delivered by the k-fold cross-validation process is randomized. The randomization
generates indexes from which one sample is used as a test set (singleton) while others are used
for the training set. One simplified example of the rules created by the decision tree for closing
and opening a drawer can be seen in Figure 5.5. The colors represent different things. White
represents the numerical values such as the distance between the hand and furniture, the velocity
of the head and hand, the acceleration of the head and hand, etc. Light blue represents the object
type, such as PartOfDevice and PartOfFurniture. Light green represents events, such as the
state of furniture like FurnitureStateHalfClosed. In the case of sub-action, they are represented
with yellow. The arrows represent the decision nodes required to return a termination node (sub-
action). For example, the sub-action ApproachingTolocation required the distance between
the hand and object (distHandObj), distance between the head and object (distHeadObj)
and the acceleration of the head (aceleHead) to be identified. Furthermore, these decision
nodes combined with the distance between the hand and furmiture (distHandFurniture),
PartOfFurniture and distance between the head and furniture (distHeadFurniture) helped
to identify the sub-action GrippingAPartOfFurniture.
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Figure 5.5: Minimized decision tree result for OpeningADrawer and ClosingADrawer actions for right
hand.

The trained model results show how the decision tree performs when testing samples are used
as input. As mentioned, these testing samples differ from the ones the tree was trained with,
as a good practice. A confusion matrix was created to show these results; see Figure 5.6. A
confusion matrix shows false positives and negatives during evaluation arranged in a table. It
indicates every sub-action that the decision tree predicts. The test samples are run through
the decision tree trained model to calculate the confusion matrix. The resulting values have a
prediction rate appear, which appears for each input. These values show the correct predictions
from 1 to 100 percent.

For the decision tree trained model, most sub-actions are correctly classified with more than
00% accuracy, which means that it is a good model. This result is better than using if-then
rules. Only two of them are under 90%; the fists one is when there is no sub-action with a 88%.
However, the decision tree misses the ReleasingGraspOfSomething sub-action 40% of the time.
This is because it only differs in having an open gripper and other features are very similar to
other sub-actions.

The trained model is saved for being then used to predict new sub-actions. Each prediction
includes an accuracy percentage, shown in the confusion matrix in Figure 5.6. This value is used
for comparing with the Recurrent Neural Network (RNN) result and deciding which sub-action
was most likely to happen in the data coming from the VR demonstrations.

The description of the RNN implementation is presented in the next section.
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Figure 5.6: Normalized confusion matrix sub-action prediction for OpeningADrawer and
ClosingADrawer actions for both hands.

5.2.3 The sub-actions classifier by a Recurrent Neural Network

A classification approach using Recurrent Neural Network (RNN) with Long Short Term Memory
(LSTM) was implemented because, as mentioned in Section 5.1.3, it can give the best results. The
architecture used is presented in Figure 5.7. The RNN is implemented as a regular feed-forward
layer with LTM (green) and STM (orange). More information about how ANNs work can be
found in Section 2.3.4.

The sub-actions are stored in a dictionary. Each sub-action includes the positions and orientations
of the head and hands where the sub-action was found during the rules approach and verification
process. The sub-actions are used as targets and their elements as a list of values for the input
data x. This input data is also split using the K-fold cross-validation [Ojala and Garriga, 2010].
In general terms, K-fold cross-validation works similarly for decision trees and RNNs. It
separates the data into k subsets or "folds" and trains the model on k-1 folds while using the
remaining fold for testing. However, there are some dissimilarities in the way k-fold cross-
validation is applied to decision trees and neural networks. One key difference is that decision
trees and neural networks often have different hyperparameters that must be tuned. For example,
decision trees have hyperparameters such as the maximum depth of the tree, the smallest number
of samples essential to split a node, and the splitting criterion. RNNs, on the other hand, have
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Figure 5.7: RNN with LSTM architecture for sub-action classification.
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hyperparameters such as the amount of hidden layers and neurons per layer, the activation
function or functions to use and the learning rate.

For this thesis work, k in k-fold cross-validation is 10. This allows for sufficient training and test
sets to provide reliable estimates of model performance while minimizing the computational
cost of training the model multiple times. The trade-off between the size of k and the number of
observations in each fold was balanced by avoiding a small number of observations in each fold:
in this case, 100 observations were selected. This way, overfitting was avoided, resulting in a
stable and reliable estimate of the model’s performance.

The system keeps track of all categories of names and the total number of categories. The input
data is defined then by z € R™* where each row of x is a D — dimensional data point
of 33 values and m is the number of training samples. These values include the position and
orientation of the hands, head, object and furniture.

To decide which previous information will be kept, the sigmoid layer s called forger gate layer
uses the values of the previous hidden state h;_; and current input x; with the weight W and
adds the bias by, which is independent of the input and helps to increase the classification

accuracy.

fe = a(Wy - [he_1, 2] + by) (5.8)

In the case of new information, another sigmoid layer called the inpur gate layer creates a vector
of the input values.

iy = (Wi - [he—1, ) + bi) (5.9
In parallel, a tangent layer t creates a vector of candidates c,.
C, = tanh(We - [hy_1, 7] + be) (5.10)
Then, both values i; and ég are combined x to create the updated state C; to replace C;_1 by
Cy= fi*xCi_q +ig = Cy (5.11)
For obtaining the first output x,, another sigmoid function is used as follows,

o = o(Wolhet, 2] + bo) (5.12)

The hidden state ; used by the STM is obtained using a tangent function by

he = og * tanh(C}) (5.13)
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5.2. Human Action Recognition from Virtual Reality data

The LogSoftmax and negative log-likelihood functions then use these last values. They are used
as activation and the cost function of the second layer, respectively. They are typically used
together [ Bishop, 2006, p. 210]. This LogSoftmax function was selected because it calculates
the probabilities distribution of the event over k different events. In other words, it calculates the
probabilities of each target class over all possible classes. Its main advantage is that the output
probabilities range from 0 to 1, as the sum of all the probabilities should equal one. Compared
to the sigmoid function (Equation 2.14) used for binary classification, its probabilities sum is
not always equal to 1.

The implementation reads the sub-actions list of values and obtains a prediction and hidden
state h; at each step by combining the input and previous hidden state using Equation 2.17. The
initial values are zeros. Then the negative log-likelihood cost function is applied to h; and target.
It computes a value that estimates how far the output is from the target. The log-likelihood cost
function is defined by

elk

Si=—_ 1
Ejefj

(5.14)

where f is a vector containing the class scores for a single example, f3 is then an element from
that class k in all j classes.

In this case, the activation function used is LogSoftmax and is described by

LogSoftmaz(z,) = log (Eﬂz;j ) (5.15)
i

The output is defined by y € {0, 1}™*P, where each row in y denotes the membership of each
point to a class C. Given that y;. = 1 if the jth row of = belongs to the class €' € {1, ...,C} and
yje = 0 otherwise. The final prediction is the class to which the sub-action belongs according to
the prediction.

To see how the network performs on different categories, a confusion matrix was created, see
Figure 5.8. As mentioned, the confusion matrix is a table that shows the false positive and
negative errors; it indicates for every actual sub-action (rows) which one the network guessed
(columns). The test samples are run through the network to calculate the confusion matrix. In
case there are not enough examples, the sub-action needs to be iidentified, as well as when there
are more examples during training. This explains the tendency for the diagonal cells to have

colder colors (direction blue).

To get the best results, two approaches were implemented. In the first one, a random selector
takes the sub-action elements for a specific number of iterations. On the other hand, all the

training data is taken as a sequence of sub-actions.
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Figure 5.8: Sub-actions evaluation for random inputs for OpeningADrawer and ClosingADrawer
actions.

In both cases, random and sequential, the evaluation takes the test data to verify how many
samples were correctly guessed. The results can be seen in Figure 5.8, only for the random input
approach. This is because the results in some cases are better for random data, as mentioned
in the tutorial presented by Vidal et al. [2017]. This was the case for this application, and also,
sequential training takes much longer than random, as it iterates over all training data for the

same number of times.

The output and loss are obtained during training to track the cost or loss. When training finishes,
the average of the loss is obtained.

FT FT
2o A zo|
|
15 15
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Epoc's asmplas Epoc'i aanmplas
(a) Left hand. (b) Right hand.

Figure 5.9: Random input for RNN sub-action classification loss.
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5.2. Human Action Recognition from Virtual Reality data

Two tests were performed for both implementations, random and sequential input. In the

first test, the sub-actions were classified by the hand used (left or right); see Figure 5.9b and
Figure 5.9a.

It is interesting to note that the loss of the left hand is performing better. This is related to the fact
that there are fewer sub-actions performed by this hand, as the data only includes right-handed
samples. In the case of both hands, the number of classes is much more significant, almost

double, because of combinations. This gives fewer examples for each class.

In the case of sequential data, a similar test as in the previous section was made, in which
sub-actions were classified by hand separately and as both hands pairs. The loss, in this case, is
lower than in similar sections. Even when this training approach takes much longer than the
previous one, it does not give better cost reduction.

The resulting trained model is also saved from being used to predict sub-actions. Each prediction
includes an accuracy percentage used for the comparison with the decision tree result.

In this case, it was not possible to use a large pre-trained model because the type of data used in
this work is not found in this type of model.

5.2.4 Action and sub-action prediction

Table 5.3: Comparison of confidence scores between decision trees and RNN.

Sub-action Confidence score [%]

Decision tree | RNN

ApproachingToLocation 08 100
FullBodyMovementToLocation 100 97
GrippingAPartOfDevice 99 100
GrippingAPartOfFurniture 04 100
GrippingAnObject 100 100
None 88 97
Perceiving-Voluntary 95 06
Pulling APartOfDevice o1 o1
Pulling APartOfFurniture 96 96
PushingAPartOfDevice 08 100
PushingA PartOfFurniture o0 96
Reaching 04 04
ReleasingGraspOfSomething 88 04
RetractingAnArm 04 04

As can be seen in Figure 5.6 and Figure 5.8, in some cases, the decision tree has better results
than the Recurrent Neural Network (RNN) and vice-versa. In both cases, the evaluation provides
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Algorithm 2: Sub-action selection.
Data: histNN(sub-actionNN, scoreNN), histDT(sub-actionDT,scoreDT),
listRule{sub-actionRule)

for value c length(listNN) do
sub — action + sub — action Rule[value]

if scoreNN[value ] == scoreDT[value] then

| sub— action + sub — actionN N [value]
end
else

if scoreNN{value] > scoreDT[value] then
| sub— action + sub — actionN N [value]
end
nd
Ise

[1-J0 -]

if scoreNN{value] < scoreDT[value] then
| sub— action + sub — actionDT [value]
end
end
listSubAction append (sub-action)

end
compare listSubAction with KB
return listSubActionAndAction

a confidence score for every prediction (white text color of confusion matrix) presented in
Table 5.3. Then, the final sub-action prediction selects the best score from both methods, as
shown in Algorithm 2.

First, the predefined sub-action is produced by the rules explained in Section 5.2.1. Then, the
scores from the RNN and decision tree are compared to select the most likely sub-action. All
selected sub-actions are stored in a list. Then, the system verifies the existence of sub-actions
in the Semantic Knowledge Base (SKB). This KB includes KNOWROB and verbs presented in
Table 5.1. If the sub-action belongs to multiple actions, it verifies a sequence of sub-actions

until finding the right one.

In the end, a hierarchical task representation is created where a goal is encoded; see Fig-
ure 5.10. In this case, the action Opening-Drawer (blue) has an ordered sequence of sub-actions
(orange) that are identified as Reaching, GrippingAPartOfFurniture, Pulling-Drawer,
ReleasingGrasp0OfSomething and RetractingAnArm Those actions have other features
(green) such as a Pre-5tate, Goal, ObjectActedOn, GraspType and Hand used.

In case the sub-action does not belong to any action, it verifies another dictionary created before
in Prolog Query 7.

As mentioned, the interest in this thesis work is manipulation actions. Usually, these spe-
cific action types start with the sub-action Reaching and end with RetractingAnArm. The

implementation also considers this if the sub-action does not have a parent action.
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Figure 5.10: HAR representation example.

5.3 Summary of this chapter

This chapter presented the approach used to segment and classify sub-actions and actions to
fulfill the requirements of a human activity recognition (HAR) system from Virtual Reality (VR)
data. To give an introduction to what a manipulation action and sub-action mean in this thesis
work, the state of the art regarding actions and their types was summarized. An introduction to
HAR systems was also presented. They include segmentation rules and classification using a
decision tree and Recurrent Neural Network (RNN) with a Long Short Term Memory (LSTM).
Finally, this chapter introduces the prediction approach using segmentation and classification of
sub-actions, as well as probabilities of actions depending on their structure.

After this prediction is made, the representation of such action-sub-action pairs is made; it is
presented in more detail in Chapter 4 as episodes. If needed, it is possible to query informa-
tion regarding their structure and features from such representations using KNOWROB and
OPENEASE. However, these episodes are used by the memory approach implemented in this
thesis work. These episodes complement the experience inside the episodic memory and give
information about which sub-actions are required by action to the working memory, both present
in Chapter 6 and used by the Personal Service Robot (PSR).
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A Personal Service Robot (PSR) requires skills to perform complex manipulations in human

environments. To act within more complex situations, PSRs need to recall knowledge from past
events regarding interactions between agents (humans or robots) and their environment. This
requires memory to store or obtain knowledge. The use of memory models from neuroscience
and psychology has been applied to robotic agents for some years. These models are built
by combining different memory types. In this work, the types of memories used are Episodic
Memory (EM), Procedural Memary (PM), Warking Memory (WM ) and Semantic Memory (5M)
are used in most literature and defined in this chapter. They belong to the Long Term Memory
(LTM ) and Short Term Memory (STM ). However, the terminology used in this chapter comes
mostly from psychology and neuroscience. Even though this chapter describes a computational
framework, the term memory does not refer to the physical space in the computer but the
biological sense by building association maps similar to the human brain into a cognitive robot.
One reason to use memory is that it improves learning and the behavior can be optimized using

previous experience [Salgado et al., 2012].

This chapter introduces memory concepts with their features in Section 6.1. These concepts are
then applied to the construction of a cognitive framework. An explanation of how those concepts
are used in this work is presented in Section 6.2. The result is an implementation specialized in
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gathering information for the execution of manipulation actions in human environments. This

implementation was tested and the results are presented in Section 6.3.

6.1 Concept of memory

Memory is a single term that refers to many human capacities. Its definition can be thought of in
terms of answering questions such as "what is the memory’s function?.” According to Tulving
[2007], there are standard definitions of memory. One of them, memory, is a neurocognitive
capacity for encoding, storing and retrieving information. In a second definition, memory is seen
as a hypothetical store in which content is held and stored, and some properties and processes of
that content are retrieved. In a third definition, memory allows great awareness of remembering

something.

Some of the memory features can be found in other literature. In work by Zacks et al. [2009],
memory has an active, constructive and associative process. On the other hand, Hanheide and
Sagerer [2008] see memory as the base for cognitive processing and leamning. Even when the
concept of memory varies, it is required for cognition and learning as it allows the acquisition,
storage, retrieval, use and mix of information, knowledge and experience [Tulving and Szpunar,
2009]. Storage is a way in which memory keeps its content, including its change over time
[Laird and Mohan, 2014]. Memory allows the retrieval or access of conceptual categories for
specific objects, actions and other kinds of information, knowledge and experience. The storage
in biological brains can change with time, as there is a conceptualization process between current
and previous events [Tulving, 2000]. That way, changes in memory make possible learning and
the development of abilities that allow agents to act.

As the biological brain has a limited capacity for retention, memory can also remove some
content from its storage by a forgetting process. Some systems presented in Section 6.1.2 use
some models for forgetting. This work does not implement a forgetting model but updates
knowledge instead.

Understanding how memory works has eluded scientists; there are only some clues. What is
clear is that there are many different kinds of memory. This can be seen in the difference between
knowledge from learned facts and recollection of past events; both are stored in different brain
areas [Tulving, 2007]. Some types of memory are presented next in Section 6.1.1.

611 Types of memory

Different areas of neuroscience and psychology agree that a set of memories is required for
an agent’s different types of knowledge to leamn and extend its capabilities [Laird and Mohan,
2014]. Numerous definitions of memory types refer to various human capacities and knowledge
types. Tulving [2007] presents 256 as a specific number for memory types. Some of these

memory types are embedded, e.g., iconic memory inside sensory memory and semantic memory
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in declarative memory. However, the names and structure must be agreed upon [Tulving, 1998].
The literature known for this work agrees on the distinction between two types of memory, the
Long Term Memory (LTM ) and Short Term Memory (STM ). STM includes the working memory
and provides context to perform tasks or for further processing when receiving information
from the outside via sensors [Deutsch et al., 2008]. As it requires active maintenance of
information flow, this information is only relevant for a short time [Salgado et al., 2012]. When
knowledge in the STM is consolidated, it is transferred to the LTM, which keeps a large amount
of information. Furthermore, LTM is divided into explicit and declarative, and implicit and
procedural memory. Explicit memory associates with conscious memories. Declarative memory
is related to knowledge about things and facts. It can be further split into Semantic Memory (SM)
and Episodic Memory (EM) [Winkler et al., 2014], the first one stores encyclopedic knowledge
and the second experience. Implicit memory associates with unconscious or automatically stored.
Finally, procedural memory is linked to skills. This division depends mainly on the type of
information they store and on their principles of operations. The graphical representation of this

division can be seen in Figure 6.1.

Semantic

Episodic

Explicit | Declarative

Long Term

Implicit | Procedural

Short Term | Working

Figure 6.1: Memory type division.

In the case of computer science literature, the term Long Short Term Memory (LSTM) is used
to join their capacities [Deutsch et al., 2008]. Some people categorize artificial memory types
along dimensions other than the ones mentioned above. In the case of declarative memory, it is
often considered for accessing information, while procedural memory is seen as a compilation
of information [Winkler et al., 2014]. Functionally, memorization is divided into three distinct
processes encoding, storage, and retrieval. Encoding is related to representing and mapping
information in the memory. Storage is related to accumulating information into LTM. And
retrieval queries answers from memory about the data stored. In the case of this work, the
system exploits the Working Memory (WM) as an interface to the Semantic Memory (SM),
Episodic Memory (EM) and Procedural Memory (PM) by asking for and sending information.
These types of memory are introduced next.
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Working memory

Working Memory (WM) is used in cognitive psychology to refer to a system with temporary
storage and manipulation of information for solving cognitive capabilities such as comprehen-
sion, attention, learning and reasoning [Baddeley, 2000]. In the human brain, WM is a memory
that represents current events and uses a buffer to compare with previous ones [Zacks et al.,
2009, Kotseruba and Tsotsos, 2018]. This memory retains relevant information not just related
to events but also to the current task. WM is also believed to have a primary role in planning
and preparing voluntary physical actions [Rosenbaum et al., 2012]. For these reasons, it is used

in robotic applications and this thesis work implementation.

The WM is capable of language comprehension, dialogue management, problem-solving and
acting in the world by interacting with other memories. This includes mappings between objects
in the environment and internal symbols and words. This way, this memory links the LTM with

the information from the environment.

In some computational systems, WM is used as well as a link between the environment and
the system’s internal states. One example is the work by Nuxoll and Laird [2012], where the
WM encapsulates the agent’s current state, including external sensing, the results of internal
inferences, selected actions, and active goals. They use triplets of an identified attribute and
value called working memory elements (WMEs). Some work also includes this type of memory
inside A rtificial Neural Network (ANN ) models. One example is the work by Deklel et al. [2018],
which uses associative memory as WM for leaming context-free grammar. This associative
memory is implemented as a particular Recurrent Neural Network (RNN) type.

In other applications similar to this work’s implementation, WM is used as a module to store
and manipulate information for a short time and divided into units in the long term [Deutsch
et al., 2008]. Another model also retains task information [Phillips and Noelle, 2005]. The
mode] stores the required information and discards it after use by keeping only the actions or
goals that fulfill the requirements, such as the desire to grasp a specific object. This adaptive
memory model uses RL to retain similar details to decide which information is essential.

The use of WM inside a complete integration, such as cognitive architectures, was mentioned
in Chapter 2, Section 2.4.3. Different architectures use diverse features and models related to
this kind of memory, such as a world state, processing system or activation mechanism, to enter
knowledge into the LTM [Kotseruba and Tsotsos, 2018]. On the other hand, WM is used both
in this implementation as a processing system to act in the world and as a knowledge selector
for the information stored in the LTM.

Procedural memory

PM is the type of memory related to skills and actions. It contains knowledge about how to
get things done [Kotseruba and Tsotsos, 2018]. It also includes information regarding habitual
motor skills from the body [Tulving, 2001]. PM is capable of obtaining knowledge on how to
perform tasks, even when declarative memory structures are damaged [Johnson, 2012].

120



6.1. Concept of memory

Implicit memories are often procedural and focused on the step-by-step processes that must be
performed to complete a task. These memories are mainly unconscious and occur automatically:
you don’t need to think about the specific steps you need to follow to complete each task.
Repetition becomes automatic over time. It begins with learning skills, and then it is possible to
master a task.

In the computational implementation by Laird and Mohan [2014], PM has a set of rules that are
compared to the WM to select internal and external actions. The difference to this thesis work

implementation is that the structure of actions is compared instead of rules.

This thesis work uses the ideas from the work by Lum et al. [2012] to proceed gradually as
stimuli are repeated and skills practiced until knowledge has been acquired; then, skills can be
executed rapidly. This can be seen in the implementation presented next, where the execution of
actions is crucial to acquiring knowledge by looking at similarities and differences in comparison
with repetition.

The use of PM models in different cognitive architectures was introduced before in Section 2.4.3.
In those implementations, PM stores long-term facts about how to perform actions [Kotseruba
and Tsotsos, 2018], as in this work.

Semantic memory

In the human brain, Semantic Memory (SM) is believed to include conceptual knowledge,
such as associations and concepts that underlie worldwide meanings, categories, facts and
propositions [Tulving, 2001, Patterson et al., 2007]. This type of memory builds awareness
about the existence of world objects, events, word meanings, facts, people and other patterns
without connection to any particular time or place. SM allows beings to acquire, store and use
knowledge of the world [Tulving and Lepage, 2000]. However, it does not require language for
its operations.

Theoretical positions about human SM share the view that much of the content of this memory
is responsible for perceiving and acting [Patterson et al., 2007]. This happens as the neural
representation of how objects look, sound, move, etc., is widely distributed across our neural
network.

The use of SM in cognitive architectures was presented in Section 2.4.3. In that case, this
memory is used to store concepts about objects and their relationships [Kotseruba and Tsotsos,
2018]. In this thesis work implementation, the SM also stores concepts about actions, physical

properties, mathematical operations, etc.

Episodic Memory

In humans, Episodic Memory (EM ) provides the ability to remember where and when they have
been, what they have sensed, and what actions they have taken in various situations [Nuxoll
and Laird, 2012, Patterson et al., 2007, Pause et al., 2013]. This memory can also include
the individual’s internal state, including emotions, perceptions, and thoughts. The EM has
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time, self and awronoetic consciousness (placing oneself in the past and future to see outcomes
and examine thoughts) [Tulving, 2001, Nuxoll and Laird, 2007]. Time can have a sense of
subjectivity which enables the distinction between mental representations of an individual in the
past, present, and future.

It is interesting to notice that EM can be associated with both, Long Term Memory (LTM) in
the autobiographical process and Short Term Memory (STM) in the temporal duration of events.
In the human brain, this memory allows beings to remember personal experiences and events.
Because of that, EM enables an individual to mentally travel from the present back to their past
to plan for the future [Tulving and Lepage, 2000]. This happens when comparing previous
actions and their results to improve future performances [Nuxoll and Laird, 2004]. It relates to
the awareness of self-experience as remembering and forward as thinking about, imagining or
planning for the future. This type of memory stores information about what happened, where
and when.

There are three distinguishing aspects of EM [Tulving, 2007] which are awareness of personal
past, acquisition and storage of information, and conversion of that into behavior. This memory
has several characteristics, which are taken into account in this work [Nuxoll and Laird, 2004]:

* Memories are created without a deliberate decision.

= A retrieved memory is distinguished from current sensing.

* The agent remembers the episode from its perspective, even if not performed by itself.

* The time interval spanned by the memory is not fixed.

* The rememberer includes a time point with the date and hour when the episode occurred.

Individual episodes of experience are essential building blocks for creating a representation of
the structure of the world. According to Pause et al. [2013], some factors must be considered
to store episodes. One is a novelty, as agents prefer objects they have not seen recently, which
can be taken as a measure of temporal order in the memory. As mentioned before, EM can
have subjective and accurate time. In this case, we take into account only the objective time to
compare events (what happened), place (where it happened), and temporal context (sequence of

events) from personal experience.

Pause et al. [2013] propose that how long an episode is stored depends on its emotional
association. The proposed rule is that the stronger the emotional activation, the longer the
durability of the episode. This durability can also be modulated by factors such as the rehearsal
or the number of previous recalls of that episode. It is important to note that extreme emotional
activation, such as stress, can disrupt EM function, similar to other types of memory. This
hints at how the forgetting process could be implemented in robots. For instance, forgetting
could be a good feature for a robot as it would allow it to retrieve information faster when too
many episodes where recorded and some needed to be erased. As an alternative to a forgetting
implementation, temporal information can be stored as succession or order relative to other
events already in memory or reconstructed during recall. A particular event can be stored about

or inferred from its occurrence before or after other events. This occurrence 1s in terms of
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preceding or following the event to be specified. The temporal component of an episode can be
stored by successively presenting two or more specific events. However, this is not present in
the episodes produced by the implemented system but is included in an Episodic Knowledge
Base (EKB) presented in the later Section 6.2.2.

Retrieval of everyday experiences is fundamental for informing our future decisions. Though
the fine-grained neurophysiological mechanisms that support EM retrieval are largely unknown,
there are some hints. In that sense, Tulving [2001] mentions that retrieving information from EM
(remembering or recollection) is required to establish a particular mental set (retrieval mode).
The environment can produce this mental set internally (a thought) or externally. Pause et al.
[2013] propose that retrieval depends on the presence of a conditioned stimulus. On the other
hand, Wimmer et al. [2020] found that EM has a rapid replay mechanism that can flexibly shift
in direction in response to task goals. During episodic memory retrieval, a sequential replay of

episode elements depends on success across conditions from distal to proximal elements.

In computational models like the one presented by Deutsch et al. [2008], EM facilitates decision-
making. This memory stores experienced situations, and based on the outcome of past situations,
the decision-making module can adapt its strategies. This is called learning by experience.
For example, the work by Winkler et al. [2014] uses EM to store past executions about robot
manipulation, including the spatial and temporal context, explicitly. Another example is pre-
sented in work by Laird and Mohan [2014], which takes episodes from the WM and stores
them in chronological order, also used in this thesis work. EM has also been used in cognitive
architectures; this use was presented in Section 2.4.3.

As mentioned, EM stores information about past experiences and is used in robotic platforms to
evaluate past executions and then learn from past situations. In this case, a similar approach
is used, but the episodes do not only come from robots but also humans. Episodes are used
to retrieve information about the experience of others. They are used to improve the SM
by combining them with the PM and WM. This thesis work implementation also uses the
monohierarchical relation [Tulving and Szpunar, 2009], which implies the EM dependency
on the SM, see Section 6.2 Figure 6.2. This means that the EM uses the concepts inside the
SM to give meaning to the information it includes. One example used in this thesis work is the
concept of a sub-action and its difference from an action. As mentioned in previous chapters,
a sub-action is above the body movements; in this case, reaching, pushing and turning are

sub-actions used by actions, such as opening or closing.

64.2 The use of memory concepts and interconnection models

Memory types are interconnected. Even when their connection is not fully understood, some
models are already trying to understand and apply their functionality. Some findings have
been implemented regarding the interconnection between human memories and how this is
used in computational models. The work by Tulving [2001] proposes a serial-dependent-
independent relationship between episodic, semantic and perceptual memories. So, they can
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obtain knowledge from each other or use only their own. One example of this relationship is the
case of SM remembering perceptual information and adding it to the EM. Another example of
the interconnection between memories comes during recognition. While it requires EM, it also

requires SM and perceptual memory.

People may believe that new facts about the world are learned through experience. This would
be modeled by making the directional connection from EM to SM. However, it was found
that it is the other way around [Tulving, 2001]. A large amount of learning and storage may
occur at the semantic level alone, without the involvement of the EM. This was observed in
young children while acquiring knowledge about the world before they could recollect specific
information about events in their past. Also, amnesic patients with severely damaged EM can
obtain new semantic information in many cases. The interconnection between SM and EM
depends on the novelty of incoming information influencing the bottom-up and top-down factors
related to the levels of processing. For example, when encountering an unknown object in the
instruction, the perception can identify it around known ones, take it from the EM and add it to
the SM later.

Some models of memory and its interconnections have been applied to robots mainly to improve
their learning capabilities. These models and their interconnections are embedded into a
cognitive architecture. Some architectures using various memory models of interest for this
thesis work were presented in Section 2.4.3. Another cognitive architecture is given by Alami
et al. [2006], which has knowledge about facts from the temporal relations and related known
information inside the EM. Its WM provides information about the interpreted situation from
the perceived world. The interpretation of this architecture comes from the combination of

sensed data with semantic representations.

Another use of EM is presented by Zhu et al. [2017], where the EM supports the narration of
plans from high-and-low-level executions for a humanoid robot. The work presented by Tenorth
et al. [2010a], used in this thesis work, use memory modules that provide reasoning capabilities
for robots to learn from experience. On the other hand, the humanoid robot Intelligent Soft Arm
Control (ISAC) [Dodd and Gutierrez, 2005] uses different memory types in parallel, such as
STM, LTM and WM systems. ISAC’s STM stores information about the environment. Similarly,
its LTM includes learned behaviors divided into declarative, procedural, episodic, semantic and
perceptual memory. Its WM has task-specific information from the LTM and STM. ISAC uses
EM to record sequences from specific events and then learns from them. Its PM holds motion
primitives and behaviors required for movement. Finally, ISAC’s SM stores data structures
about objects. The approach used in this thesis work is very similar to ISAC’s; the difference is
that the EM does not just record specific events but also includes action and object information.

Also, the SM contains more concepts, such as actions and sub-actions.

Other types of memory concepts are also adapted and used in robotics. One example is the
work presented by Cruz et al. [2016]. They use associative memory, which supports short-time
learning and prediction for future states in a simulated robot performing a cleaning task.

124



6.2. The use of memory concepts by Personal Service Robots

Regarding forgetting, Darwiche and Marquis [2002] define it as a transformation that allows
humans to focus or project a theory on a set of variables. Forgetting has applications in planning,
diagnosis and belief revision as well. Forgetting can be used to avold memory saturation; one
example is presented by Sigalas et al. [2017]. In this case, the problem regarding storage is
solved by merging redundant memories by finding statistical correlations between them. In the
case of this thesis work implementation, forgetting is not implemented as such; instead, the

statistical correlations of episodes are stored inside an Episodic Knowledge Base.

6.2 The use of memory concepts by Personal Service Robots

As mentioned in Section 6.1.1, there is diverse existing research to understand how biological
brains work. What is clear and applied is the use of Semantic Memory (SM), Episodic Memory
(EM), Procedural Memory (PM) and Working Memory (WM), as mentioned in Section 6.1.2. As
mentioned before, memory models are interconnected so, they can obtain knowledge from each
other or use only their own. One example of this relationship is SM adding perceptual informa-
tion to the EM to give sense to events. In this thesis work, an interconnected implementation
between SM, EM, PM and WM is presented.

In this implementation, an ontology-based on KNOWROB is part of the Semantic Knowledge
Base. This thesis work uses an ontology in Ontology Web Language (OWL ) and JSON formats to
store episodes that the EM can access. The main contribution of this chapter is the introduction
of a WM able to receive instructions, acquire the information required to fulfill them, e.g., the
action hierarchy, and then send it to a planner. After the execution is completed, the WM uses
rules to provide knowledge to the SM and PM, as shown in Figure 6.2. The environment, in this
case, can be simulated or physical.
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Figure 6.2: Memory architecture for knowledge flow.

This approach uses the EM, PM and SM as part of the Long Term Memory (LTM ). Conversely,
WM is part of the Short Term Memory (STM). This allows the system to retrieve information via
queries from LTM requested by the WM while executing action plans.
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To see more about how the different knowledge-processing memory modules work, they are
presented next. For each of them, their functionality is introduced.

6.21 The Working Memory model

Working Memory (WM is an activation mechanism or filter to decide if knowledge should enter
into the other memories. It is also capable of extracting knowledge from Episodic Memory (EM),
Procedural Memory (PM ), and Semantic Memory (SM) to build an action execution structure.
For example, extracting spatiotemporal knowledge such as furniture dimensions, cutlery, dishes,
etc. This allows the robots to sense space and form while manipulating objects. WM will enable
robots to reason about the effects of their actions. WM is used as a processing system to build
the environment state using the perception system, in this case, ROBOSHERLOCK.

As mentioned before, Working Memory (WM) helps during planning in the human brain.
Planning combines a set of actions to obtain the desired result. By using this idea, this thesis
work implementation uses action features such as their structure and recurrence. The structure
includes the sub-actions in the order of execution. The recurrence counts the number of
repetitions of sub-actions. The plan is a hierarchy containing action and sub-action pairs
obtained from the PM central to successful plan building and execution. Recurrence, on the
other hand, is obtained from the EM. For example, when a PSR brings a cold drink to a person,
a sequence of sub-actions may repeat more than another. Recurrence is used in case of a specific
type of failure during plan execution in which the sub-action can not be performed by any means
and another sub-action has to be executed instead. It provides further options for performing
sub-actions instead of the one causing the failure. The selection takes the most recurrently
executed sub-action first. If the failure continues, it selects the next until no more options exist.

Then it gives up.

To build the plan, the process is presented in Figure 6.3, in which a set of actions to be
performed actionSet is received from the parser to solve a task; see Figure 3.2 in Section 3.2.
Parallelograms represent inputs (yellow), outputs (orange), and rectangles processes. Diamonds

represent decisions and hexagons for loops.

Let’s take a look at the example mentioned before of a task to bring a cold drink. For that
instruction, the actions inside the actionSet are LocatingInIntendedPosition, where the
drinks are, OpeningADevice where cold drinks are (most likely a fridge), PickingAnObject
that is a drink, then follows ClosingADevice to avoid waste of energy or future collisions,
LocatingInIntendedPosition where the robot is to deliver the cold drink, and finally,
PuttingDownAnObject is to give it to the person.

The figure shows how each action in the actionSet is searched inside the PKB and EKB in
both KBs ProceduralkB and EpisodicKB, respectively. The ProceduralKB contains the action
structure, which includes the mostly executed sub-actions for each action; see Section 6.2.3.
The EpisodickB contains a compilation of episodes and their action and sub-action pairs; see
Section 6.2.2. It looks first inside the ProceduralkB to get the action structure as the central
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Figure 6.3: Working memory building an execution plan using Procedural and Episodic Knowledge
Bases.

part of the plan. Considering the example mentioned before, the structure of an action such
as OpeningADevice includes the following sub-actions Perceiving—Voluntary, Reaching,
GrippingAPartOfDevice, PullingAPartOfDevice, ReleaseGraspOfSomething and, finally,
RetractingAnArm. Then, the recurrence of action execution is obtained from the EpisodickB
as failure recovery strategies presented later. The structure and recurrence are then included
in an action dictionary actionDic used later. This actionDic has a plan that consists of a

sequence of actions and sub-actions to be executed and measures to recover in case of failure.

The actionDic (yellow) is received by the algorithm presented in Figure 6.4, in which each
action and subAction are executed (execute) by sending them to the Action Executive.
Those actions are the output from Figure 6.3. Each subAction is represented in the cognitive
architecture CRAM; see Figure 3.2 in Section 3.2. The sub-action type is verified if it relates
to perception: its execution requires further steps, see Figure 6.5. After the plan’s structure is
created, it can query the remaining information it needs from the EM, PM and 5M to send it to
the planner on-demand. If the action recurrence or structure is not found, they are set as empty
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Figure 6.4: Working memory sets actions for execution.

for further processing by the EM presented in Figure 6.6. Otherwise, when the recurrence and

structure are found, the process continues to build the execution plan using the actionDic.

As mentioned before, there are two ways to handle errors. The first way to handle an er-
ror is by using CRAM handle-failure strategy, which was not implemented in this the-
sis work. For example, suppose the PSR can not find the cold drink. In that case, the
perception-object-not-found error occurs. The recovery strategy uses movement des-
ignators to move the head and call the perception system again to find the drink. If the error is
not solved, the second error handling strategy is used, which was implemented in this thesis
work. In this case, the recurrence is used to select a new sub-action to try to solve the error.
If this does not solve the error, the system gives up and tries to continue with the following
action. In any case, the success of the sub-action is stored as part of the execution result in the
resultlist. When the execution of all actions and sub-actions 1s (both successful and failures),
the resultlist stores a new episode and sends it to the PM to be evaluated and potentially
added to the PKB.
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Figure 6.5: Working memory uses perception information.

As mentioned, when the sub-action type is perception, the process followed is presented in
Figure 6.5. The algorithm received an object, location, recurrent and actionDic. The
actionDic includes the previous and current sub-actions. The recurrent provides for the
number of times a sub-action has been executed for each action. It sends an order to the
ROBOSHERLOCK system to obtain the perception result as a percept that includes any objects
seen. Then, it uses Algorithm 3 to select the next sub-action to be executed. For example, if
the object is close enough, it can choose reaching, and if it is still far approaching. Then,
the sub-action is sent to the action executive to execute it. If there is an error, the reward r
is negative r'; otherwise, positive and the actionDic values are updated. Finally, the result
of the execution is stored in the temporal storage of the WM for future decision-making. It
includes the time, error, percept and location. This cognitive framework does not make

use of perceptual memory. Instead, WM saves a buffer of perceptual information.

To do so, it uses Algorithm 3, which uses a Reinforcement Learning (RL) technique called
(Q-learning; for more details, see Chapter 2, section 2.3.3. This technique was selected as it
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Algorithm 3: Working memory uses perception information on Q-learning.
Data: percept with s” and r’
() + actionDic
N, + recurrent
load s,a,r
if 5 /= null then
increment N, (s, a
Q(a, s) « Q(a,s) + a(N.als,a])(r + ymaxy Q(a’, s') — Q(a, s))
end
if last 5" then
| s,a,7+ null
end
else
| s,a,r+ & argmax, f(Q(a’,s"), Naals,a]),r’
end
return a

learns an optimal policy in an environment with discrete states and actions, like this one [Lewis
et al., 2019]. The policy converges to an optimal policy quickly and can handle high-dimensional
state and action spaces. Even though it does not use knowledge of the underlying transition
dynamics of the environment, this is an excellent comparing tool to try new action selections for
comparing and updating the PKB. This was the best choice because the environment is discrete,
and the state and action spaces are not too large.

As mentioned, Algorithm 3 receives a percept with the results from ROBOSHERLOCK. Then Q
gets the actionDic that includes action values and state. N, gets recurrent, which provides
for action-sub-action pairs repetitions ordered by action. The values for the previous state s,
sub-action a, and reward r are obtained from the actionDic. If there are no values, the initial
one is equal to null. The current state s° 1s obtained from the actionDic. The reward signal r’
is obtained by Equation 6.1, where the values of - are chosen randomly between 0 and 1. For
further reading on Q-learning, please refer to Chapter 2, Section 2.3.3.

=y *|r| (6.1)

The WM does not just serve as an intermediary: it also stores the acquired information after
the action execution finishes. When the execution ends, it keeps track of the information flow
to, according to specific rules, verify if the hierarchy is present in the SM, and if not, it can
be added. This addition depends on certain factors, as shown in the algorithm presented in
Figure 6.10. For example, if there is opposing information between the one already inside SM
and the incoming one from WM, an extra round of executions are performed.

In this thesis work, all plans are tested in simulation. After a successful simulation and
refinement of the plan, it can be included in the PM. The WM sends some features to the SM to
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add knowledge about objects inside the SKB, such as objectGraspable, etc. Concepts related
to the actions are also allowed to enter information into the SM, presented in Figure 6.10.

6.2.2 The Episodic Memory model

As mentioned before, agents’ experience can build representations of the world. In this work,
these experiences are stored as episodes. They include the time when events happened, which
ones, the place and their sequence. Some episodes come from human demonstrations and
others from robots. Demonstrations reduce the necessity of costly trial-and-error by inferring a
particular behavior [Puskaric et al., 2017]. In the case of human demonstrations and as mentioned
in Chapter 5, action-sub-action pairs are segmented from a Virtual Reality (VR) system. The
segmented pairs provide information regarding sub-action features, such as velocities, distances,
success in limited cases, objects acted on, etc., which are also represented in the Ontology Web
Language (OWL) format for the high-and-medium-level data and JSON for the raw data. A
current implementation that already records episodes from VR [Haidu and Beetz, 2016] is used
as a base to record the initial data, which is then processed to obtain action-sub-action pairs. The
final representation includes those pairs and the events, including some other sub-action features
mentioned before and in more detail in Section 4.2.4. The demonstrations come from a body
with different features, so they can not be used directly for imitation. However, the sub-action

features can be used during the planning and the actions hierarchy via reasoning using queries.

In the case of robot episodes, a current implementation generates episodes called episodic
memories from the robotic executions [Winkler et al., 2014], similar to this thesis work. In
this work’s implementation, the episodes include the distinction of actions and sub-actions and
records features taken from the Working Memory (WM ) or human examples, which were not
included in the other implementations. The robot can improve further when it uses the episode’s

information for future performance.

Here, the monohierarchical relation mentioned before appears as the Semantic Memory (SM) is
retrieved to build the episodes by giving concepts required by the Episodic Memory (EM). The
EM creates its Episodic Knowledge Base (EKB) EpisodicKB by comparing previous actions
and their results to the most recent ones. This KB keeps an updated version of the best episode
results, as seen in Figure 6.6.

As mentioned before, forgetting needs to be implemented in future work. However, the
EpisodicKB stores a compilation of episodes linked by the action and sub-action pairs. In
this KB, the most successful task has higher priority instead of the most current. This serves as
a factor to modulate the storage of episodes. Another factor in giving higher priority is the agent
executing the task; in this case, the priority is given to the robot.

The retrieval system of EM in animals is still a mystery, but there are some hints, as mentioned
before. One main goal of this work is to provide a system with the capability of retrieving
episodes of past events to extract information and apply them to obtain insights that will answer

guestions to perform in current situations. More specifically, it is mainly used to select action
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sequencing and trajectory extraction and get other specifications of the actions, such as position
and orientation of body parts, velocities, accelerations, distances to objects and level of success.
It is essential to make systems capable of learning from their past executions and reaching the

point of executing new and similar actions to previously performed ones.

One mechanism to retrieve information from the episodes for further storage and representation
is presented in Figure 6.6. The algorithm shows how information about the executed actions is
obtained. First, the new Episodes are imported, and each episode is evaluated. Each action
and sub-action passes a series of conditions to verify their features, such as the type of action
as handAct, cookAct, toolAct or Act.

Its result is stored in the EKB EpisodicKB. The EM cannot change episodes because they have
already happened but can detect some of their features. This process happens every time the
robot finishes the execution of a task only for the newly created episodes.

When the WM requires answers from the EpisodicKB, it extracts sequences of actions from
past experiences similar to Choi et al. [2021] and presented in Algorithm 4. The algorithm
computes the relationships between actions. It uses an agglomerative approach of a hierarchical
cluster; see Chapter 2 Section 2.3.1 for foundations on clustering.

Algorithm 4: Extraction of actions from episodes.
Data: N actions in episodes
L + emptyList
Sp ={0,1,...,N —1}
C'r + singleton cluster Y € 5,
process dissimilarities between all pairs of clusters D(Cx,Cy)
fori=0—N 2do
(z,y) + argming, 4\ 5., 5, D(Ca, Cb)
append (x, y,D(Cx,Cy)) = L
z + max(Si) + 1
C.+ C,uC,
D(C:,C,) + F(Cy, Cy,Ch), ¥Ya € Si{z,y}
Siv1 + Si{z,y}u {z}

end
return list of N - 1 triplets

Agglomerative hierarchical clustering is a bottom-up approach where each data point initially
forms its group, and pairs of clusters are merged based on the similarity measure. This process is
repeated until all the episodes belong to a single set. This technique was selected because it is an
unsupervised machine learning technique (does not need labels). It can handle a medium-sized
and non-linear dataset, which varies in input size (episodes have different lengths), which is
difficult for other machine leaming techniques. In this case, it identifies potential groups or

clusters of similar episodes.

Other machine learning techniques can also handle non-linear relationships, variation in dataset
size, and medium-sized datasets. One is Support Vector Machines (SVM ), which can handle
non-linear relationships and medium-sized datasets [Hearst et al., 1998]. However, if the
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Figure 6.6: Episodic memory asking about specific actions to build recurrent action to the EKB and
used by working memory.

variation in input data size is too large, SVM may need help to provide accurate predictions.
Another machine leaming technique evaluated is Random Forest {RF ), as it can handle non-linear
relationships and variation in dataset size [Rigatti, 2017]. However, RF is primarily designed for
classification and regression problems and not explicitly for detecting similarities between data
points. Even though RF can indirectly provide a measure of similarity between data points, it
requires using the proximity matrix generated during its construction by measuring the similarity
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between pairs of data points based on how often they end up in the same leaf node of a decision
tree in the forest. Another technigue, such as Gaussian Processes (GPs), can handle non-linear
relationships and variation in dataset size and can be helpful for problems with data with high
variability [Seeger, 2004]. However, it is a supervised learning technique; it requires labeled
data. Another clustering machine learning technique is K-Nearest Neighbors (KNN), which
can also handle non-linear relationships and medium-sized datasets [Laaksonen and Oja, 1996].
However, it is also a supervised learning method. For all these reasons, the agglomerative
hierarchical clustering machine leaming technique was selected in this thesis work for this
specific application.

The agglomerative hierarchical clustering approach treats every instance as a singleton
cluster and merges pairs of the most similar ones until all groups are merged into a single
collection. First, the algorithm builds a hierarchical structure of N actions in a set of episodes.
It executes (N — 1) steps that merge the most similar pair of clusters at each stage. Let a set
of cluster indexes at the ith stage be 5;, where i = 0,1, ..., N — 2. Then, it initializes 5; to
{0,1,...,N — 1} and C. to a singleton cluster for all z € Sp. Then, it computes dissimilarities
between all pairs of clusters, [)(C';, C,, ). For each step 1, the algorithm finds the most similar
pair of clusters C; and Cy, by (z,y) = arg min, ycs;s, D(Ca, Cb). Then, it merges Cr and
Cy to C; by C. = C; U Cy, where z = max(Si) + 1. It updates the dissimilarities between
the merged cluster C. and the other clusters as D(C.,C,) = F(C:,Cy,C,) Ya € Si{z,
v}, where F is a dissimilarity update in Equation 6.2. Finally, it updates the set of indexes
as S;,1 = S;{z,y} U {z}. The output is organized as a stepwise dendrogram (diagram of
hierarchical relationships), defined as a list of (N — 1) triplets

(z,y, D(Cz, Cy))
such that  and y are the indexes of the most similar pair of clusters at the ith step.

|Cz| * D(Cz, Ca) + |Cy| * D(Cy, Ca)
|G| +1Cy|

F(Cy, Cy,Ca) = (6.2)

The first time the WM is executed or if the structure is empty in the algorithm presented
in Figure 6.3, the one in Figure 6.6 is executed. The algorithm extracts the type and other
features (objects, grasp and hand used) of sub-actions inside actions. The algorithm receives
an action and verifies if it is included in any episode. It also looks for features such as hand
used, object involved and type of action. The action types are Act, handAct, toolAct and
cookAct. One example of an Act is Approaching, which does not require a hand or tool to
be performed. The difference between a handAct and toolAct is that the second requires an
object already in hand to be performed. One example of a toolAct is mixing, as it requires a
tool such as a mixer to be performed. A cookAct appears when the heat is used. This type of
sub-action allows the execution of intermediate sub-actions when the object is being cooked: for
example, while cooking meat, vegetables can be cut.
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Prolog Query 8 Find an episode that includes action, object and furniture.
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EpisodelList,(
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owl_class_properties(Episode, knowrob:0bjectActedOn, Object),
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owl_class_properties(Episode, knowrob:Success, true),
EpisodelList=[Episodel),
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After executing the plans using the features present in the episodes, it is possible to verify if
such knowledge is useful for the robot. In this way, EM helps to enrich the SM with the help of
the WM’s verification process presented in Section 6.2.1.

In case of failure, a second mechanism is used. This one looks for similarities in the episodes to
the current task to be performed. It searches for one successful episode that includes the same
Action, Object and Furniture by using the Prolog Query 8. In this case, the time is important
when the memory was first created, which means that the most recent episode will be selected.
If none exist, it asks the SM which action is similar and applies the same query. This mechanism
searches a past episode where the action belongs to the same type or was performed on the same
or same type of object.

After selecting one episode, it is sent to the WM to extract more information about how the
execution was performed. Then, the system queries the action and sub-action information to
execute the task again. This way, the failure might be solved by looking into the previous

successful execution and comparing it to the current situation.

In general terms, this Episodic Memory (EM) implementation can encode, store, retrieve, and
use episodes as other models used in the literature. It mainly relies on the recurrence of actions

and sub-actions appearing in the executions.

6.2.3 The Procedural Memory model

As mentioned in previous sections, Procedural Memory (PM) stores knowledge related to skills
and actions. In this implementation, this knowledge comes from the Working Memory (WM ) and
is stored inside a Procedural Knowledge Base (PKB) ProceduralkB. PM is updated after every
action execution result is received from the WM, as shown in Figure 6.7. This keeps the best
behavior for future use when required. The ProceduralKB allows fast access to the necessary
information by keeping it available during action execution. The behaviors may be associated
with the basic skills and habits of the robot.

The first entry to the ProceduralKB is obtained by getting the information from the SM, as
shown in Figure 6.8. The ActionList is obtained by Prolog Query 7; see Section 5.2. Each
action is stored in the ProceduralkB to look for sub-actions inside the SemanticKB. Each
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found sub-action is then stored in the ProceduralkB. Sub-actions include properties such
as bodyPartsUsed, subEvents, nextMotion. The system looks for the previous (prevAction)
and next (nextAction) actions to build the WM’s structure.

Even if the first entries of the ProceduralKB are not the best, they can be improved with time.
The information stored afterward considers stability by considering the execution time and
success returned by the WM. This entry is received from the algorithm presented in Figure 6.4

as actionDic(structure[success]) and stored in temp.

Each action actionT and sub-action inside temp is compared to the ones already in the
ProceduralKB. Depending on the level of success and if it is the same as the present in the KB,
actions and sub-actions are added to the ProceduralKB. Sub-action importance comes from the
idea that if a specific sub-action inside an action, like Reaching and Approaching repeats ten
times because the robot was too conservative, it would be preferable to store a less conservative

one to avoid repeating it too many times.

¥

action in ActionList

Figure 6.7: Initial Procedural Knowledge Base action structure from Semantic Knowledge Base.
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When the WM requires the structure of actions, the PM can build such a structure by querying
the SKB and PKB. The SM can also provide information about objects required by the WM.
For example, the information can be the parts of the object, its form, etc.

actionT in Procodur: BB add
Procadural KB

Figure 6.8: Procedural memory adds a temporal action structure to Procedural Knowledge Base.
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6.2.4 The Semantic Memory model

As mentioned before, Semantic Memory (SM) has general concepts and their relationship to
each other. This work relies mainly on Tenorth et al. [2010a] work regarding KNOWROB
inside the SKB SemanticKB. This thesis work expands the knowledge already present in
KNOWROB, as presented in Figure 6.9. There, part of the upper ontology shows temporal and
spatial things, actions and sub-actions related to a kitchen scenario. For example, it includes
some HumanScaleObjects such as Meat, Vegetable and CowMilk-Product, FoodVessel and

FurniturePiece.
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Figure 6.9: Semantic Knowledge Base upper ontology with main classes for physics, temporal and
spatial things, actions and sub-actions.

Some knowledge used during the action and sub-action execution from the SemanticKB is
related to objects. One example is in Algorithm 5. It looks for object features, such as if it
is an electrical device ElectricalDevice or inside the map SemanticEnvironmentMap. For
example, if the object is an ElectricalDevice, it must have buttons to control its behavior or
the robot must be careful while manipulating it. If an object is an ElectricalDevice and a

ContainerArtifact like a fridge, it stores specific types of objects, like milk.

Even when KNOWROB already included many concepts used by robots, it still needs to be
completed. In this work implementation, part of the knowledge inside the SKB was added
offline by giving the system a set of verbs and nouns. Then, a verification function could verify
their existence and changes required; see Chapter 4 Section 4.2.1. However, it is important that
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Algorithm 5: Semantic memory retrieves information about object concepts and
properties.
Data: SemanticKB
load object
load property
if abject has objectPose then
| append property + object Pose
end
if object € SemanticEnvironmentMap then
| append property + inMap
end
if object is ElectricalDevice then
| append property + Electrical Device
end
if abject is storage then
| append property + ContainerArtifact
end
if object has handle then
| append property + handle
end

return property

robots are capable of extending their own knowledge by each execution. For this reason, the PM,
with the help of the WM, adds concepts regarding actions, events and some of their features to
the SemanticKB. The representation inside this KB is presented in more detail in Section 4.2.2.
New concepts added to the SemanticKB consider the last successful execution of actions, as
shown in Figure 6.10. Adding an existing concept requires the WM to verify if the knowledge
already present is consistent or the novelty of it. In the case of sub-actions, only successful ones
are added. In the case of unsuccessful sub-actions, they are present in the EM for error handling
and can be used by the WM.

The algorithm uses the action dictionary actionDic generated by the process presented in
Figure 6.3. Then it verifies if the actions and sub-actions are already members of the SemanticKB.
If they are not present, they are added. A comparison process is performed to decide which ones
to keep if they are present.

Also and as mentioned before in Section 6.2.1, object features related to manipulation are added
to the SemanticKB, by using the WM perception and execution results in a similar way as the
algorithm presented in Figure 6.10.

One example of using semantic knowledge inside the PM and WM can be seen when trying to

solve the pouring action. In this case, the static friction force can be calculated by

F; = pmg (6.3)
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Figure 6.10: Working memory sends the knowledge to the Semantic Knowledgebase.

140



6.2. The use of memory concepts by Personal Service Robots

where i is the static friction coefficient, m is the mass of the entire container, and g is the
acceleration of gravity (Q.Emfsg}.

In the specific case of pouring a drink from a box, the robot has to know where the liquid
will arrive s (Equation 6.4); for that, the fluid theory is applied and added to the Semantic
Knowledge Base (SKB), as shown in Figure 6.9. With this addition, the robots can complement
their perception capabilities to track the flow of fluid, which was not available inside any other
KB to my knowledge.

h = container height
® = removed liquid
a = base area

A = tilt angle

Figure 6.11: Angle for obtaining liquid from a container.

s=2(h*(h—xz))'/? (6.4)

V; = CyC.a(2gh)'/? (6.5)

where (', is the velocity coefficient, C.. is the contraction coefficient of a rounded aperture, and
g is the gravity acceleration (9.8 m /s?).

After calculating the volume flow, it is essential to know the relation of velocity with the angle
change. For that, the analysis of forces applied between the container and the liquid can be seen
in Figure 6.12. F, is the viscosity force, N is the normal force and W is the weight, calculated
by multiplying the mass by the gravity acceleration. N and F,, are computed by considering the
equilibrium (no movement) in Equation 6.6 and Equation 6.7.

N = Weosfl (6.6)

F, = Wsinfl (6.7)

The x component of velocity u is given by
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Figure 6.12: Relation of forces of liquid inside the container.

V,
u(y) = f (6.8)

where V), is the speed on the y-axis and h is the height.

Also, the constant of proportionality is the coefficient of viscosity calculated by

d
T= pd—: (6.9)

where u is the friction coefficient, du is the distance change in the x-axis, and dy 1s the distance
change in the y-axis. We can then calculate T by

T= 'HE (6.10)

Finally, the total viscous force is equal to the shear stress times the surface area A in contact
between the fluid and the bottom surface of the container. Therefore,

_uVA

F,=1A — = W sind (6.11)
Then, the speed V' is given by
V— Wsin# 6.12)
A
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This analysis can also be applied to pouring from a different type of container, such as a bowl,
as seen in Figure 6.13.

Fv

s0

W

Figure 6.13: Angle for obtaining content from a container.

For this case, Equation 6.5 is not required because the top of the container is wider than the
bottom. However, Equation 6.12 can still be applied to different types of containers.

6.3 Testing the memory modules

Some experiments were conducted to test how the memory models perform. All the experiments
were run in simulation on the same physical host machine, including three virtual machines on
Oracle VirtualBox connected by an internal network; see Figure 6.14. The host computer has a
64 bits Intel Xeon processor, 64 GB in RAM memory and an NVIDIA Quadro M2000 graphics
card. One of the virtual machines has two processors and Ubuntu 14.04 with ROS Indigo.
The second also has two processors and Ubuntu 16.04 with ROS Kinetic. The third has two
processors and Ubuntu 18.04 with ROS Melodic. Each virtual machine runs different packages,
compatible with each ROS version. The first virtual machine runs the KBs and robot’s models.
The second runs CRAM, the knowledge-processing memory models and ROBOSHERLOCK.
The third runs Gazebo and Movelt!. The three of them have to run in parallel to perform the

simulations.

All the installing and running instructions, programs, scripts, launch files, object models, etc.
are in a package called learning_from_exrperience 1. Inside this package, there is a package
named robotic_system_simulation, where the next set of instructions can run an experiment
shown in Command Line 9. The values of memory models < M >, robotic platform < R >,
task < T' > and number of executions < N > has to be provided. < M > can get the values
SM, WMSM, WMSMPM, WMSMEM and empty; when the value is empty, it does not execute any memory
model. <= R > can get the values pr2, romeo, fetch, hsr and tiago; the value can not be
empty. < T > can be set to pickeb, bringd, pourd, pourcarrys and pourmixi. < N > can
get any integer value, which is the number of times the simulations will run. After each task is

! github.com/lizy azpinfleamning_from_experience
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Figure 6.14: Virtualbox with three virtual machines and operating systems running.

Command Line 9 Execute simulation for experiments run.

1 roslaunch robotic_system_simulation robotic_system_simulation_memory m
H=t4 -

2 roslaunch robotic_system_simulation robotic_system_simulation.launch r
c=<R> t:=<T>

3 rosrun robotic_system_simulation run_number_memory.sh <N>

finished, all programs are killed, episode and KBs stored in hard drive and, if any simulations is

missing, the simulation environment restarted.

The simulator used is Gazebo [Takaya et al., 2016]. This simulator has a concise physics
simulation by utilizing a physics engine based on multi-body collisions and physical properties
such as friction or damping. Gazebo uses various physics engines for simulating friction.
Each object added to the simulation environment includes friction values inside a Simulation
Description Format (SDF) file. It was selected because it has a precise simulation model for
each robotic platform tested in this work. Gazebo offers an interface for spawning, manipulating,
and removing objects, making it a flexible simulator. Similarly, Movelt! [Chitta et al., 2012]
was selected for its flexibility as a motion planner. It generates trajectories and monitors the

environment for the robotic platforms tested in this work.

In Figure 6.15 the execution flow is shown. There, an instruction comes to the parser, e.g., bring
me a drink. Then, the parser breaks it into a set of actions given to the WM. The WM extract the
knowledge it requires from the other memory modules and builds the execution plan with action
and sub-action pairs. They are sent to the plan executive to execute them. The plan executive
returns results, so that the WM can re-plan if required. When the execution finishes, the WM
reviews the results and sends specific knowledge to the other memory modules. Then, the
robot-labeled episode is generated. The Episodic DB indexes this episode, and the EM extracts
all critical knowledge. Furthermore, the WM is connected to the SKB to query knowledge
directly if needed.
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Figure 6.15: Execution workflow.

If a human records a demonstration in the VR environment, the HAR system builds an episode
labeled human with the action and sub-action pairs. The Episodic DB also indexes this episode.
Then, the EM extracts all relevant knowledge when the system is started. This means that the
EM is executed at the beginning and end of each system run.

There are five test scenarios; see Figure 6.16. In the first one, the robot Personal Robot 2 (PR2)
performs a table setting task used as a baseline; Section 6.3.1. In the second test, five robotic
platforms bring a drink from the fridge to the table; Section 6.3.2. These robots are PR2,
Romeo, TiaGo, Fetch and Human Support Robot (HSR). The three following test scenarios are
based on the problems introduced in Chapter 1. In the third test, the robots bring a bowl of
soup to the table; Section 6.3.3. In the fourth test, they serve juice into a glass; Section 6.3.4.
Finally, in the fifth test, they pour and mix ingredients in a bowl to create the batter for a cake;
Section 6.3.5. In all tests, the objects’ initial position is selected randomly on the designated
furniture, e.g., on the kitchen island, counter, fridge shelf and pantry.

The first test compares the execution of PR2 with various knowledge-processing memory-models
configurations. After comparing the performance of one robot using the knowledge processing
memory modules, this thesis implementation was tested on the other four robots developed by
industry and presented in Appendix Table A.1, page 179. The experiments were performed 100
times in all the tests because the KBs manage to fill themselves in the middle of experiments and
the improvement can be seen in the second half. After each robot execution, the episodes are
stored in a specific location to be used in consecutive executions. For each set of simulations, all
the episodes are moved to another location and the PKB and EKB are returned to their starting
state. The robots use WM, SM, EM and PM. The PKB is empty when each robot starts using it.
The EKB only has details from human demonstrations, which are available for the robots. Over
time, it fills with robot experience. Each activity has 100 episodes with human demonstrations;
see Section 5.2. These activities include actions and sub-actions related to setting up the table for
breakfast, lunch and dinner, loading the dishwasher, serving drinks and food, and preparing food,
which includes stirring, turning, whisking, cutting and mixing ingredients. The demonstrations

145



Chapter 6. Knowledge processing memory models for Personal Service Robots

(a) Robot pick and place two (b) Robot bringing drink to the
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Figure 6.16: Robots performing serving and cooking actions.

are not equal to the tested scenarios present here; they only include the actions and sub-actions
performed on various objects.

Both the EKB and PKB are exclusive for each robot. The SKB already has all the concepts
mentioned in Figure 6.9. The robots were only tested with all the memory modules for
experiments two to five.

The robots used in these tests have different capabilities. PR2 (by Willow Garage) has two-
fingered hands (gripper) and Romeo (by SoftBank) has five-fingered hands; both have two arms.
Then, the other three robots were tested: TiaGo, Fetch and HSR, which have only one arm
with two parallel fingers (gripper). They were developed by PAL Robotics, Fetch Robotics and
Toyota, respectively. In this case, noticing the difference between the robots is essential. PR2
has a wheeled mobile base and a gripper. Conversely, Romeo is bipedal and has a five-fingered
hand, which is harder to control. In the case of TiaGo, Fetch and HSR, all of them have a
wheeled mobile platform and gripper as a hand.
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6.31 Table setting experiment

Motivation

This test compares the execution of the Personal Robot 2 (PR2) using the cognitive archi-
tecture with and without knowledge-processing memory models. It also compares different
configurations of the KBs.

Test setting

PR2 picks a cup and bowl from the kitchen counter and places them on the table; see
Figure 6.17. Either of the objects must be picked and placed to execute the task successfully.
The robot executes the task 100 times in the simulation.

Figure 6.17: PR2 brings bowl and cup to the table.

In the scenario, four objects are on the kitchen counter, a cup, a bowl, a plate and a milk box.
They are positioned randomly for the first trial and the previously used positions are used
for the next simulations. Different knowledge-processing memory model configurations are
tested and called cases. In the first case, PR2 performs the task pick and place with only the
Semantic Knowledge Base (SKB) but no memory modules or other KBs. In the second case, PR2
performs the task with Semantic Memory (SM) and SKB. In the third case, PR2 performs the task
with Working Memory (WM ), Semantic Memory (5M), Procedural Memory (PM), Procedural
Knowledge Base (PKB) and Semantic Knowledge Base (SKB). In the fourth case, PR2 performs
the task with Working Memory (WM ), Semantic Memory {SM ), Episodic Memory (EM ), Episodic
Knowledge Base (EKB) and Semantic Knowledge Base (SKB). Finally, in the fifth case, PR2
performs the task with Working Memory (WM), Semantic Memory (SM), Episodic Memory
(EM), Procedural Memory (PM), Episodic Knowledge Base (EKB), Procedural Knowledge
Base (PKB) and Semantic Knowledge Base (SKB). It is important to note that when the robot
uses the WM, a reward is attached to successfully executing the task. This means the reward
will be higher if both objects are picked and placed.

When the robot uses the memory modules, the PKB is empty and filled while the robot executes
tasks. The robot can only access episodes from human demonstrations when EM, EKB, or PM

are used.
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When the robot uses the three types of memory modules WM, EM and SM. When the experiment
starts, the EKB has only human demonstration indexes and general information.

When the robot uses the three types again, Episodic Memory (EM) is replaced by Procedural
Memory (PM). In this case, human demonstrations are available without the EKB.

The sequence of actions is presented in Appendix Figure B.1 for the cup and the same repeats
for the bowl. Also, Table 6.1 shows the action and sub-actions executed during the pick and
place task. It includes the execution order of sub-actions completed. Sometimes the cup can be
closer to the robot and it will decide to grasp it first and then return to pick up the bowl. No

simultaneous hand manipulation is considered, even when the robot has two arms.

Table 6.1: Actions and sub-actions present in the pick and place task.

. . . Execution
Action Sub-action Variable
order
Perceiving-Voluntary Obstacle 1,17,25
Kitchenlsland 18
. . FullBodyMovementToLocation cens 2
MovingLocation Table 10, 26
Kitchenlsland 31
ApproachingToLocation e ?
Table 11,27
Perceiving-Voluntary RedCup or Bowl| 4or20
Reaching 5,21
RedCu 6 or22
- , GrippingAnObject P '“
PickingUpAnObject Bowl 220r6
LiftingAnObject 8,23
RetractingAnArm 0,24
Perceiving-Voluntary Obstacle 12,28
Reaching 13,29
RedCu 14 or 30
PuttingDownAnObject LoweringAnObject cTP o
Bowl 3orl4
ReleasingGraspOfSomething 15,31
RetractingAnArm 16,32

Some of the sub-actions repeat multiple times inside different actions. This happens depending
on the action needs. Also, some actions can execute more than one time. This can happen for
various reasons, e.g., failures and task demands. In this example, it happens because two objects
are manipulated.

Results

The performance of the cognitive architecture CRAM with different configurations of knowledge-
processing memory modules and without is presented in Table 6.2. The values in this table
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considers the 100 executions. Each configuration is presented as a case, as explained before.
The total and particular success rate are given. Also, the execution time with its minimum, mean

and maximum values are presented.

Table 6.2: Comparison between the use of memory models and no use.

Success rate Execution time[s]

Per object

Case Memory modules

Total Min | Mean | Max

Cup | Bowl
Without 89% | 88% | 90% |59.62|132.32|222.43
With SM 01% |89% | 92% |64.50|128.92|200.00

With WM, SM,PM | 92% | 89% | 94% |66.50|149.21 | 220.90
With WM, SM, EM | 93% |92% | 94% |67.60|149.23| 196.50
With WM, SM, EM, PM | 98% | 95% | 100% | 64.00 | 143.86 | 218.50

| | w|ra]| =

The first case shows the performance results without using knowledge processing memory
models, but the SKB. The second case presents the robot’s performance improvement in
simulation while using the SM and SKB. In the third case, the robot uses three types of memory
modules, WM, PM and SM. The results show that the success rate reduces compared with case
two but is still better than case one. In the fourth case, when the robot uses again the three types
of memory modules, but EM instead of PM, the success rate increases and the execution time
reduces. In the fifth case, the robot uses the four memory modules, WM, SM, EM and PM. This
case has the highest success rate.

Figure 6.18 shows how the execution time varies in each performance of the simulation. The
different graphs show the execution time per simulation. Between case one and case two, there
is not much visible difference, There is more visible change when three or four memory models
are integrated. Then, the execution time has a smaller amplitude, tending to less variation in

execution time.

Looking more into the typical high-level failures, Figure 6.19 shows the total amount for the
five cases mentioned in Table 6.2. The first case has no memory model (blue), but with the SKB.
The second case has SM and SKB (orange). Another point is using SM, WM and PM only;
it includes episodes with human demonstrations but not the EKB (green). Next is the case of
using SM, WM and EM only; it uses episodes with human demonstrations and the EKB but no
PKB (red). Last, the complete system uses SM, WM, PM and EM; it uses episodes with human
demonstrations, EKB and PKB (purple). The results are consistent with previous ones, where

the failures decreased when more knowledge-processing memory modules were added.

High-level failures happen when the system could not find a solution for solving the sub-
action or action. The system can still try to recover and complete the task. The high-level
failures are divided into Movelt! related, plan related and designator. A designator de-
scribes objects and motions; see Chapter 3. Movelt! related failures are GOAL-IN-COLLISION,
MOVEIT-FAILURE, NO-IK-SOLUTION and PLANNING-FAILED. Plan related failures are related
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Figure 6.18: Executing time when executing the pick and place task with and without the use of
knowledge processing memory modules.

to location, manipulation and perception. For location, it is called LOCATION-NOT-REACHED.
In the case of manipulation they are called MANIPULATION-FAILED, MANIPULATION-FAILURE,
MANIPULATION-POSE-OCCUPIED and MANIPULATION-POSE-UNREACHABLE. And for perception
it is called OBJECT-NOT-FOUND. Finally, there is one designator type failure identified as
DESIGNATOR-ERROR.

Discussion

In the result, different knowledge-processing memory model configurations were simulated and
called cases. The first case shows the performance results without using knowledge processing
memory models, but the Semantic Knowledge Base (SKB). The second case presents the robot’s
performance improvement in simulation while using the SM and Semantic Knowledge Base
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Figure 6.19: Failures presented when executing the pick and place task with and without the use of

knowledge processing memory modules.

(SKB). In the third case, the robot uses three types of memory modules, Working Memory
(WM), Semantic Memory (SM ) and Procedural Memory (PM). In the fourth case, the robot uses
three types of memory modules, Working Memory (WM ), Semantic Memory (SM) and Episodic
Memory (EM). And in the fifth case, the robot uses three types of memory modules, Working
Memaory (WM), Semantic Memory (SM), Episodic Memory (EM ) and Procedural Memory (PM).

The results show that there is already an increase in success rate between cases one and two.
There is also a decrease in the execution time. This means that by adding the SM, the PR2 can
already improve. This is because the SM is updated after the execution by adding information
about the actions and sub-actions executed. By comparing Figure 6.18a and Figure 6.18b, we
can see that there is not much visible difference between case one and case two. There is more
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visible change when three or four memory models are integrated. Then, the execution time has
a smaller amplitude, tending to a less variation and success rate: see Table 6.2.

Then, in case three the success rate keeps and the execution time increases compared to the
previous cases (one and two). One explanation is that, as the PKB is empty, it needs to fill its
content to improve. This can be seen in Figure 6.18c, where the execution time reduces its
variation in amplitude.

In the fourth case, the robot is set to use again the three types of memory modules, but EM
instead of PM, the success rate increases and the maximum execution time reduces. However,
the mean execution time is still higher than in case one and two. This case is similar to case
three, both fill the content of their KB to improve. This can be seen in Figure 6.18d, where the
execution time reduces its variation in amplitude. In general, the success rate is better than in

the previous cases.

In the fifth case, the robot uses the four memory modules, WM, SM, SKB, EM, EKBE, PM
and PKB. This case has the highest success rate. Even though the mean execution time is not
the lowest, it still reduced compared to case four and three. Again, it has to fill the EKB and
PKB, but reaches the decrease of variation in execution time faster than in previous cases; see
Figure 6.18e.

In general terms, the proposed knowledge-processing memory modules can reduce failures and
reduce execution time. It is crucial to notice that a high number of successes come from queries
to the Knowledge Bases (KBs) answer the questions about those actions. It is for this reason that
the maximum execution time is higher in the case of the use of these memory modules. Initially,
the execution depends on the SKB. Over time, the PKB and EKB include more knowledge than
before after every execution. Then, the EM and PM access knowledge more quickly.

6.3.2 Bring a drink to the table experiment

Motivation

This test compares the execution of a bring a drink from the fridge to the table task between
five robotic platforms. It looks into the performance and usability of the knowledge-processing
memory models when the task needs to be completely specified. It also looks into how robots
with different capabilities solve the same task.

Test setting

One advantage of the plans produced in this work is that they can be reused to solve other
tasks. The task tree with actions is presented in Appendix Figure B.3. For this case, the
actions Movinglocation, PickingUpAnObject and PuttingDownAnObject are the same as
the ones shown before; see Appendix Figure B.1. The difference is the locations used
for this action Movinglocation, e.g., Fridge and Table. Also, PickingUpAnObject and
PuttingDownAnObject have the parameter Drink for this task, which is a type of object, not a
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specific one. The remaining actions and sub-actions, OpeningADevice and ClosingADevice,

required to solve this task are presented in Appendix Figure B.4.

The robots used in this test are first PR2 and Romeo, which have two arms. Later, the other
three robots were tested: TiaGo, Fetch and HSR, which have only one arm with two parallel
fingers (gripper). PR2, TiaGo, Fetch and HSR have a wheeled mobile base and gripper. On the
other hand, Romeo is bipedal and has a five-fingered hand. All of them execute the task 100
times in simulation.

The Procedural Knowledge Base (PKB) and Episodic Knowledge Base (EKB) start being empty
and filled while the robot executes tasks. The robot can only access episodes from human
demonstrations when the EM or EKB are in use.

Results

As a result, this difference in the number of manipulators has separated the comparison. To
compare the action execution between PSRs, Table 6.3 presents it for two-arm robots and
Table 6.4 for one-arm robots. This comparison includes the number of sub-actions performed
and the percentage of failures and successes. They all perform the same task, picking upa
drink from the fridge and bringing it to the kitchen table. The actions involved are presented
in the task tree in Appendix Figure B.3.

Table 6.3: Comparison between two-arm robots task execution.

Mean number of| Percentage
Robot name
sub-actions | Failure | Success
PR2 30 3% 05%
Romeo 35 14% B6%

As seen in Table 6.3, Romeo tends to fail more than PR2. However, the number of sub-actions,

which takes the mean, is very close.

Table 6.4: Comparison between one-arm robots task execution.

Mean number of| Percentage
Robot name
sub-actions | Failure | Success
Fetch 40 0% 91%
HSR 43 11% B80%
TiaGo 42 10% | 90%

It is important to note that for one-harm robots, a constraint is added where they have to
repeat PuttingDownAnObject and PickingUpAnObject must repeat to close the Fridge and
not waste energy. Still, as seen in Table 6.4, one-arm robots produce similar results as two-arms.
They take longer than two-arm robots and require more sub-actions, as mentioned. Stll, all of
them can perform this task and bring the drink to the table with high success.
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Figure 6.20: Robots bring drink to the table results.

Discussion

Table 6.3 shows that Romeo tends to fail more than PR2, but the number of sub-actions is very
close. This means that both robots tend to solve the task similarly. These results suggest that the
cognitive architecture is transferable to different robotic platforms and the behavior is similar.

Furthermore, as seen in Table 6.4, one-arm robots produce similar results as two-arms. They

take longer than two-arm robots and require more sub-actions, as mentioned.

All robots can perform this task and successfully bring the drink to the table; see Figure 6.20.
This means that the cognitive architecture is transferable to robots with different capabilities. In

this case, wheeled versus bipedal and two arms versus one arm were compared.

Romeo and HSR have a success rate of less than 90%. It was seen in the episodes that they
tended to have more difficulty opening the fridge than other robots.

6.3.3 Serve and bring soup test

Motivation

This test increases the complexity of the tasks to verify the robots’ behavior and if, by using the
cognitive architecture, they are capable of solving it. It includes the use of tools (SoupLadle) to
solve the task. The constraints to consider are more than in previous tests, e.g., object orientation,
volume, material, mass and shape.

Test setting

In this test, two tasks are involved. The first is to serve soup from a SoupPot to a Bowl using
a SouplLadle. The second task is to bring the full Bowl to the Table; see Figure 6.16c. Even
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though the second task of this test is similar to the one presented in Section 6.3.2, it is essential
to notice that the constraints are different, e.g. object orientation and grip force.

For the first task, the robots have to serve the soup. The task tree with the actions involved
is presented in Appendix Figure B.5. For simplicity, the SoupLadle and Bowl are next to the
SoupPot and the pot does not have a Lid. The SoupPot is on top of the Stove. Depending on
their volume, the robot must decide how many times to fill the SouplLadle to fill the Bowl. The
robots have access to the physical characteristics of the objects via 3D models and semantic
information, such as the weight and material they are made of.

As mentioned, actions can be reused to solve different tasks. In this case, other actions,
such as PuttingSomethingInto, CollectingSomethingFrom and PouringSomethingInto,
are required; see Appendix Figure B.6. They are relevant for this task specifically but also of
interest to this work because they include the effects of the actions PuttingSomethingInto
and PouringSomethingInto between two solid objects, e.g., SouplLadle with the SoupPot
and Soupladle with the Bowl. These effects include collision, appearance change and mass
change. On the other hand, it is crucial to note the effects of such actions on the Soup, as it will
have a separation, volume, and mass change, which will be transferred to the Bowl. For this
execution, Movinglocation receives the location Stove in its call. In the case of the actions
PickingUpAnObject and PuttingDownAnObject, they receive the object SouplLadle to collect
the soup from the pot. In this test, the SoupLadle is considered to have a mass of 0.30 kg, a
friction coefficient of 0.5 and a capacity of 0.17 kg. The robots use Equation 6.3 to decide the
force they need to avoid dropping the SouplLadle. They have to consider the change of mass
after adding the soup. None of the robots has sensors to know the amount of soup they managed
to get, so two full Soupladles are considered.

After serving the soup, the robots must carry the Bowl while keeping it upright and maintaining
a maximum restricted acceleration. Task three, in this case, is very similar to Appendix
Figure B.1 with the constraints mentioned above. It uses Movinglocation to the table and
PuttingDownAnObject to complete the task. In this test, the Bowl is considered to have a mass
of 1.76 kg and a friction coefficient of (.25. The robots use Equation 6.3 to decide the force
they need to avoid dropping the Bowl. They have to consider how much soup they added in the
previous task.

The robots used in this test are first Personal Robot 2 (PR2), Romeo, TiaGo, Fetch and Human
Support Robot (HSR), as in the Section 6.3.2.

Results

Table 6.5 presents the mean amount of sub-actions required to solve the serve soup task. It also
shows the percentage of success for each robot. A sub-action execution is considered successful
even if particles went outside the bow] if they are under a threshold of 50 out of 170 particles.

In this case, it is considered successful because the robot could transfer the soup from one
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container to another. However, the WM reduces the obtained reward as a percentage depending

on how much soup was spilled when executing the sub-action PouringSomethingInto.

Table 6.5: Comparison between robots serving soup task execution.

Mean number of | Percentage
Robot name
sub-actions Failure | Success
PR2 40 8% 026
Romeo 40 0% 01%
Fetch 45 15% 85%
HSR 48 21% | T9%
TiaGo 40 21% | 79%

As in the previous test, robots with two arms tend to require fewer sub-actions than the ones

with one arm.

Table 6.6 presents the mean amount of sub-actions required to solve the bring soup to the table

task. It also gives the percentage of failure and success for each robot.

Table 6.6: Comparison between robots bringing soup task execution.

Mean number of | Percentage
Robot name
sub-actions Failure | Success
PR2 13 0% 100%
Romeo 13 0% 100%
Fetch 13 2% 0BG
HSR 13 3% 07%
TiaGo 13 3% 07%

In general, one-arm robots failed more times as they depended on the grip force they could
apply to the bowl.

Discussion

Figure 6.21 shows the results for the five robots. Two-arm robots, namely PR2 and Romeo, used
both arms to handle the situation. On the other hand, one-arm robots failed more times as they
depended on the grip force they could apply to the bowl. Furthermore, two-arm robots can hold
the bowl while pouring the soup into it. Even though it was considered that all of them could
carry the full bowl.

This result was expected, even though manipulating two arms simultaneously can be challenging,

s0 two-arm robots required fewer sub-actions to solve the task.

The objective was achieved. All robots can solve these tasks successfully.
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Figure 6.21: Robots bring drink to the table results.

6.3.4, Serve adrink test

Motivation

This test looks into the change in robots’ behavior when two objects could be manipulated if
possible. It looks into the importance of how manipulating objects can impact the success of
solving the task. It also looks into how knowledge can become significant in solving a task
where the robot’s capabilities are not enough.

Test setting

In the second scenario, the Personal Service Robots (PSRs) served juice from a box container

into a glass, see Figure 6.16d. These PSRs are Personal Robot 2 (PR2), Romeo, TiaGo, Fetch
and Human Support Robot (HSE).

The OrangeJuiceBox is already opened in this experiment. The OrangeJuiceBox and Glass
are already on the kitchen island, and the robot is beside them. The task tree with actions and
sub-actions is presented in Appendix Figure B.7.

Two-arm robots can take the glass to keep it stable while pouring orange juice into it. Further-
more, this task has other constraints presented next.

There are some measures of the friction coefficients for human fingers and rubber gloves on
different objects [Gee et al., 2005, Lewis et al., 2007, Abdlkarim et al., 2021], including glass,
paper and plastic, among others. These measures were included in the SKB for the robot to
decide which force to use in each case. For this test, the friction coefficient used is 1.30. With
this value, the robot can calculate the friction force to decide the grip force required to prevent
the juice container from sliding. The friction force F; is calculated in Equation 6.3, where
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it 15 the static friction coefficient (1.30), m is the mass of the entire container, and g is the

acceleration of gravity (9.8m/ s2).

The mass of the juice container considers the density of orange juice as 1.03g/em® at a
temperature of 20 degrees Celsius and considering that ml = em®, and a mass of 30g for the
orange juice container, the mass of a whole orange juice container of 1L is around 1 kg and
Fy = T1.84N is the friction force. This value aligns with the human finger forces measured in
work by Gee et al. [2005].

The robots must also consider the box’s orientation and angular speed while pouring. As
none of them included sensors to measure the change in weight of the box, they used the juice
viscosity to calculate the change of liquid. Since the volume of liquid should be the same
before and after tilting the container, the robot calculates it in both conditions to get the angle
from that. The assumption is that the volume of liquid inside the container (1 L) and desired
outside one that goes to the glass is known to the robot (150 mL). Then, the robot needs to
know the angle # and the time it has to keep the container on (obtained by the volume flow V}
in Equation 6.5); see Figure 6.11. Besides the angle, the robot has to know where the liquid
will arrive s (Equation 6.4); for that, the fluid theory is applied and was added to the Semantic
Knowledge Base (SKB), as shown in Figure 6.9. Without this addition, the robots would need
perception capabilities to track the flow of fluids, which is not yet available to my knowledge.

The volume flow is calculated using Equation 6.5 with a velocity coefficient of 0.97, contraction
coefficient of a rounded aperture of 0.97, and gravity acceleration of 9.8 m/s”.

After calculating the volume flow, it is essential to know the relation of velocity with the angle
change. For that, the analysis of forces applied between the container and the liquid can be seen
in Figure 6.12. F; is the viscosity force, N is the normal force and W is the weight, calculated
by multiplying the mass by the gravity acceleration. N and F, are computed by considering the
equilibrium (no movement) in Equation 6.6 and Equation 6.7. The flow speed of the orange
juice is calculated by Equation 6.12. Here, the friction coefficient is considered to be 0.35
[Telis-Romero et al., 1999] and the mass is 1.25 kg.

Results

After completing the task, the results are presented in Table 6.7. In this case, the execution is
considered successful even if some particles go outside the glass if they are under a threshold
of 100 out of 10,000 particles corresponding to 1L of orange juice. This is considered so the
robot can transfer the liquid from one container to another. However, the WM reduces the
reward as a percentage depending on how much juice was spilt when executing the sub-action

PouringSomethingInto.

In this case, two-arm robots perform more sub-actions because they also pick up the glass.
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Table 6.7: Comparison between robots serving juice task execution.

Mean number of| Percentage
Robot name
sub-actions | Failure | Success
PR2 27 3% 05%
Romeo 28 0% 91%
Fetch 24 14% B6%
HSR 23 12% BE%
TiaGo 22 13% 87%
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Figure 6.22: Robots bring drink to the table results.

Discussion

Figure 6.22 shows the results from the five robots. Similarly, as in the previous experiment,
two-arm robots take a long time as they use their second arm to stabilize a second object.
However, this increases their chances of success. For one-arm robots, ensuring that the juice
force will not tilt the glass is more challenging. The robots can calculate the theoretical force
and speed of the fluid coming from a box container. However, it is convenient to add sensors for

them to measure more accurately the change in volume and weight of the juice container.

It is important to note that the robots could consider their capabilities.

6.3.5 Pour and mix ingredients test

Motivation

This test looks into the cooking tasks of adding (pouring) and mixing ingredients. Similarly to
the previous test, it looks into the importance of how the manipulation of objects can impact the
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task’s success and how knowledge can become significant in solving a task where more than the
robot’s capabilities is required.

Test setting

In the final test, the PSRs mixed ingredients in a bowl to create the batter for a cake; see
Figure 6.16e. These robots are Personal Robot 2 (PR2), Romeo, TiaGo, Fetch and Human
Support Robot (HSE).

Similarly to the previous experiment, the ingredients to be added are already on the kitchen
island, next to the bowl and whisk. The robot is also next to the kitchen island to avoid naviga-
tion. Most actions and sub-actions required for this task were already introduced in previous
experiments. They had to be done repeatedly for each ingredient, such as PickingUpAnObject,
PuttingDownAnObject, PuttingSomethingOnto, PouringSomethingInto. Their task tree
is presented in Figure B.6. The additional actions in this experiment are MixingSolids and
MixingSolidsAndFluids. Their trees are shown in Appendix Figure B.9. Both actions have

the same sub-actions. However, they must follow different end effector speed constraints.

The objects present are Butter, Sugar, two medium-sized Eggs, MilkBox and Flour, added in
this order. The Butter, Sugar, Eggs and Flour are already measured, each in a Bowl, and the
MilkBox is opened. The entire task tree of actions is shown in Appendix Figure B.8.

As in the previous test, the robot has to pour different ingredients inside a specific bowl. For
this experiment, the friction coefficients on a glass surface considered are shown in Table 6.8
[Subramanian and Viswanathan, 2007, Claassens, 1959, Astolfi-Filho et al., 2012, Diaz Flauzino
et al., 2010, Altuntas and Sekeroglu, 2008, Nwakuba et al., 2019].

Table 6.8: Physical properties of various products.

Fricti
Product |Mass [kg] " 'rm
coefficient

Butter 0.125 0.54
Sugar 0.125 0.02
Eges 0.115 0.20
Flour 0.125 0.35
Milk 0.130 0.16
IL milk box | 1.04 0.40
Glassbowl | 1.76 0.25

In this case, Equation 6.3 can only calculate the force the gripper needs to pick the bowls with
the ingredients and milk (Table 6.9), where the milk box has the highest value. However, it does
not help to know the ingredients sliding speed while pouring them.

The milk is similar to the juice so we can use Equation 6.4 and Equation 6.5 to calculate the
position and volume flow for obtaining the 0.130 g of milk.
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Table 6.9: Friction force of various objects.

Friction
force [N]
Bowl with butter| 4.62
Bowl with Sugar| 4.62
Bowlwith eggs |  4.50
Bowl with flour |  4.62
1L milk box 16.56

Object

For the case of the ingredients inside the bowls, the robot has to calculate the speed and angle to
break the static force for them to come outside the container. It can consider the forces present in
Figure 6.13. As mentioned in the previous experiment, F', is the viscosity force, N is the normal
force and W is the weight, calculated by multiplying the mass by the gravity acceleration.

N and F, are calculated by using Equation 6.6 and Equation 6.7.

As in the previous experiment, the robot can calculate the speed change in relation to the angle
change with Equation 6.12.

Results

Table 6.10 shows each robot’s average number of sub-actions and percentage of success during
the pouring ingredients task. The task is considered successful even if particles go outside the
bow] under the threshold of 70 out of 300 particles.

Table 6.10: Comparison between robots pouring ingredients task execution.

Mean number of| Percentage
Robot name
sub-actions | Failure | Success
PR2 87 2% 026
Romeo 87 10% | 90%
Fetch 90 19% | B1%
HSR 92 17% 83%
TiaGo 91 18% 82%

Table 6.11 shows each robot’s average number of sub-actions and percentage of success during
the mixing ingredients task. The task is considered successful even if particles go outside the
bow] under the threshold of 70 out of 300 particles.

Because of the complexity of the task, the WM does not reduce the reward in this case. Stll, in

general terms, the success is lower than in previous tests.
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Table 6.11: Comparison between robots mixing ingredients task execution.

Mean number of | Percentage
Robot name
sub-actions Failure | Success
PR2 80 6% 04%
Romeo 83 10% | 90%
Fetch a0 16% 849%
HSR 92 14% 26%
TiaGo 91 15% 85%
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Figure 6.23: Robots add and mix ingredients for a batter results.

5

Discussion

Figure 6.23 shows the results from the five robots pouring ingredients from different bowls
into a bigger one and mixing them. Similar to previous tests, one-arm robots have less success
than two-arm ones. Even though one-arm robots mix ingredients slower, they still must keep
the MixingBowl stable and avoid spilling the batter. However, they can perform the task by
adapting the plan to their capabilities. This shows that the extension of the cognitive architecture
does provide more tools for robots to execute most of the time successfully. This is because all
results are above 80% success for the five robotic platforms in both tasks.

Similarly, when pouring a liquid into a glass experiment, two-arm robots can hold the
MixingBowl to keep it stable and increase their whisking speed. One option that one-arm
robots do not have. This has a consequence that depending on the stability of the bowl, a
one-handed robot uses less speed than a two-handed robot, which can keep the bowl] stable with
the other hand.
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6.4 Summary of this chapter

This chapter presents concepts from human memory, including the types used in this thesis
work. Here, also some applications are presented in computational models and robots.

This chapter also presents the way memory concepts are implemented in robots. The Working
Memory (WM ) performs the main link between the different memory types and the environment.
Its different processes are presented here, including its algorithms. For the Long Term Memory
(LTM), Procedural Memaory (PM), Semantic Memory (SM) and Episodic Memory (EM ) models
are implemented. The PM implementation is presented where the robot’s behaviors are stored
in a Procedural Knowledge Base (PKB). The implementation of the EM is introduced where
the robot’s experience regarding actions is stored inside an Episodic Knowledge Base (EKB).
The SM implementation is presented where the methods to retrieve and store knowledge related
to concepts are present. The Semantic Knowledge Base (SKB) uses mainly the KNOWROB
implementation. Furthermore, new knowledge is added to increase the robot’s abilities.

This implementation allows a Personal Service Robot (PSR to perform complex manipulation

tasks in house environments and increase its knowledge for future executions. This work can
perform Learning from Demonstration (LfD), acquire knowledge, and simultaneously increase
its own. Still, future work needs to include an implementation for forgetting. However, the KBs

are updated after every action execution.

This implementation was tested on five Personal Service Robots (PSRs) with different capabil-
ities. These robots are Personal Robot 2 (PR2), Romeo, TiaGo, Fetch and Human Support
Robot (HSR). PR2 (by Willow Garage) has two parallel fingers hand (gripper) and Romeo
(by SoftBank) has five-fingered hands; both have two arms. TiaGo, Fetch and HSR have only
one arm with two parallel fingers (gripper). They were all developed by PAL Robotics, Fetch
Robotics and Toyota, respectively.

They were tested on five scenarios: table setting, bringing a drink from the fridge to the
table, serving and bringing a bowl of soup to the table, serving juice into a glass and mixing
ingredients in a bowl to create the batter for a cake. They completed all the test tasks successfully
in more than 80% of the cases.
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Chapter

Conclusions

A cognitive architecture is a framework that describes the basic cognitive processes and struc-

tures involved in intelligent behavior, such as perception, attention, memory, learning and
reasoning. By implementing cognitive architectures in robots, we aim to create more intel-
ligent and adaptive machines that can perform tasks successfully in complex and dynamic

environments.

The cognitive architecture allows robots to perceive and interpret sensory information more
effectively by modeling the different stages of perception, such as feature extraction, pattern
recognition, and object recognition. It also allows them to focus on relevant information and
filter out irrelevant information by modeling attentional processes and mechanisms, such as
salience detection, selective attention and cognitive control. Furthermore, it allows robots to
store and retrieve information more efficiently by modeling different types of memory. In
this case, Working Memory (WM), Procedural Memory (PM), Episodic Memory (EM) and
Semantic Memory (SM). The robots can then learn from experience and adapt to new situations
by modeling different types of leaming, such as reinforcement learning, supervised learning,
and unsupervised learning. That way, they can reason about the world and make decisions based
on uncertain and incomplete information by modeling different types of reasoning, such as
deduction, abduction, and induction.

The cognitive architecture allows robots to perform tasks successfully in complex and dynamic
environments, such as navigating in unknown terrains, manipulating objects in cluttered spaces
and interacting with humans in social settings. However, it is important to note that creating

effective cognitive architectures for robots is still an active area of research and there are many
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challenges and limitations to be addressed, such as scalability, adaptability, and robustness to

noise and uncertainty.

In this thesis project, cognitive knowledge processing capabilities using memory models were
presented. They are used by Personal Service Robots (PSRs) to decide if and how manipulation
actions should be adapted by integrating and expanding knowledge to their execution. These
robots can be used as tools to perform household tasks that are required or desired. They can

also serve as assistants in caregiving tasks.

This work presents knowledge-processing models based on four types of memory in the human
brain; see Figure 7.1. These models extend the cognitive architecture CRAM for PSR to perform
manipulation actions in the context of cooking. These knowledge-processing memory models
use neuroscience and psychology concepts, allowing P5Rs to perform complex manipulation
tasks in a human-like way. This way, PSRs can acquire, store and process knowledge from
actions. This allows them to improve their performance. With this extension, the cognitive
architecture CRAM can now handle more types of actions and failures. Robots using it can
recover faster than in the past; see Table 6.2.

COGITO
Metacogrition Samantic KB
KnowRab 2.0

1 ¥
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Parception Exscutive Mection Exscuive

Figure 7.1: Extended CRAM with Memory-based knowledge processing modules.

The implementation made for this thesis work is presented next.
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71  Human Action Recognition

This work provides a HAR implementation using two different machine learning techniques to
classify actions and sub-actions. The first is a decision tree, which separates possible actions into
classes depending on certain conditions, such as the speed of the hand and/or head and distance
from the object. The results of this implementation have a mean accuracy of 92%, being the
lowest 60% and 100% the highest, in the recognition of sub-actions in the sequence performed
by humans (see Figure 5.6 of Section 5.2.2). The second one is a RNN which takes samples of
the trajectories and classifies them accordingly. The results of this method have a mean accuracy
of 96.93%, being the lowest 91% and 100% the highest. The results of the combination of these
methods have an accuracy higher than 97% in all sub-actions and actions performed by a human;
see Figure 5.8 of Section 5.2.3. The implementation can differentiate similar action trajectories,
such as reaching for an object and retracting a robotic arm. Even though, it still has limitations
in identifying correctly 100% of the times the ReleasingGraspOfSomething sub-action and
when there is no action. The system has an accuracy of over 90% in all sub-action identification.

When a sub-action is added to an action, it depends on the previous association inside the KB
or a manual addition. A different classifier can be added in the future to avoid this issue, but
it might modify the existing knowledge. For this reason, a selector and evaluator will also be
required to decide automatically if that change is needed.

So far, the system can only handle known actions. In the case of unknown action, more examples
from human executions can be integrated into the system, but they require to be pre-processed
beforehand by the HAR system mentioned before in the previous section and in more detail in
Chapter 5.

7.2 Knowledge processing modules

As mentioned before, robots need advanced cognitive capabilities to predict where, how and why
to manipulate objects by using and expanding knowledge for future executions. This thesis work
shows how five different robots achieve the manipulation of prior knowledge and produce new.
In this sense, they generated a well-defined plan structure by using prior knowledge and storing
current knowledge for future executions. They did not only call the respective sub-actions at
specific times but determined dynamically when and how many times to execute them. This
included the preparation for future executions, such as the locations where robots stand or place
objects in visible locations from the robot’s perspective. For example, not to place objects at
locations where they are occluded from others which are needed later. More specifically, they
created high-level plans which not only called the right components in the proper order but also
found parameters to prevent errors.

As mentioned earlier, PSRs use memory modules that make them capable of looking for
similarities in the structure of actions. Then, they build and execute plans. These plans can be
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simulated and evaluated before being executed in the real environment. In this thesis work, they
were only simulated. This is because some of the robots tested in this work were not available
physically. However, the transfer to real robots can be done in a short time. In the case of other
types of failures, the WM uses stored knowledge from previous executions to compare both
cases and then decide how to change the plan, if necessary.

This extension allows the robot to perform tasks and manage knowledge as required, i.e.
acquire, store and find. With this work, PSRs, with their cognitive architecture, can accom-
plish vaguely specified tasks such as bringing a drink by identifying which drinks are available
and then deciding how to grasp a bottle, open it and transport it. To accomplish that, robots
obtain the missing information from different sources, such as internal (inferring) and external
(perception systems) methods. Memory is not seen as a repository of sensed data but as an
active process that transforms factual knowledge into linked structures.

There are four different types of memory involved in this work. Knowledge is stored inside the

correct type of memory to then be managed in a human-like way.

This model uses the Working Memory (WM) interface to compare current and previous action
executions. It functions as a memory manager based on a model from cognitive science. WM
serves as an interlocutor between the environment and other memory modules. This memory
model retrieval can be accomplished in an accurate and fast manner. In case of failure, it uses
prospection to simulate possible actions that can solve the issue. The WM is largely automatic

while managing goals, plans and task execution.

Episodic Memory (EM) has a retrieval system for specific experiences and an analysis system
of previous executions. Procedural Memory (PM) retrieves knowledge of previously executed
actions similar to the learned skills. Semantic Memory (SM) retrieves concepts about objects,
materials, places and actions. Each memory module has an evaluation method to retrieve the

relevant knowledge for the current context.

It is important to note that the Episodic Knowledge Base (EKB) and Procedural Knowledge
Base (PKRB) are exclusive to each robot. Even when all robots can use human demonstrations,
each has its own experience stored in the EKB. Similarly, their physical capabilities define the
best way to execute an action. These new execution details are stored in the PKB. When a robot
executes a task and fails, it can use human demonstrations to modify its execution to try again
with different parameters. This allows the robot to try executions in additional ways until the
best one is found.

7.22 Working memory

Working Memory (WM ) processes factual knowledge into linked structures. This memory model
compares current and previous action executions to provide knowledge about how to act. WM
chooses the best course of action by computing the probabilities of success based on previous
episodes present in the Episodic Memory (EM) and Procedural Memory (PM) modules.
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The execution plan includes actions and sub-actions selected based on relevance. This is done
by checking pre- and post-conditions from each of them. The action and sub-action selection
also depends on a score given to the pair depending on their contribution to achieving the current
goal. The previous success rate gives the score by Reinforcement Learning (RL) implementation
to improve the robot’s behavior in later executions.

WM decides if knowledge should enter the other memories. It keeps track of all the flow of
information from the environment and internal KBs. This allows robots to perform actions
depending on the world state in a limited time interval. The knowledge includes information
about dimensions, shapes and materials. This allows the robots to have a sense of space and
form when interacting with objects.

As mentioned before, WM has a link with the LTMs and the current state of the robot. This link
helps to process the incoming information and then transform it into knowledge to be sent to the

corresponding memory. WM stores the information during execution time, and after processing,
it is erased.

7.2.2 Episodic memory and knowledge base
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Figure 7.2: Episode representation example.

The Episodic Memory {EM) model analyzes produced episodes and stores their defined insights.
It is executed after a new episode is created after the task is finished.

Episodes include details about performed actions and events during a task. An example
of the representation inside an episode is presented in Figure 7.2. There is represented
the action Opening-Drawer with an ordered sequence of sub-actions comprising Reaching,
GrippingAPartOfFurniture, Pulling-Drawer, ReleasingGraspOfSomething and, finally,
RetractingAnArm.

Episodes store sub-action and action pairs in a low- and high-level hierarchy. Part of this knowl-
edge is used to extend the created Episodic Knowledge Base (EKB) with previous experiences.
One example of the knowledge included in the EKB is presented in Figure 7.3. Their actions

(blue) and sub-actions (orange) are represented with their global features that track the perfor-
mance of the agent (dark green), and their local features track specific performance execution
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information. For example, the successlLevel verifies the percentage of all successRate for
each sub-action executed over time. It is a global measure of success. The successRate is

measured by the number of failures against successes and if they were solved.
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Figure 7.3: Episodic Knowledge Base global and local features.

In the future, a complete system can be added to the EM model, so it has other methods to solve
failures or search for episodes faster. For example, an implementation that applies similarity in
the search and select actions that are more likely to be executed next when certain conditions are
met. Also, a forget implementation can be added to the system, so episodes are not permanently

stored, and memory can be freed.

7.2.3 Procedural memory and knowledge base

The Procedural Memory (PM) model verifies which actions already have a sequence in
its Procedural Knowledge Base (PKB) and stores new ones. An example of the knowl-
edge inside the PKB is presented in Figure 7.4. Some verbs are represented, e.g. reach as
Reaching, release as ReleasingGraspOfSomething, push as PushingAPartOfDevice, pull as
PullingAPartOfDevice, retract as RetractingAnArm and grip as GrippingAPartOfDevice.
Also, some features are represented here, such as previousAction (dashed and dark green),
nextAction (continuous and light green), positionInExecution (continuous and yellow) to
build the sequence in which actions and sub-actions are executed. Some of them have extra
features such as objectActedOn (dashed and dark blue) and graspType (turquoise), which are
also represented. To complement the knowledge stored in the PKB, grasp postures are added in
the graspType (continuous and black) feature besides trajectories.

PM is capable of verifying inconsistencies in the sequences. However, it gives preference to
new sequences. For this reason, it still requires a complete verification process to decide which

sequence to take.
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Figure 7.4: Simplified example of actions and sub-actions present in the Procedural Knowledge Base.

After the performance of actions, the PKB is updated. This includes trajectories, used body
parts, the effect of action related to the execution goals.

7.2.4 Semantic memory and knowledge base

The Semantic Memory (5M) model is in charge of verifying the existence of knowledge inside
its Semantic Knowledge Base (SKB). It gives preference to knowledge already present inside the
Knowledge Base (KB) in case of contradiction.

The SKB includes the knowledge present in KNOWROB, the manual and locomotion cooking
verbs compilation (Table 4.2), and the Epic Kitchen dataset before there is a robot execution.
‘When the robot executes a task, new knowledge coming from the WM is added. This integration
of new knowledge coming from the WM happens after the task execution is over. One example
of how the representation of knowledge looks inside the SKB is presented in Figure 7.5. They
are part of the upper ontology that shows temporal and spatial things, actions, and sub-actions
related to a kitchen scenario. For example, it includes some Human5ScaleObjects such as Meat,
Vegetable and CowMilk-Product.

Even when the SKB includes a vast amount of knowledge, it still needs more related to the
chemical properties of food, for example. Another critical addition would be sound related to
kitchen actions to the SKB, so the robots can use it to detect better when the is a failure or action
happening. A few examples are boiling, falling of objects, etc.

During this research, it was noted that the physical properties of food are not vast. These
properties include viscosity and friction coefficients, among others. This kind of information is
of great value for the robotics community, as it would help robots to increase their capability of
better decision-making. This thesis project compiled available information from objects in the
Epic Kitchen dataset, as no other resources were found. Also, knowledge about fluid mechanics
was added to the SKB to give more information about the interaction between objects in an
environment to the robot.
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Figure 7.5: Semantic Knowledge Base upper ontology with main classes for temporal and spatial
things, actions and sub-actions.

7.3 Summary

In this work, five scenarios were tested on five robotic platforms in simulation. These robots
are PR2 and Romeo with two arms, and TIAGo, Fetch and HSR with one arm. They all had to
decide how, when and which type of prior knowledge to use.

Various robots use the cognitive architecture. They are then capable of extracting observations’
representation of the demonstrated tasks. This property makes the cognitive architecture superior
to classical approaches, where the task is learned for a specific scenario or a particular robot.

Also, using the knowledge presented in this work allows robots consider their capabilities and
limitations while performing a task. This way, the robots act more reliably and recover from
failures faster. Another example of knowledge use happens while using an object’s properties,
such as shape, weight, material, viscosity and so forth, by the perception system to rank grasp
candidates. Furthermore, the robot can perform actions where the plan is unknown beforehand
if it is similar to actions in the Knowledge Base (KB). In this case, robots can only perform
unknown actions if they have knowledge about them.

The first example concerns picking up a bowl and cup from the kitchen counter and placing
them on the table; see Figure 7.8.
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Figure 7.6: Robot pick and place bowl from counter and bring them to the table.

This task is used as a baseline for comparing the difference in robots’ execution when using
the knowledge-processing memory models integrated in the CRA Mcognitive architecture and
when they are not used. The results showed an increase of success of around 15% and lower

execution time when using these models.

The second example concerns bringing a drink from the fridge to the table; see Figure 7.7. First,
the robots were capable of opening and closing the fridge, even when three of them have only
one arm. In the case of two-arm robots, such as PR2 and Romeo, they made use of both arms to
handle the situation. Conversely, one-arm robots failed more times and took longer to perform
the task as they had to return to close the door or use other body part for doing so.

Figure 7.7: Robot bringing drink to the table.

The third example concerns bringing a bowl] of soup to the table; see Figure 7.8. First, the robots
were capable of serving the soup. Then, the robots could keep the bow] upright and maintain a
specific maximum acceleration while carrying the bowl. In the case of two-arm robots, such
as PR2 and Romeo, they made use of both arms to handle the situation. Conversely, one-arm
robots failed more times as they depended on the grip force the could apply to the bowl.
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Figure 7.8: Robot bringing bowl with soup to the table.

In a forth example, the PSRs served juice from a box container into a glass; see Figure 7.9. The
robots considered the box’s orientation and angular speed while pouring. As none of them
included sensors to measure the change in weight of the box, they used the juice viscosity to
calculate the change of liquid related to time.

Figure 7.9: Robot serving juice from a box container into a glass.

In the last example, the PSRs mixed ingredients in a bowl] to create a batter, see Figure 7.10.
Depending on the stability of the bowl, a one-handed robot uses less speed than two-handed
robot, which can keep the bowl stable with the other hand.

Figure 7.10: Robot mixing ingredients inside a bowl.

The robots used the ROBOSHERLOCK framework to perceive and interpret sensory information
more effectively by modeling the different stages of perception, such as feature extraction,
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pattern recognition and object recognition. Even though more knowledge can be added to
improve the robot’s capabilities, all the knowledge added to the different KBs is sufficient for
performing manipulation actions in human environments. Furthermore, the memory models
and KBs integrated into the cognitive architecture CRAM increased the capabilities of PSRs
tested in this thesis work to perform manipulation actions successfully. They could focus on
relevant information and filter out irrelevant information by modeling attentional processes
and mechanisms. Furthermore, they were capable of storing and retrieving information more
efficiently by using effectively the memory models implemented in this thesis work.The robots
could learn from experience using the different types of leaming implemented in this thesis
work, such as reinforcement leaming, supervised learning and unsupervised learning. That
way, they could reason about the world and make decisions based on uncertain and incomplete
information. In general terms, the cognitive architecture CRAM is able to improve successful
task executions across the five robotic platforms by 11% compared with an implementation

without specialized memory modules.

This work shows that the use of cognitive modules can improve the performance of cognitive
architectures. This work shows also that the use of cognitive modules facilitates the transfer
of knowledge from humans to robots and, could transfer knwoledge from one robot to another,

even if different capabilities are present.

175






Appendix

Competitions for Personal Service
Robots

In order to provide a test scenario for Personal Service Robots (PSRs) prototypes, e.g., in
household-like environments, in 2006, the Robot World Cup Initiative (RoboCup), formed by
international scientists [Kitano et al., 1997], known for its robotic football leagues, created the
RoboCup@Home category [Wisspeintner et al., 2009]. This league aims to test autonomous
mobile robots as an assistive technology in relevant tasks in a home-like scenario [Ferrein et al.,
2013]. Its tests include Human-Robot Interaction (HRI), navigation and mapping in dynamic

environments, computer vision and object recognition under natural light conditions, object
manipulation, adaptive behaviors, behavior integration, use of devices in their environment,
standardization and system integration. In 2017, three new sub-leagues were introduced: the
Open Platform League (OPL), the Social Standard Platform League (SSPL) and the Domestic
Standard Platform League (DSPL). Commercially available robots can participate in two of
these sub-leagues. In the case of the SSPL category, only the robot Pepper can participate. On
the other hand, in the DSPL category, both robots TIAGo and Human Support Robot (HSR) can
participate. All these robots are in Table A.1. Maybe companies saw the possibility of improving
their robot’s capabilities by testing and developing them in realistic scenarios provided by robotic
competitions. The yearly RoboCup@Home competition happens in different countries each
time. There are also local RoboCup@ Home competitions, such as the European, German and
Iran Open. As expected, some of the robots presented in Figure 2.1 have competed in either of

these competitions in different years and are marked by a green circle.

After some years of the RoboCup@Home, roboticists saw the importance of having more
international robotics competitions. RoboCup concepts were expanded through two-to-three
years projects funded by the European Commission, a consortium composed of six partners
under its FP7 and Horizon2020 programs. This commission formed the European Robotics
League (ERL) to include indoor competitions related to domestic and industrial robots [Lima
et al,, 2017]. That is how the Robot Competitions Kick Innovation (RoCKlIn) in Cognitive
Systems and Robotics, which also includes a RoCKIn@Home camp started [locchi et al., 2017].

This tournament’s test scenarios focus on PSR for elderly or impaired care regarding health
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and personal development. After the first funding ended in 2015, the ERL launched other
robotic tournaments with the same tasks as the RoCKIn tournament. The first one was held
in 2018 and is known as the European Robotics League-Service Robots (ERL-SR). Another
tournament created by this institution is the European Robotics League-Consumer Service
Robots (ERL-CSR), which aims to prepare participants for the European Robotics League-
Smart City Challenges. During the ERL-CSR, the robots should execute tasks in a smart home
and a shopping mall like smart cities. Even more and in the same year, the ERL-CSR concept
organized a major tournament during the International Conference on Intelligent Robots (IROS)
in Madrid with the same challenges. In the same year, the World Robot Summit (WRS) launched
the World Robot Challenge with a service robot category [Okada et al., 2018], aiming for the
collaboration of humans and robots in everyday environments, either virtual or physical. The
standard robotic platform in this competition is the Human Support Robot (HSR) (see Table A.1).
Even more, Toyota organizes a competition with the HSR as a standard platform in order to

improve its development.

A1 Personal Service Robots commercially available

This section compares Personal Service Robots (PSRs) prototypes available to purchase. The
service robots without an arm as manipulation devices are mainly used for cleaning, reminders
or "mobile tablets,” as they are sometimes referred to by users in the study performed by Bedaf
et al. [2015]. They open people’s familiarity with robots as home devices. However, robots
that can manipulate objects are still costly and their capabilities are not yet sufficient to attract

buyers outside research institutions. For this reason, in this section, PSRs’ capabilities to date
are presented, when available. Table A.1 provides information regarding robot command and
processing types as local, cloud, mixed and remote. Local refers to having all the computing
power inside the robotic platform. On the other hand, the cloud refers to an external computation
where knowledge bases or extra processing are available to the robot on a server in the network.
In the case of mixed, it is a combination of cloud and local only. Finally, remote is related to a
human controlling the robot with an external device, even when the robot could include some
autonomous behaviors. In the case of middleware, it takes the names presented in section 2.4
as a reference. As memory is an integral part of this work, a column with memory concepts
is added; their names are explained in detail in section 6.1.1. The robot’s order is by year of
release and, even when some robots are produced by the same company, they are separated by
the robot’s name. It is also important to mention that robots marked with an indicator @ before

their name have already been used or tested in real houses rather than only in lab environments.
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Table A.1: PSEs developed by industry from 2000 to present order by released year.

Robot’s name, developer and | Base type | Manipulator{s) |Command and | Middleware | Memory
vear released specification processing type concept
used

ASIMO by Honda in 2000 [Sak-| Bipedal |Arm: 7 DoF x 2 | Mixed N/A NA
agami et al.] Hand: 4 fingers

and 1 thumb
HRP by Kawada Industries in | Bipedal |Arm: 7 DoF x 2| Mixed N/A NA
2002 [Kaneko et al.] Hand: 4 fingers

and 1 thumb
by Fujitsu Laboratories Lid. in | Wheeled | Arm: 4 DoF x 2| Cloud N/A NA
2005 [Stahl et al.] Hand: gripper
T-HR3 by Toyota in 2005 [Stahl | Bipedal |Arm: 7 DoF x 2| Cloud N/A NA
etal] Hand: 4 fingers

and 1 thumb
Smartpal by YASKAWA Elec-| Wheeled |Arm: 7 DoF x 2| Cloud CORBA NA
tric in 2007 [Qixin et al.] Hand: 3 fingers or

gripper
PR2 by Willow Garage in 2009 |Wheeled |(Arm: 7 DoF x 2 |Mixed ROS Working

Hand: gripper Episodic
REEM by Pal Robotics in 2010 | Bipedal or| Arm: 7 DoF x 2|Local ROS NA
[Benavidez et al.] wheeled |Hand: 4 fingers

and 1 thumb
@HSE. by Toyota in 2012 |Wheeled |Arm: 7 DoF|Mixed ROS Episodic
[Hashimoto et al.] Hand: gripper
Fetch by Fetch Robotics in 2014 | Wheeled |Arm: 7  DoF|Mixed ROS NA
[Wise et al.] Hand: gripper
@Pepper by SoftBank Robotics [Wheeled |Arm: 5 DoF x 2 |Local ROS NA
in 2014 [Pandey] Hand: 4 fingers

and 1 thumb
Romeo by SoftBank Robotics | Bipedal |Arm: 7 DoF x 2 |Local N/A NA
2014 [Benavidez et al.] Hand: 4 fingers

and 1 thumb
Sanbot by Qihan Technology |[Wheeled |Arm: 5  DoF|Cloud N/A NA
Co. Ltd. in 2016 [Lid.] Hand: gripper
SpotMini by Boston Dynamics | Quadruped| Arm: 5 DoF | Remote N/A NA
in 2016 [Phillips et al.] Hand: gripper
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Table A.1 — Continued from previous page

Robot’s name, developer and | Base type | Manipulatoris) | Control system | Middleware | Memory
year released specification conce pt
used
@TIAGo (Configurable) by Pal | Wheeled |Arm: 7  DoF|Mixed ROS N/A
Robotics in 2016 [Pages et al.] Hand: gripper
AEOLUS by  AEOLUS|Wheeled |Arm: 7 DoF x 2|Local N/A N/A
Robotics in 2019 Hand: gripper
EveR3 by HALODI Robotics in | Wheeled |Arm: 5 DoF x 2| Remote N/A N/A
2019 Hand: 4 fingers
and 1 thumb
XR-1 by INNFOS in 2019 Wheeled |Arm: 5 DoF x 2| Cloud N/A N/A
Hand: 4 fingers
and 1 thumb

Aaa Functionalities

Personal Service Robots (PSEs) depend on their hardware to perform actions without a doubt.

However, to increase their capabilities they could use a model from neuroscience, which is

tested in Chapter 6. A second variable is price, the price increase as they have more complex
hardware; see Table A.1 column Manipulator(s) specification. Some of those robots include a
complex hand that gives them more flexibility to a certain degree but makes them less accessible
price-wise to the general public. Moreover, some of these robots lack autonomous behaviors
and are remote-controlled or used as avatars, such as SpotMini, T-HR3, HRP. Some others, such
as PR2, REEM, HSR and TIAGo, are acquired mainly by research institutions and not by other
customers. In the specific case of Pepper, it has been deployed in thousands of homes and public
places [Pandey, 2018].

In the case of PR2, it is an open-source robotic platform used by some research institutions to
test their algorithms. One example is PR2 preparing pancakes [Walther-Franks et al., 2015],
pizza and popcomn by using a semantic knowledge base called KNOWROB [Tenorth and Beetz,
2013] and CRAM [Beetz et al., 2010b] for planning, both are also used in this work. PR2 has
also been used to learn users’ preferences [Abdo et al., 2016]. In this case, the robot learns
missing information about where to store objects in a house environment using a collaborative
filtering paradigm and personalized recommendations. PR2 has been also used for implementing
reinforcement learning and then obtaining new skills from more basic ones [Alami et al., 2006]
by associating perception and execution to produce representations from its movement. It
includes a feature similar to a distributed episodic (events) and working (planning and voluntary
movement) memory set to represent its capabilities, skills and resulting interpretation. This last
application benefits this work and will be presented in more detail in Chapter 6. In general, this
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robotic platform is versatile for many applications, but it is costly and needs to be ready for a
real house environment. Still, this robot is used in this work to test if the knowledge provided is
enough to perform complex manipulation actions introduced in Chapter 5.

Advanced Step in Innovative MObility (ASIMO) is capable of similar movement as the human
body [Sakagami et al., 2002]. It has been used as a receptionist and presented in trade shows
and videos. This service robot can pour drinks, an essential ability for a PSR. However, how it
performs such actions is not openly available.

Some companies have agreements with universities to continue the development of their products.
Two examples of this are the Humanoid Robotics Platform (HRP) with the National Institute of
Advanced Industrial Science and Technology (AIST) and the HSR. with the University of Tokyo
(JSK). As mentioned in Section A, some robots are also used as standard platforms by various
universities in competitions.

However, only a few robots such as TIAGo and HSR have been tested in real houses so far.
Even when Pepper has been deployed in public places, its arms are not meant to manipulate
objects, but instead to produce gestures and light manipulation tasks [Johnson et al., 2017].

HSR was specially built, as its name says, to support people in need in their daily life [ Yamamoto
et al., 2019]. The research community, including various institutions participating in the
RoboCup@Home, aims to develop the robot’s capabilities, such as operating on furniture, e.g.,
opening/closing drawers, using microwaves, fetching and carrying objects and tidying
up. A more specific example is while HSR grasps a bottle. For that to happen, it requires a
sequence of commands, including to move the whole body to a neutral position, move the hand
to the front of the bottle and specifying force to grasp.

This shows how hard it is to build and program a robot to fulfill human expectations and why
they are not yet in houses as science fiction stories predicted. One idea presented in this work is
the use of memory models. The use of concepts such as working [Alami et al., 2006] or episodic
[Winkler et al., 2017] memories, presented in more detail in Chapter 6, have been used in some
architectures and tested in PR2 and HSR. However, to our knowledge, it has yet to be tested on
many other platforms from industry. In the case of this work, we use TIAGo, Pepper, Fetch,
PR2 and H5R to test our proposed framework in simulation. This selection follows the idea that
as many robots use a parallel jaw gripper [Billard and Kragic, 2019], the proposed framework
can be better tested with these robotic platforms.

A.2 Robotic prototypes from research institutions

The previous section A. 1 presented Personal Service Robots (PSEs) developed by industry. This
section introduces PSR prototypes developed by research institutions in Table A.2. As in the

previous section, this table provides robot command and processing types as local, cloud, mixed

and remote. In the case of middleware, names are taken from section 2.4 and memory concept
types from section 6.1.1. They are also ordered by release year, although robots with a different
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name but the same robotic platform are grouped in the same cell. To find the members of this

table, an exhaustive search was made in the literature for robots specifically used for solving
household chores. Also, some were taken from the RoboCup@Home scores list [Matamoros
and Luz, 2018], where they solved the competition’s challenges (see section A), earning the 1st,
2nd or 3rd place only. Again, the robots marked with an indicator @ before their names are the

ones already tested in real environments.

Table A.2: PSRs developed by academia from 2000 to present order by release year.

Robot’s name, developer and | Base type | Manipulatoris) |Command and | Middleware | Memory

year released specification processing type conce pt
used

Care-0-bot (Configurable)| Wheeled |Arm: 7  DoF|Local ROS/Orocos | NFA

by Fraunhofer IPA in 2002 Hand: gripper

[Martinez-Martin and del Pobil]

HomeMate by Sungkyunkwan | Wheeled |[Arm: 5 DoF|Local N/A N/A

University International in 2003 Hand: gripper

[Zhao et al.]

MARY by Tohoku University in | Wheeled |Arm: 5 DoF|Remote N/A N/A

2004 [Taipalus and Kosuge] Hand: gripper

Mahru by Korea Institute of Sci-| Bipedal |Arm: 7 DoF x 2| Cloud N/A N/A

ence and Technology in 2005 Hand: 3 fingers

[Chaet al.] and 1 thumb

CAESAR by RWTH Aachen| Wheeled |Arm: 5 DoF|Local N/A N/A

University in 2006 [Ferrein Hand: gripper

et al.]

@HERB by University of Wash-| Wheeled |(Arm: 7 DoF x 2|Local N/A N/A

ington in 2006 [Srinivasa et al.] Hand: 3 fingers

IRobo by The International Is-| Wheeled |Arm: 4 DoF x 2| Local N/A N/A

lamic University Chittagong in Hand: gripper

2007 [Siddiky et al.]

Security warrior by The Na-| Wheeled |[Arm: 4 DoF x 2| Local N/A N/A

tional Chung Cheng University Hand: gripper

in 2007 [Luo et al.]

Lisa by University of Koblenz-| Wheeled |Arm: 6 DoF|Local ROS N/A

Landau in 2008 [Seib et al.] Hand: gripper

Rollin® Justin by The German | Wheeled |Arm: 7 DoF x 2| Local ROS Episodic

Aerospace Center 2008 [Biuml Hand: 3 fingers

et al.] and 1 thumb
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Table A.2 — Continued from previous page

Robot’s name, developer and | Base type | Manipulator{s) |Control system | Middleware | Memory

vear released specification concept
used

SAM by University of Rennes |[Wheeled (Arm: 8  DoF|Mixed N/A NA

in 2008 [Remazeilles et al.] Hand: gripper

B21 Bender by Technical Uni-|Wheeled |Arm: 6 DoF|Local N/A Episodic

versity of Munich in 2009 Hand: gripper

[Stulp et al.]

Biron by Bielefeld University in | Wheeled |Arm: 6 DoF|Local ROS NA

2009 [Meyer zu Borgsen et al. ] Hand: gripper

Cosero and Dynamaid by Uni-| Wheeled | Arm: 7 DoF x 2 |Local ROS NA

versity of Bonn in 2009 [Stiick- Hand: gripper

ler et al.]

Justina by The National Au-|Wheeled |(Arm: 7 DoF x 2|Local ROS NA

tonomous University of Mexico Hand: gripper

in 2009 [Savage et al.]

Kelia by University of Science [Wheeled | Arm: 7 DoF x 2|Local ROS NA

and Technology of China in Hand: gripper

2009 [Chen et al.]

Rosie by Technical University | Wheeled |(Arm: 7 DoF x 2 | Mixed ROS Episodic

of Munich in 2009 [Beetz et al.] Hand: 3 fingers

and 1 thumb

TWENDY-ONE by Waseda|Wheeled |Arm: 7 DoF x 2 |Local N/A NA

University in 2009 [Iwata and Hand: 4 fingers

Sugano]

Golem by The National Au-{Wheeled |Arm: 4 DoF x 2|Local ROS NA

tonomous University of Mexico Hand: gripper

in 2010 [Pineda et al.]

AMIGO by Eindhoven Univer-| Wheeled | Arm: 7 DoF x 2 |Local ROS NA

sity of Technology in 2011 [EI- Hand: gripper

fring et al.]

@HOBBIT by Technical Uni-|Wheeled |Arm: 4 DoF|Local N/A NA

versity of Viemna in 2011 Hand: gripper

[Martinez-Martin and del Pobil]

HolLiE by Forschungszen-|Wheeled |Arm: 6 DoF x 2|Local N/A NA

trum Informatik in 2012 Hand: 4 fingers

[Vasquez Tieck et al.] and 1 thumb
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Table A.2 — Continued from previous page

Robot’s name, developer and | Base type | Manipulatoris) | Control system | Middleware | Memory
year released specification conce pt
used

Floka by Bielefeld University in | Wheeled |Arm: 7 DoF x 2| Local ROS N/A
2016 [Meyer zu Borgsen et al.] Hand: 4 fingers

and 1 thumb
Armar by Karlsrube Institute of | Wheeled |(Arm: 4 DoF x 2| Local N/A N/A
Technology in 2017 [Zhu et al.] Hand: 4 fingers

and 1 thumb
Walking-assistant by The Na-| Wheeled |[Arm: 6 DoF x 2| Remote N/A N/A
tional Chiao Tung University in Hand: gripper
2017 [Song et al.]

A.2a Functionalities

Personal Service Robots (PSRs) can perform specific manipulation tasks with a certain degree

of autonomy, e.g., fetch and place of geometric objects. All these improvements happen even
when the difficulty to build such systems is high, as mentioned before. However, these robots
are not yet capable of performing these tasks without being previously pre-programmed or in
a generalizable way. Most robots are able to grasp specific types of objects, using specified
grasp types [Feix et al., 2016] and put them in certain locations. More complex manipulation is
only seen in systems like Cosero, Rollin” Justin and OK-Kelia, all included in table A.2. It is
understandable that PSRs require adequate body capabilities, meaning actuators and sensors.
However, they also require control systems able to acquire knowledge about how to execute
actions such as manipulating electrical devices, cleaning or cooking when commanded. If those
requirements are not fulfilled, the gap between human expectations from robots and what they
can actually do is not closed, humans won’t see the utility of having such expensive devices at

home.

PSRs that use frameworks also used in this work are AMIGO, Care-O-Bot and Rosie in the
RoboEarth project [Di Marco et al., 2013]. These robots make use of a semantic knowledge
base KNOWROB [Tenorth and Beetz, 2013] and CRAM [Beetz et al., 2010b] to create robot
execution plans, the same way as PR2 from section A.1. In this case, semantic information
about the robot’s capabilities and body were included inside KNOWROB. Specific designators
represent how to perform actions were created as they are robot dependent. In the case of
AMIGO, the task tested was to get a drink from another room. The first plan includes actions
such as open the door and navigate in order to pass a door. Then the robot has to find and
transport a drink back. For the find plan, the task is decomposed into the sequence navigate,
pick-up, navigate, operate the door button, navigate and drop—off the drink. Care-O-Bot
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differs from Amigo in that it has only one arm and a tray. In order to be able to solve the same
task, the robot has to place and hold the drink on its tray while manipulating the door button.

Representation is not enough, a PSR also needs to remember certain things. For this reason,
the use of different types of memory is of interest for this work, similar to the one presented
by Alami et al. [2006] using the PR2 robotic platform, more detail is presented in Chapter 6.
That memory can be in the form of the robot’s own experience to learn how to better perform
an action. One example is B21 Bender, which was used to test the concept of Action-Related
Place (ARPlace) that uses probabilistic representation for manipulation [Stulp et al., 2012].
The representation of the task, in this case, includes a prediction of the best behavior to apply
through experience-based learning. B21 Bender is tested while cleaning a table 50 times in
approximately 6 hours. During this time it locates, grasps, and 1ifts a cup from the table
and moves it to the kitchen oven. In this case, only two grasp types are sufficient to grasp 14
everyday kitchen objects.

COgnitive SErvice RObot (Cosero) [Stiickler et al., 2012] is a good example of a low-cost robotic
platform able to grasp rigid and symmetric objects typically encountered in house scenarios
with two grasp types, side and top. This is possible by its high-level behavior generated by
semantic parsing of natural language and a hierarchical representation using a state-machine.
For example, to perform a task such as open a door, the robot drives in front, detects and
approaches to the door handle to finally grasp it. Then, the drive moves backward while
the gripper moves to a position to the robot’s side where the angle used to open the door is
sufficiently large to approach the open device. The robot moves its body backward until the
gripper reaches its target position. This sequence is preprogrammed and includes some failure

detection mechanisms to avoid them.

On the other hand, the more complex robotic platform Rollin” Justin [Biuml et al., 2011] is able
to prepare coffee in a pad machine in an office setup. For doing so, the robot grasps coffee
pads and inserts them into a coffee machine, which involved opening and closing the pad
drawer. This robot is capable of precise fine manipulation with the fingertips, which requires
precision in localizing objects. Therefore, Rollin’ Justin combines vision and force sensing, its
use of perception is accurate by using finger sensors. During the manipulation of the coffee
pad, the robot moves while monitoring the contact to the supporting surface before the fingers
are closed. To insert the coffee pad into the coffee machine, the robot requires to open and
close the pad drawer.

In the case of Kelia [Chen et al., 2017], it participated in the RoboCup@Home since 2009 and
won the world championship in 2014. During the competition, the robot presented the capability

of manipulating an oven by opening and closing the door and pushing buttons. This
demonstration was while making popcomn. Kelia's manipulation module regarding grasping,
placing, and touching operations is presented by Shuai and Chen [2019]. Kelia's behaviors
are divided into moving the end effector to a specific position and closing or opening its
gripper. For actual body transferring, Kelia's navigation is divided into mapping (detects
obstacles), locating, and navigation (control robot’s movement to a goal location).
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The only two robots from this section already tested in real homes with people are HERB and
HOBBIT. Home Exploring Robotic Butler (HERB) object manipulation ability depends on a
Generalized Approach to Tracking Movable Objects (GATMO) [Srinivasa et al., 2009]. This
approach includes a multi-level classification hypothesis hierarchy to keep track of where people
and other movable objects are in the environment as Metaobjects. 1t depends on maintaining
semantic labels, even regarding changes within the environment. For object manipulation,
HERB is capable of grasping and manipulating free-form objects in high clutter. HERB
has been tested while first navigating around a kitchen, then searching for mugs and finally
bringing them back to the kitchen sink. HERB is also able to close a refrigerator by using task
constraints and simple contact analysis, e.g. it first hooks the fridge handle and then pushes
it. HERB uses a different sequence than Cosero that is generated by its framework, which
gives it more flexibility. In the case of HOBBIT [Martinez-Martin and del Pobil, 2018], it is
able of searching and bringing objects, transporting small items, and giving reminders,
as well as emergency detection and handle by notifying the required emergency department.
For that to be possible, the concept of Mutual Care was introduced such that the robot learns
user’s habits and preferences. The use of HOBBIT resulted in high independence of the elderly
in care facilities. In addition, a three-week field trial in real private homes was performed in
three European countries. These trials revealed that users highly appreciated the functions of
picking up objects from the floor, transporting objects, emergency recognition, fitness program
and giving reminders. Concerning its usability, despite the way the robot could perform tasks,
robot’s errors while performing tasks led users to frustration. For this reason, emotional
attachment weakened over the duration of the trials as the user’s expectations could not be
fulfilled. Nevertheless, users believed that a market-ready robot version would be essential for
supporting people who are more fragile and more socially isolated.

PSRs with a gripper, such as AMIGO, Care-O-Bot, B21 Bender, Cosero, Kelia, HOBBIT, for
more refer to Table A.2, are able to perform complex manipulation because of their frameworks.
Stll, they have more limitations in comparison with robots that have fingers as Rollin” Justin,
HERB, HOBBIT and Rosie that are able to more precise manipulation and operation of devices.
Seeing how they perform their plans allows comprehending their action hierarchy for planning,
which seems mixed. One part of this work is to look into the naming of atomic actions above
movements to then be added to the ontology. Then to use them for action plan generation. By
looking at the naming and sequence of actions, the representation of action-subaction pairs can
be improved. Some action names are used constantly, but in other cases, more specific ones are

used instead. For this reason, is needed to improve the ontology, which can be used by different
PSRs, see Chapter 4.
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Appendix

Action and sub-action plans for
solving specific tasks

The path with the next label will follow the plan in an ideal situation. However, failures can
appear and in that case, either an action or a sub-action inside that action repeat. Also, actions

can repeat multiple times depending on the needs of the task execution. The same happens with
the sub-actions; they can repeat, mainly in case of failure.

Ba Pick and place a bowl and a cup task

The pick and place task requires of the actions showed in Figure B.1.

| Pick and place I
4:"’!; \
‘ MovingLocation ‘ ‘ Action: PuttingDownAnObject
N Il
next next

Y yd

[ Action: PickingUpAnObject FnaxtA)l MovingLocation ]

Figure B.1: Task tree of robots picking and placing a cup from the counter to the table.

As mentioned before, actions can repeat. In this example, they repeat for the cup and the bowl.
The sub-actions involved in solving this task are shown in Figure B.2. Each sub-action for each
action presented in Figure B.1 can be seen. In the case of the action Movinglocation, first, take
the value of KitchenIslandCounter and later the Table instead of Specified.

The plan for picking up an object looks like the Lisp Code 10. It is important to note that the

sub-action perceive receives the object or object’s type of interest. Then, the system passes the
location to which the robot will reach for the object to grab it.



Appendix B. Action and sub-action plans for solving specific tasks

Location:
Speciied

(a) Moving to a location action.

[ Sub-adtion:
jving Voluntary

[ Sub-acfion: Reaching

Parncaiving -Violuntary

[ Sub-action: Reaching

| Ohjecthcted On:
RedCup

{c) Putting down an object action.

Figure B.2: Actions and sub-actions involved in the task of picking and placing a cup and bowl from
the counter to the table.

Lisp Code 10 Pick-Up plan with sub-actions in a desired execution.

(def-plan pick-up (Tobject-to-pick)

1

2 (with-robot-at-location (?location-at-which-to-pick)
3 (perform

4 {an action

5 (type picking-up)

6 (object (an object (type Tobject-to-pick)))

(arm Tarm-to-be-used)

b :: Sub-actions

Q (perceive Tobject-to-pick)

10 (reach ?arm-to-be-used 7location-at-which-to-grasp)
11 (grasp ?arm-used Tgrasp-pose)

12 (lift ?7lift-pose-to-be-used)

13 (retract ?arm-used)

14 j]

15 j]

16 j]

17 3
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B.2. Bring a drink from the fridge to the table task

B.2 Bring a drink from the fridge to the table task

The bring a drink to a specific location task requires of the actions showed in Figure B.3.

| MaovingLocation L\ Mllon PuttingDownAnObject |
next i
. . nn:t
¥ Bring a drink
[ Action: OpeningADevice \ anngLucatlun ]
N

next nﬂxt

L /
[Mljun: PickingUpAnObject naxtA){ Action: ClosingADevice |

Figure B.3: Task tree of robots bringing a drink from the fringe to the table.

Some of the actions are repeated from the previous pick and place task, for that reason, only
Opening a device and Closing a device action trees are shown in Figure B.4.

Sub-action: |s| e — |
— T
Action; OpeningADevice Sub-action:
Sub-action: Reaching
"y / j’"
Sub-action: Sub-action:

ObjecthctadOn:
FridgeHandla

(a) Opening a device (fridge) action.

%_L\ — E/,IWR?W]
== %J/ N
H%’

| ObjacthctadOn: |
FridgeHandle

(b) Closing a device (fridge) action.

Figure B.4: Specific actions and sub-actions to solve the bringing a drink from the fringe to the table
task.
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Appendix B. Action and sub-action plans for solving specific tasks

B.3 Serving soup task

The serving soup task requires of the actions showed in Figure B.5.

[ MovingLocation Action: Pl.lliingannAnijac:t]
next na::
N Serving soup Y
[ Action: Picldngl.lphnﬂhjact F’uuringSnmathInglnb:I
et m:r
. . ﬁuctlan
[M'”"' PultingSonwthinglnka next CollectingSomethingFrom ]

Figure B.5: Task tree of robots serving soup.

Similarly to the previous task, some of the actions are already repeated from the previous pick
and place task. Now, only Putting soup ladle into pot, Collecting soup from the
pot and Pouring soup to the bowl action trees are shown in Figure B.6.

@m_@mn PuttingSomethingln /]4—/_[

Sub-action: mm

ohanct.q:wun ]

{(a) Putting soup ladle into pot action.

Sub-action:
[ Mum-\m: » c:uue-ujngs:..-nemthmm "E E“""""""““""'''''i"“"“"":""1""“]

\

l Dh]mtodﬂn
SouplLadis

(b) Collecting soup from the pot action.

smmm I—)[ Action: PouringSomethinglnto b{ Sub-action: RefractingAnAm

[ Sub-action: Reaching ]—b[ &lb-auﬂm:ﬁhgﬂnhrn]

[ ObjectActadOn: ] [ ObjectActedOn:
Soupladie Bowl

{c) Pouring soup to the bowl action.

Figure B.6: Specific actions and sub-actions required to serving soup.
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B.4. Serving juice task

B.4 Serving juice task

The serving juice task requires of the actions showed in Figure B.7.

| ﬁ;ﬁ"‘?mm ]—)— Mﬁnn:Pidci:?JMnﬂhiod -(—[Suh-nd]m:ﬁ;rwlnghﬂ:ml
_:—'_'_'_'_'_'_'_'_'_'_'_'_'_.-F

I Sub-action: Reaching

| ObjectActadOn: |
CrangeJuiceBox
xl‘ﬂ Volunta Action: Pu‘ding;umamingﬂnm 1 Sub-action: »
- "9 | | ObjectActedOn: |

Glass

Sub-action:
P ing-Vol g 8 |1—| nghﬂrml
nta Acton: PouringSomethinglnio Eub-nlm:

I Sub-action: TiltinganAmm ‘

'

Bub-action: ObjectActedOn:
Parce Wl Glass ’ Sub-action: RetraciingAnArm I

«— _ )

e
—
=

. Sub-action:
Releasi

ObjectActadOn;
CrangeJuiceBox

Figure B.7: Task tree of robots serving juice.

As this task is very similar to the serving soup task, there are no new actions represented in more
detail.
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Appendix B. Action and sub-action plans for solving specific tasks

B.5 Mixing ingredients for batter task

The mixing ingredients for a batter task requires of the actions showed in Figure B.8.

Action: Pu‘lﬂngﬂumaﬂ-rgﬂnln]—b[hnﬂm Puuri'-gsumahlnglnm Aj::ﬁm hi:drq;Sull:hAnlequicq I Action: MidngSolids ]
\\1 L
ObjectActedOn: .

[ Action: Picklng'..lp.-ﬁ-'ﬂhjm MixingBowl [Aﬂlnﬂ. Purﬂrlgnmni.nﬂhiaﬂ]
i i
ObjectAciedOn; ObjectActedOn: ObjectActedOn: ObjectActedOn:

ButterBowl SuggarBowl MilkBiox FlowrBowl

Figure B.8: Task tree of robots mixing ingredients for batter.

Similarly to the previous tasks, some of the actions are already repeated. In this case, only
Mixing solids, Mixing solids and fluids action trees are shown in Figure B.9.

I Sub-action: Sub-action:

MIM{A / MMWI:S\ ) o
‘“““x.

Sub-action: LoweringAnQ
Hﬂf

ObjectActedOn:
Bowl
S ]—ﬁ,ulxlngsolldmﬂﬂulds /L,ﬁ_”,;f,%ﬁm )
[Sub-ocd.lm: Lmulnw'rubjod] ‘;-'-l
| ObjectActedOn: |
Bowl

Figure B.9: Task tree of robots mixing sub-actions.
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List of Publications

Ca Own published papers

This thesis work is based on prior work published. All the parts of this work drawing on
content from prior publications referenced the prior works where appropriate. For the sake of

completeness, this section presents a complete list of prior publications related to this thesis
work.

Conference Papers

L. Salinas Pinacho, A. Wich, F. Yazdani, and M. Beetz. Acquiring knowledge of object
arrangements from human examples for household robots. In E. Trollmann and A .-Y. Turhan,
editors, KI 2018: Advances in Artificial Intelligence, pages 131-138, Cham, 2018. Springer
International Publishing. ISBN 978-3-030-00111-7

Other Publications

L. Salinas Pinacho and M. Beetz. Object grasping and arrangements extracted from virtual reality
for a household robot. Poster on the "workshop on concepts in action: Representation, learning,
and application”, 2018. URL https://conceptresearch.github.io/CARLA/files/carla_
2018/5alinas. pdf

L. Salinas Pinacho. From knowledge of humans performing everyday activities to the service
robots. Extended abstract on the "Recent Trends in Knowledge Compilation (Dagstuhl Seminar
17381)" 9, Dagstuhl, Germany, 2018. URL http://drops.dagstuhl.de/opus/volltexte/
2818/8589


https://conceptresearch.github.io/CARLA/files/carla_2018/Salinas.pdf
https://conceptresearch.github.io/CARLA/files/carla_2018/Salinas.pdf
http://drops.dagstuhl.de/opus/volltexte/2018/8589
http://drops.dagstuhl.de/opus/volltexte/2018/8589
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= DAAD Fellowship: Scholarship for Ph. D. research award by German Academic Ex-
change Service (DAAD). From October 2015 until September 2019. Scholarship code:

* DAAD 5tudent Travel Support: 1 was awarded by the German Academic Exchange
Service (DAAD), with a travel support to participate at Dagstuhl.

* Heidelberg Laureate Forum 2015: I was accepted to participate as Young researcher at
the 5th Heidelberg Laureate Forum where only 200 young researchers are accepted.

= 10 out of 200: I was selected between the 10 out of 200 young researchers from around
the world at the Heidelberg Laureate Forum.
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Glossary

Glossary

avatar in Hinduism refers to the material appearance or incarnation of a deity on earth. 182

cognitive architecture is commonly used in the Al and cognitive sciences communities to
designate the organization of systems designed to model the human mind [Alami et al.,
2006]. 7, 9, 15, 37-39, 41, 42, 44, 49, 55, 59, 60, 64, 66, 81, 124, 125, 127, 128, 132,
151, 152, 158, 165, 167, 168, 170, 175, 177, 178

cognitive robot is an autonomous robot that is capable of inference, perception, and learning
mimicking the cognitive mechanisms of the brain [?]. 15, 36, 37, 121

designator is a symbolic descriptions that specify more detailed information about actions,
describing e.g. objects and locations created by CPL [Beetz et al., 2010b] 42, 50, 52, 133,
153, 187

humanoid robot is a robot which has a similar look as a human. They do not have to be totally
equal, but to include a similar look. Also, is a high dimensional movement systems for
which classical system identification and control techniques are often insufficient due to
unknown sources of non-linearities inherent in these systems [Vijayakumar et al., 2002].
Humanoid robots consists of biologically inspired features, human-like appearance, and
intelligent behavior that naturally elicit social responses [Okita et al., 2009]. A human like
autonomous robot which is capable to adapt itself with the changing of its environment
and continue to reach its goal [Benavidez et al., 2015] 17, 128

independent living support is aimed at executing tasks that service dogs perform, such as
picking up or fetching household objects [Hashimoto et al., 2013]. 1

middleware is a software technology that enables the combination of various functional robotic
components via a communication network 18, 19, 50, 59, 180, 184

ontology is a knowledge representation that consists of a taxonomy of concepts and relations
between these concepts. 42, 64, 73-76, 78, 79, 83, 89, 92
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Glossary

Personal Service Robot is the service robot used for a non-commercial task, usually by lay
persons. Examples are domestic servant robot, automated wheelchair, and personal
mobility assist robot [Elfving et al., 2012]. 1-3, 5,7, 10, 13, 15, 16, 37, 47, 49, 57, 65,76,
78, 85,91, 120, 121, 161, 166, 168, 179, 180, 182, 184, 186

query A query is an operation that returns information about a theory without changing
it. Darwiche and Marquis [2002] 76, 77, 88

RoboCup@Home is a category of the RoboCup competition funded in 2006, which main goal
is testing safety and autonomy of service robots. The robot participants have a specific
amount of time to perform. Rules are known in advance but the actual scenario is not. 18,

179, 183, 184, 188

robot is an actuated mechanism programmable in two or more axes with a degree of autonomy,
moving within its environment, to perform intended tasks. Autonomy in this context
means the ability to perform intended tasks based on current state and sensing, without
human intervention [Elfving et al., 2012]. 1-3, 5-10, 12, 15-17, 19, 35-37, 41, 47, 49,
55-61,65, 66, 68,71,73,77,91, 92,99, 126, 128, 130, 145, 148, 150, 151, 153, 156-163,
169-171, 173, 175, 176, 183, 193

RoCKIn is an EU project running for over the next three years. It consists of robot competitions,
symposiums, educational camps and technology transfer workshops. 179

service robot is a robot that performs useful tasks for humans or equipment excluding industrial
automation application. Note that the classification of a robot into industrial robot or
service robot is done according to its intended application [Elfving et al., 2012].A service
robot is an entity that is able to perform a number of basic behaviors and compose them
in the execution of complex tasks [Pineda et al., 2015]. 16, 19, 42, 75, 180, 183
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Acronyms

Acronyms

CRAM Cognitive Robot Abstract Machine first 7, 10, 42, 49, 50, 52, 57, 60, 64, 132, 133, 148,
152, 168, 177, 182, 187

Al Artificial Intelligence vi, 68, 69, 73

AM-EvVA automated probabilistic model of everyday activities 75
ANN 27-30,32,73,98,112,124

ARS activity recognition systems 95

ASIMO Advanced Step in Innovative MObility 183
Cosero COgnitive SErvice RObot 187, 188
DoF Degrees of Freedom 18

EKB Episodic Knowledge Base vii, 10, 11, 55, 61, 78, 79, 87-89, 127, 130, 136, 137, 150,
151, 153, 156, 157, 166, 171

EM Episodic Memory 3, 9, 11, 39, 42, 52, 60, 61, 64, 88, 101, 121, 123, 125-130, 132, 136,
139, 140, 143, 150, 151, 153, 154, 156, 157, 166, 167, 170-172

HAR human activity recognition 10, 11, 13, 49, 60-62, 75, 95-98, 119, 169
HERB Home Exploring Robotic Butler 188

HRI Human-Robot Interaction 39, 44, 179

HRP Humanoid Robotics Platform 183

HSR Human Support Robot 149-151, 157-161, 163, 165, 166, 175, 179, 180, 183

IROS Intermational Conference on Intelligent Robots 180

ISO International Organization for Standardization 17
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Acronyms

KB knowledge base 9, 10, 35, 37, 44, 46, 51, 52, 55, 56, 61, 62, 66, 72, 74,75, 78, 79, 81,
83-85, 87, 89, 119, 130, 136, 140, 143, 145, 148-151, 156, 166, 169, 171, 173, 175, 177

KR Knowledge Representation 66, 6870, 74, 77

LfD Learning from Demonstration 7, 10, 11, 92, 98, 99, 166
LSTM Long Short Term Memory 34, 119, 123

LTM Long Term Memory 9, 12, 34, 37, 39, 60, 66, 68, 112, 121, 123, 124, 126, 128, 129, 166,
171

Mocap motion caption system 94, 95

ORO OpenRobots Ontology 76
OS Operating System 19

OWL Ontology Web Language 55, 67,75, 76, 82, 84, 129, 135

PKB Procedural Knowledge Base 10, 11, 53, 55, 536, 62, 78, 85-87, 89, 130, 133, 134, 140,
141, 150, 151, 1533, 156, 157, 166, 172, 173

PM procedural memory 3, 9, 11, 39, 42, 52, 60, 62, 63, 85, 121, 123125, 127-130, 132, 133,
135, 140, 141, 143, 145, 150, 151, 153, 154, 156, 166, 167, 170, 172

PR2 Personal Robot 2 149-151, 156-161, 163, 166, 175, 176, 182, 183, 187

PSR Personal Service Robot 1-3, 5, 7-13, 15-19, 37, 42, 47, 49, 50, 57, 65, 66, 76, T8, 85, 88,
01,92, 120, 121, 130, 133, 157, 161, 163, 166, 168, 170, 176, 177, 179, 180, 182-184,
186-189

RDF Resource Description Framework 75, 76

RL Reinforcement Learning 44, 53, 124, 133, 171

RNN Recurrent Neural Network 32-34, 98, 103, 107, 112, 117, 119, 124, 169
RoCKIn Robot Competitions Kick Innovation 179

ROS Robot Operating System 18, 19, 50, 59, 148

SKB Semantic Knowledge Base 10, 11, 55, 62-64, 78, 79, 81, 83-85, 88, 89, 117, 135, 141,
142, 145, 150, 151, 153, 156, 161, 162, 166, 173, 175

SM Semantic memory 3, 9, 11, 39, 42, 60, 61, 64, 93, 121, 123, 125, 127-130, 132, 135, 136,
139-142, 150, 151, 153, 154, 156, 166, 167, 170, 173

SOAR State, Operator And Result 38, 41, 42, 44, 45
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STM 5Short Term Memory 9, 34, 37, 39, 60, 66, 112, 114, 121, 123, 126, 128, 129
VR Virtual Reality 11, 61, 81, 92, 94, 100, 101, 112, 119, 135

W3aC 75

WM Working memory 5, 9, 11, 39-42, 47, 52, 58, 6064, 82, 86, 96, 121, 123-125, 127-130,
133, 135, 136, 139-141, 143, 145, 150, 151, 153, 154, 156, 160, 162, 165-167, 170, 171,
173

199






Bibliography

Bibliography

D. Abdlkarim, V. Ortenzi, T. Pardi, M. Filipovica, A. Wing, K. Kuchenbecker, and M. Di Luca.
Prendosim: Proxy-hand-based robot grasp generator. pages 60-68, 01 2021. doi: 10.522(0/
0010549800600068.

N. Abdo, C. Stachniss, L. Spinello, and W. Burgard. Organizing objects by predicting user
preferences through collaborative filtering. The International Journal of Robotics Research,
35(13):1587-1608, 2016. doi: 10.1177/0278364916649248. URL http://ijr.sagepub.
com/content/35/13/1587.abstract.

J. Aggarwal and L. Xia. Human activity recognition from 3d data: A review. Partern
Recognition Letters, 48:70 — 80, 2014. ISSN 0167-8655. doi: https://doi.org/10.1016/
j-patrec.2014.04.011. URL http://www.sciencedirect.com/science/article/pii/
58167865514001299. Celebrating the life and work of Mara Petrou.

E. Alami, R. Chatila, A. Clodic, 5. Fleury, M. Herrb, V. Montreuil, and E. A. Sisbot. Towards
human-aware cognitive robots. In AAAL Stanford Spring Symposium, 2006. read.

L. K. Alberts. YMIR: An ontology for engineering design. PhD thesis, Department Of Computer
Science, Universiteit Twente, 1993,

J. 5. Albus. 4d/rcs: a reference model architecture for intelligent unmanned ground vehicles.
In Unmanned Ground Vehicle Technology IV, volume 4715, pages 303-310. International
Society for Optics and Photonics, 2002.

J. E Allen and G. Ferguson. Actions and events in interval temporal logic. Journal of logic and
computation, 4(5):531-579, 1994,

L. Alpoim, A. E da Silva, and C. P. Santos. Human activity recognition systems: State of art.
In 2019 IEEE 6ith Portuguese Meeting on Bioengineering (ENBENG), pages 1-4, February
2019. doi: 10.1109%ENBENG.2019.8692468. read.

E. Altuntas and A. Sekeroglu. Mechanical behavior and physical properties of chicken egg as
affected by different egg weights. Journal of Food Process Engineering, 33:115- 127,07
2008. doi: 10.1111/j.1745-4530.2008.00263 x.

J. R. Anderson. Act: A simple theory of complex cognition. American psychologist, 51(4):355,
1996.

20


http://ijr.sagepub.com/content/35/13/1587.abstract
http://ijr.sagepub.com/content/35/13/1587.abstract
http://www.sciencedirect.com/science/article/pii/S0167865514001299
http://www.sciencedirect.com/science/article/pii/S0167865514001299

Bibliography

J. R. Anderson. The architecture of cognition. Psychology Press, 2013.

J. R. Anderson, D. Bothell, M. D. Byme, 5. Douglass, C. Lebiere, and Y. Qin. An integrated
theory of the mind. Psychological Review, 111(4):1036-1060, 2004. doi: 10.1037/0033-295X.
111.4.1036.

M. Andres, B. Pelgrims, E. Olivier, and G. Vannuscorps. The left supramarginal gyrus
contributes to finger positioning for object use: a neuronavigated transcranial magnetic
stimulation study. European Journal of Newroscience, 46(12):2835-2843, 2017. doi:
10.1111/ejn.13763.

B. D. Argall, 5. Chernova, M. Veloso, and B. Browning. A survey of robot learning from
demonstration. Robotics and Autonomous Systems, 57(5):469-483, 2000. ISSN 0921-8890.
doi: http://doi.org/10.1016/).robot.2008.10.024. URL http://www.sciencedirect.com/
science/article/pii/5@9218890880@1772. read.

R. C. Arkin and D. C. MacKenzie. Planning to behave: A hybrid deliberative/reactive robot
control architecture for mobile manipulation. SMARTech, 1994.

T. Asfour, M. Waechter, L. Kaul, 5. Rader, P. Weiner, 5. Ottenhaus, R. Grimm, Y. Zhou, M. Grotz,
and F Paus. Armar-6: A high-performance humanoid for human-robot collaboration in
real-world scenarios. IEEE Robotics Automation Magazine, 26(4):108-121, 2019. doi:
10.1109/MR.A.2019.2041246.

Z. Astolfi-Filho, E. B. De Oliveira, J. Coimbra, and J. telis Romero. Friction factors, convective
heat transfer coefficients and the colbum analogy for industrial sugarcane juices. Biochemical
Engineering Journal, 60:111-118, 01 2012. doi: 10.1016/}.bej.2011.10.011.

A. Baddeley. The episodic buffer a new component of working memory? Trends in Cog-
nitive Sciences, 4(11):417-423, 2000. ISSN 1364-6613. doi: https://doi.org/10.1016/
51364-6613(00001538-2. URL http://www.sciencedirect.com/science/article/
pii/51364661300@15382.

M. Bajracharya, J. Borders, D. Helmick, T. Kollar, M. Laskey, J. Leichty, J. Ma, U. Nagarajan,
A. Ochiai, J. Petersen, K. Shankar, K. Stone, and Y. Takaoka. A mobile manipulation system
for one-shot teaching of complex tasks in homes. In 2020 IEEE International Conference
on Robotics and Automation (ICRA ), pages 11039-11045, 2020. doi: 10.1109/ICRA40945.
2020.9196677.

L. W. Barsalou, C. Breazeal, and L. B. Smith. Cognition as coordinated non-cognition. Cognitive
Processing, 8(2):79-91, 2007. 1SSN 1612-4790. doi: 10.1007/510339-007-0163-1. URL
http: //dx.doi.org/10.1007/510339-887-0163-1.

B. Biuml, F. Schmidt, T. Wimbick, O. Birbach, A. Dietrich, M. Fuchs, W. Friedl, U. Frese,
C. Borst, M. Grebenstein, O. Eiberger, and G. Hirzinger. Catching flying balls and preparing
coffee: Humanoid rollin’justin performs dynamic and sensitive tasks. In IEEE International

202


http://www.sciencedirect.com/science/article/pii/S0921889008001772
http://www.sciencedirect.com/science/article/pii/S0921889008001772
http://www.sciencedirect.com/science/article/pii/S1364661300015382
http://www.sciencedirect.com/science/article/pii/S1364661300015382
http://dx.doi.org/10.1007/s10339-007-0163-1

Bibliography

Conference on Robotics and Automation, pages 3443-3444, May 2011. doi: 10.1109/ICRA.
2011.5980073. read.

P. Baxter and W. Browne. Memory-based cognitive framework: A low-level association
approach to cognitive architectures. In G. Kampis, L. Karsai, and E. Szathmary, editors,
Revised Selected Papers of the 10th European Conference on Advances in Artificial Life.
Darwin Meets von Neumann (ECAL) Part I, pages 402-409, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg. ISBN 978-3-642-21283-3. doi: 10.1007/978-3-642-21283-3_50.
URL http://dx.doi.org/10.1007/978-3-642-21283-3_50. read.

S. Bedaf, G. J. Gelderblom, and L. de Witte. Overview and categorization of robots supporting
independent living of elderly people: What activities do they support and how far have they
developed. Assistive Technology, 27(2):88-100, 2015. doi: 10.1080/10400435.2014.978916.
URL https://doi.org/10.1080/18400435.2014.978916. PMID: 26132353.

M. Beetz, J. Bandouch, D. Jain, and M. Tenorth. Towards automated models of activities of daily

life. In First International Symposium on Quality of Life Technology — Intelligent Systems for
Better Living, Pittsburgh, Pennsylvania USA, 2010a. read.

M. Beetz, L. Masenlechner, and M. Tenorth. Cram — a cognitive robot abstract machine for
everyday manipulation in human environments. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1012-1017, 2010b. read.

M. Beetz, D. Jain, L. Mésenlechner, M. Tenorth, L. Kunze, N. Blodow, and D. Pangercic.
Cognition-enabled autonomous robot control for the realization of home chore task intelli-
gence. Proceedings of the IEEE, 100(8):2454-2471, 2012.

M. Beetz, E Bilint-Benczédi, N. Blodow, D. Nyga, T. Wiedemeyer, and Z. C. Mirton. Ro-
bosherlock: Unstructured information processing for robot perception. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 1549-1556, May 2015. dot:
10.1109/ICRA.2015.7139395. read.

M. Beetz, D. BebBler, A. Haidu, M. Pomarlan, A. K. Bozcuoglu, and G. Bartels. Knowrob 2.0 -
a 2nd generation knowledge processing framework for cognition-enabled robotic agents. In
International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 2018.

M. Beetz, G. Kazhoyan, and D. Vernon. The cram cognitive architecture for robot manipulation
in everyday activities, 2023.

P Bellavista, A. Corradi, L. Foschini, and A. Pernafimi. Data distribution service (dds): A
performance comparison of opensplice and rti implementations. In JEEE symposium on
computers and communications (ISCC), pages 377-383. IEEE, 2013.

P. Benavidez, M. Kumar, S. Agaian, and M. Jamshidi. Design of a home multi-robot system for
the elderly and disabled. In 10th System of Systems Engineering Conference (SoSE), pages
392-397, May 2015. doi: 10.110%SYSOSE.2015.7151907. read.

203


http://dx.doi.org/10.1007/978-3-642-21283-3_50
https://doi.org/10.1080/10400435.2014.978916

Bibliography

A, Billard and D. Kragic. Trends and challenges in robot manipulation. Science, 364(6446), 2019.
ISSN 0036-8B075. doi: 10.1126/science.aat8414. URL https://science.sciencemag. org/
content/364/6446/eaat8414.

C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

B. 5. Bloom, D. R. Krathwohl, and B. B. Masia. Taxonomy of educational objectives. David
Mckay, 1971.

A. Bobick. Movement, activity and action: The role of knowledge in the perception of motion.
Philosophical transactions af the Roval Society of London. Series B, Biological sciences, 352:
1257-65, September 1997. doi: 10.1098/rstb.1997.0108.

R. P. Bonasso, D. Kortenkamp, D. P. Miller, and M. Slack. Experiences with an architecture

for intelligent, reactive agents. pages 187-202, Berlin, Heidelberg, 1996. Springer Berlin
Heidelberg. ISBN 978-3-540-40594-9.

A. K. Bozcuoglu, G. Kazhoyan, Y. Furuta, 5. Stelter, M. Beetz, K. Okada, and M. Inaba.
The exchange of knowledge using cloud robotics. In 2018 IEEE International Conference
on Robotics and Automation (ICRA), pages 47684775, 2018. doi: 10.1109/ICRA.2018.
8460187.

C. Breazeal. Role of expressive behaviour for robots that learn from people. Philosophical
Transactions of the Royal Society B, 364:3527-3538, 2009. doi: 10.1098/rstb.2009.0157.
read.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and regression trees.
CRC press, 1984.

W. Bridewell and P. Bello. Incremental object perception in an attention-driven cognitive
architecture. In CogSci, 2015.

A. G. Brooks, I. Gray, G. Hoffman, A. Lockerd, H. Lee, and C. Breazeal. Robot’s play:
Interactive games with sociable machines. Computers in Entertainment, 2(3):1-18, July 2004.
ISSN 1544-3574. doi: 10.1145/1027154.1027171. URL http://doi.acm.org/1@.1145/
1927154.1827171. read.

R. Brooks. A hardware retargetable distributed layered architecture for mobile robot control.

In IEEE International Conference on Robotics and Automation, volume 4, pages 106-110.
IEEE, 1987.

G.-P. Castellote and P. Bolton. Distributed real-time applications now have a data distribution
protocol. Real-Time Innovations, Inc, 2002,

Y.-S. Cha, K. Kim, ].-Y. Lee, 1. Lee, M. Choi, M.-H. Jeong, C. Kim, B.-]J. You, and 5.-
R. Oh. Mahru-m: A mobile humanoid robot platform based on a dual-network control
system and coordinated task execution. Robotics and Autonomous Systems, 59(6):354-66,

204


https://science.sciencemag.org/content/364/6446/eaat8414
https://science.sciencemag.org/content/364/6446/eaat8414
http://doi.acm.org/10.1145/1027154.1027171
http://doi.acm.org/10.1145/1027154.1027171

Bibliography

2011. ISSN 0921-8890. doi: https://doiorg/10.1016/).robot.2011.01.003. URL http:
//www.sciencedirect.com/science/article/pii/5@8921880811080108.

L. Chen and T. T. Rogers. Revisiting domain-general accounts of category specificity in mind
and brain. Wiley Interdisciplinary Reviews: Cognitive Science, 5(3):327-344, 2014.

X. Chen, J. Xie, J. Ji, and Z. Sui. Toward open knowledge enabling for human-robot interaction.
Human-Robot Interaction, 1(2): 100117, 2012. ISSN 2163-0364. doi: 10.5898/JHRI.1.2.
Chen.

Y. Chen, F. Wu, W. Shuai, and X. Chen. Robots serve humans in public places-kejia

robot as a shopping assistant. [nternational Journal of Advanced Robotic Systems, 14
(3):1729881417703569, 2017. doi: 10.1177/1729881417703569. URL https://doi.org/
18.1177/1729881417783569.

S. Chitta, I. Sucan, and S. Cousins. Moveit![ros topics]. IEEE Robotics & Automation Magazine,
19(1):18-19, 2012.

J.-W. Choi, G.-M. Park, and J.-H. Kim. Sr-em: episodic memory aware of semantic relations
based on hierarchical clustering resonance network. /EEE Transactions on Cybernetics, pages
1-3, 2021. doi: 10.1109/TCYB.2021.3081762.

T. Christaller. Cognitive robotics: a new approach to artificial intelligence. Artificial Life
and Robotics, 3(4):221-224, 1999, ISSN 1614-7456. doi: 10.1007/BF02481184. URL
http://dx.doi.org/10.1087/BF82481184.

J. Claassens. The adhesion-cohesion, static friction and macrostructure of certain butters. 1v.
factors affecting static friction measurements of butter. South African Jowrnal of Agricultural
Science, 2(3):387—408, 19359,

A. Clark and R. Grush. Towards a cognitive robotics. Adaptive Behavior, T(1):5
16, 1999, doi: 10.1177/105971239900700101. URL http://dx.doi.org/10.1177/
1859712399pa700101.

H. M. Collins. Humans, machines, and the structure of knowledge. Knowledge Management
Tools, pages 145-163, 1995.

M. Conforth and Y. Meng. Charisma: A context hierarchy-based cognitive architecture for
self-motivated social agents. In International Joint Conference on Neural Networks, pages
1894-1901. IEEE, 2011.

M. T. Cox, Z. Alavi, D. Dannenhaver, V. Eyorokon, H. Munoz-Avila, and D. Perlis. Midca: A
metacognitive, integrated dual-cycle architecture for self-regulated autonomy. In Thirtieth
AAAI Conference on Artificial Intelligence, 2016.

F. Cruz, G. L Parisi, and S. Wermter. Contextual affordances for action-effect prediction in
a robotic-cleaning task. In IEEE/RST International Conference on Intelligent Robots and
Systems (IROS), 2015.

205


http://www.sciencedirect.com/science/article/pii/S0921889011000108
http://www.sciencedirect.com/science/article/pii/S0921889011000108
https://doi.org/10.1177/1729881417703569
https://doi.org/10.1177/1729881417703569
http://dx.doi.org/10.1007/BF02481184
http://dx.doi.org/10.1177/105971239900700101
http://dx.doi.org/10.1177/105971239900700101

Bibliography

F. Cruz, G. L Parisi, and 5. Wermter. Learning contextual affordances with an associative

neural architecture. In European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN), pages 665-670, 2016.

D. Damen, H. Doughty, G. M. Farinella, 5. Fidler, A. Furnan, E. Kazakos, D. Moltisanti,
J. Munro, T. Perrett, W. Price, and M. Wray. Scaling egocentric vision: The epic-kitchens
dataset. In Ewropean Conference on Computer Vision (ECCV), 2018.

A. Darwiche and P. Marquis. A knowledge compilation map. Artificial Intelligence Research,
17:229-264, 2002.

J. P Das, B. C. Kar, and R. K. Parrila. Cognitive planning: The psychological basis of intelligent
behavior. Sage Publications, Inc, 1996.

P. Das, C. Xu, R. E Doell, and J. J. Corso. A thousand frames in just a few words: Lingual
description of videos through latent topics and sparse object stitching. In IEEE conference on
computer vision and pattern recognition, pages 2634-2641, 2013.

R. Davis, H. Shrobe, and P. Szolovits. What is a knowledge representation? Al Magazine, 14
(1):17-33, 1993. doi: https://doi.org/10.1609/aimag.v14i1.1029.

E. De-La-Hoz-Franco, P. Ariza-Colpas, J. M. Quero, and M. Espinilla. Sensor-based datasets for
human activity recognition — a systematic review of literature. JEEE Access, 6:59192-59210,
2018. ISSN 2169-3536. doi: 10.1109%/ACCESS.2018.2873502.

A. K. Deklel, A. M. Hamdy, and E. M. Saad. Multi-objective symbolic regression using
long-term artificial neural network memory (ltann-mem) and neural symbolization algorithm
(nsa). Newral Computing and Applications, 29(4):935-942, Feb 2018. ISSN 1433-3058. doi:
10.1007/s00521-016-2500-8. URL https://doi.org/10.1007/s00521-016-2500-8.

T. Deutsch, A. Gruber, R. Lang, and R. Velik. Episodic memory for autonomous agents. In
Conference on Human System Interactions (HSI), pages 621-626, 2008.

D. Di Marco, P. Levi, R. van de Molengraft, and A. Clifford Perzylo. A deliberation layer for
instantiating robot execution plans from abstract task descriptions. In ICAPS, 2013.

E. Diaz Flauzino, J. A. Wilhelms Gut, C. C. Tadini, and J. Telis-Romero. Flow properties and
tube friction factor of milk cream: influence of temperature and fat content. Journal of food
process engineering, 33(5):820-836, 2010.

M. Diehl, C. Paxton, and K. Ramirez-Amaro. Automated generation of robotic planning domains
from observations. In 2027 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 6732-6738, 2021. doi: 10.1109/IROS51168.2021.9636781.

W. Dodd and R. Gutierrez. The role of episodic memory and emotion in a cognitive robot.
In IEEE International Workshop on Robots and Human Interactive Communication, pages
692-697, 2005.

206


https://doi.org/10.1007/s00521-016-2500-8

Bibliography

J. Elfring, S. Jansen, R. van de Molengraft, and M. Steinbuch. Active object search exploiting
probabilistic object—object relations. In S. Behnke, M. Veloso, A. Visser, and R. Xiong,
editors, RoboCup 2013: Robot World Cup XVII, pages 13-24, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg. ISBN 978-3-662-44468-9.

S. Elfving, A. Dryden, B. Stanton, and K. Widstrom. Robots and robotic devices — vocabulary.
Technical Report 8373:2012, ISO, March 2012.

J. Euzenat and P. Shvaiko. Ontology matching, volume 18. Springer, 2007.

C. Evans, M. G. Edwards, L. J. Taylor, and M. letswaart. Perceptual decisions regarding object

manipulation are selectively impaired in apraxia or when tdcs is applied over the left ipl.
Neuropsychologia, 86:153-166, 2016.

U. Faghihi, P Fournier-Viger, and R. Nkambou. Celts: a cognitive tutoring agent with human-

like learning capabilities and emotions. In Intelligent and Adaptive Educational-Learning
Systems, pages 339-365. Springer, 2013.

T. Feix, J. Romero, H. Schmiedmayer, A. M. Dollar, and D. Kragic. The grasp taxonomy of

human grasp types. I[EEE Transactions on Human-Machine Systems, 46(1):66-77, February
2016. ISSN 2168-2291. doi: 10.1109/THMS.2015.2470657.

A. Ferrein, T. Niemueller, S. Schiffer, and G. Lakemeyer. Lessons learnt from developing the
embodied ai platform caesar for domestic service robotics. In AAATI Spring Symposium Series,
pages 21-26, 2013.

R. 1. Firby. Adaptive execution in complex dynamic worlds. PhD thesis, Yale University, 1990.

J. R. Flanagan and R. S. Johansson. Action plans used in action observation. Nature, 424(6950):
T69-771, 2003. doi: 10.1038/nature01861.

J. R. Flanagan, M. C. Bowman, and R. S. Johansson. Control strategies in object manipulation
tasks. Current Opinion in Neurobiology, 16(6):650-659, 2006. ISSN 0959-4388. doi: https:
{/doi.org/10.1016/}.conb.2006.10.005. URL http://www.sciencedirect.com/science/
article/pii/S@959438806001450. Motor systems / Neurobiology of behaviour.

J. A. Fodors. The Language of Thought. Harvard University Press, 1975.

S. Franklin and A. Graesser. Is it an agent, or just a program?: A taxonomy for autonomous
agents. In International Workshop on Agent Theories, Architectures, and Languages, pages
21-35. Springer, 1996.

E. Freud, T. Ganel, I. Shelef, M. D. Hammer, G. Avidan, and M. Behrmann. Three-dimensional
representations of objects in dorsal cortex are dissociable from those in ventral cortex. Cere-
bral Cortex, 27(1):422-434, 10 2015. ISSN 1047-3211. doi: 10.1093/cercor/bhv229. URL
https://doi.org/1@.1893/cercor/bhv229.

207


http://www.sciencedirect.com/science/article/pii/S0959438806001450
http://www.sciencedirect.com/science/article/pii/S0959438806001450
https://doi.org/10.1093/cercor/bhv229

Bibliography

J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical learning, volume 1.
Springer series in statistics New York, 2001.

M. Gee, P. Tomlins, A. Calver, R. Darling, and M. Rides. A new friction measurement system
for the frictional component of touch. Wear, 259(7):1437-1442, 2005. ISSN 0043-1645.
doi: https://doi.org/10.1016/j.wear.2005.02.053. URL https://www.sciencedirect.com/
science/article/pii/S@@43164805801857. 15th International Conference on Wear of
Materials.

T. Gijssels and D. Casasanto. Hand-use norms for dutch and english manual action verbs:
Implicit measures from a pantomime task. Behavior Research Methods, 52(4):1-23, March
2020. doi: 10.3758/513428-020-01347-x.

C. Goddard. Minimal English for a global world. Springer, 2018.

B. Goertzel. Cogprime: An integrative architecture for embodied artificial general intelligence.
Dynamical Psychology: An International, Interdisciplinary Journal of Complex Mental
Processes, 2012,

B. Goertzel and C. Pennachin. The novamente artificial intelligence engine. In Artificial general
intelligence, pages 63-129. Springer, 2007.

J. B. Gordon, R. J. Passonnean, and S. L. Epstein. Learning to balance grounding rationales for
dialogue systems. In SIGDIAL 2011 Conference, pages 266-271, 2011.

T. Gruber. It is what it does: The pragmatics of ontology for knowledge sharing. In Proceedings
of the International CIDOC CRM Symposium, Available online at, 2003.

T. R. Gruber. A translation approach to portable ontology specifications. Knowledge acquisition,
5(2):199-220, 1993.

N. Guarino, D. Oberle, and S. Staab. What is an ontology? In S. Staab and R. Studer, editors,
Handbook on Ontologies, pages 1-17. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.
ISBN 978-3-540-92673-3. doi: 10.1007/978-3-540-92673-3_0. URL https://doi.org/
18.1887/978-3-548-92673-3_0.

A. Haidu and M. Beetz. Action recognition and interpretation from virtual demonstrations.
In International Conference on Intelligent Robots and Systems (IROS), pages 2833-2838,
Daejeon, South Korea, 2016. URL http://ieeexplore.ieee.org/stamp/stamp. jsp?
arnumber=7759439,

G. Handjaras, E. Ricciardi, A. Leo, A. Lenci, L. Cecchetti, M. Cosottini, G. Marotta, and
P. Pietrini. How concepts are encoded in the human brain: A modality independent, category-
based cortical organization of semantic knowledge. Neurolmage, 135:232 — 242, 2016.
ISSN 1053-8119. doi: https://doi.org/10.1016/j.neuroimage.2016.04.063. URL http://www.
sciencedirect.com/science/article/pii/518538119163@1821.

208


https://www.sciencedirect.com/science/article/pii/S0043164805001857
https://www.sciencedirect.com/science/article/pii/S0043164805001857
https://doi.org/10.1007/978-3-540-92673-3_0
https://doi.org/10.1007/978-3-540-92673-3_0
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7759439
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7759439
http://www.sciencedirect.com/science/article/pii/S1053811916301021
http://www.sciencedirect.com/science/article/pii/S1053811916301021

Bibliography

M. Hanheide and G. Sagerer. Active memory-based interaction strategies for leaming-enabling

behaviors. In 17th IEEE International Symposium on Robot and Human Interactive Commu-
nication (RO-MAN), pages 101-106, August 2008. doi: 10.1109/ROMAN.2008.4600650.

K. Hashimoto, F. Saito, T. Yamamoto, and K. Ikeda. A field study of the human support robot

in the home environment. In IEEE Workshop on Advanced Robotics and its Social Impacts,
pages 143-150, November 2013. doi: 10.1109/ARS0.2013.6705520.

U. Hasson, L. Levy, M. Behrmann, T. Hendler, and R. Malach. Eccentricity bias as an organizing
principle for human high-order object areas. Neuron, 34(3):479-490, 2002.

C. Havasi, R. Speer, and J. Alonso. Conceptnet 3: a flexible, multilingual semantic network for
common sense knowledge. In Recent Advances in Natural Language Processing, September
2007.

C. Havasi, R. Speer, K. Amold, H. Lieberman, J. Alonso, and J. Moeller. Open mind common
sense: Crowd-sourcing for common sense. In 2nd AAATI Conference on Collaboratively-Built
Knowledge Sources and Artificial Intelligence, AAAIWS’10-02, pages 53-53. AAAI Press,
2010. URL http://dl.acm.org/citation.cfm?id=2008523. 2008534,

S. Haykin. Neural Networks and Learning Machines, 3/E. Pearson Education India, 2010.

M. A. Hearst, 5. T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. Support vector machines.
IEEE Imtelligent Systems and their applications, 13(4): 18-28, 1998.

M. Henaff, A. Szlam, and Y. LeCun. Recurrent orthogonal networks and long-memory tasks. In
33rd International Conference on International Conference on Machine Learning, volume 48
of ICML’16, pages 2034-2042. JIMLR.org, 2016. URL http://dl.acm.org/citation.
cfm?id=3845390. 38645605.

T. C. Henderson, A. Joshi, and W. Wang. The cognitive symmetry engine. Technical report,
School of Computer Science, University Utah, Salt Lake City, USA, Rep. UUCS5-13-004,
2013.

T. Hobbes. Leviathan. Andrew Crooke, 1651.

L. locchi, G. Kraetzschmar, D. Nardi, P. U. Lima, P. Miraldo, E. Bastianelli, and R. Capobianco.
RoCKIn@Home: Domestic Robots Challenge. In tech open, August 2017. doi: 10.577%/
intechopen.70015.

H. Iwata and S. Sugano. Design of human symbiotic robot twendy-one. In IEEE International
Conference on Robotics and Automation, pages 580-586, May 2009. doi: 10.1109/ROBOT.
2009.5152702.

R. S. Johansson and J. R. Flanagan. Coding and use of tactile signals from the fingertips in object
manipulation tasks. Nature Reviews Neuroscience, 10:345, 2009. doi: 10.1038/nm2621.

209


http://dl.acm.org/citation.cfm?id=2908523.2908534
http://dl.acm.org/citation.cfm?id=3045390.3045605
http://dl.acm.org/citation.cfm?id=3045390.3045605

Bibliography

A. Johnson. Procedural Memory and Skill Acquisition, chapter 18. American Cancer Society,
2012. ISBN 9781118133880. doi: 10.1002/9781118133880.hop204018. URL https:
//onlinelibrary.wiley.com/doi/abs/1@.1082/978111813388@. hop2@4@138.

M. I. Johnson, M. A. Johnson, J. 8. Sefcik, P. Z. Cacchione, C. Mucchiani, T. Lau, and
M. Yim. Task and design requirements for an affordable mobile service robot for elder
care in an all-inclusive care for elders assisted-living setting. [International Journal of
Social Robotics, Nov 2017. ISSN 1875-4805. doi: 10.1007/s12369-017-0436-5. URL
https://doi.org/10.1887/s12369-817-8436-5.

K. Kaneko, E Kanehiro, M. Morisawa, K. Akachi, G. Miyamori, A. Hayashi, and N. Kanehira.
Humanoid robot hrp-4 - humanoid robotics platform with lightweight and slim body. In
IEEE/RS] International Conference on Intelligent Robots and Systems, pages 44004407,
September 2011. doi: 10.1109/IROS.2011.6094465.

K. Kawamura, 5. M. Gordon, P. Ratanaswasd, E. Erdemir, and J. F. Hall. Implementation of

cognitive control for a humanoid robot. International Journal of Humanoid Robotics, 5(4):
547-586, 2008.

G. Kazhoyan and M. Beetz. Programming robotic agents with action descriptions. In 2017
IEEE/RS] International Conference on Intelligent Robots and Systems (IROS), pages 103—108,
2017. doi: 10.1109/IROS.2017.8202144.

G. Kazhoyan and M. Beetz. Executing underspecified actions in real world based on online

projection. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5156-5163, 2019. doi: 10.110%IR0OS40897.2019.8967867.

G. Kazhoyan, A. Hawkin, S. Koralewski, A. Haidu, and M. Beetz. Learning motion parameteri-
zations of mobile pick and place actions from observing humans in virtual environments. In
2020 IEEE/RS] International Conference on Intelligent Robots and Systems (IROS), pages
0736-9743, 2020a. doi: 10.1109/TROS45743.2020.9341458.

G. Kazhoyan, A. Niedzwiecki, and M. Beetz. Towards plan transformations for real-world
mobile fetch and place. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 11011-11017, 2020b. doi: 10.1109/ICRA40945.2020.9197446.

G. Kazhoyan, 5. Stelter, E K. Kenfack, 5. Koralewski, and M. Beetz. The robot household
marathon experiment. In 2027 IEEE International Conference on Robotics and Automation
(ICRA), pages 9382-9388, 2021. doi: 10.1109/ICRA48506.2021.9560774.

F. Kenghagho Kenfack, M. Neumann, P Mania, T. Tan, E Siddiky, R. Weller, G. Zachmann, and
M. Beetz. Naivphysdrp -towards human-like robot perception: "physical reasoning based on
embodied probabilistic simulation”. 11 2022. doi: 10.1109/Humanoids53995.2022.10000153.

M. Kerzel, E. Strahl, §. Magg, N. Navarro-Guerrero, S. Heinrich, and S. Wermter Nico — neuro-
inspired companion: A developmental humanoid robot platform for multimodal interaction. In

210


https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118133880.hop204018
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118133880.hop204018
https://doi.org/10.1007/s12369-017-0436-5

Bibliography

2017 26th IEEE International Symposium on Robot and Human Interactive Communication
(RO-MAN), pages 113-120, August 2017. doi: 10.1109/ROMAN.2017.8172289.

0. Kilic and P Wang. Nars as a normative model of cognition. In CogSci, 2015.

H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa. Robocup: The robot world cup
initiative. In Proceedings of the First International Conference on Amtonomous Agents,
AGENTS 97, pages 340-347, New York, NY, USA, 1997. ACM. ISBN 0-89791-877-0. doi:
10.1145/267658.267738. URL http://doi.acm.org/18.1145/267658.267738.

B. Kokinov, V. Nikolov, and A. Petrov. Dynamics of emergent computation in dual. Artificial
intelligence: methodology, svstems, applications. 108 Press, Amsterdam, 1996,

T. Konkle and A. Oliva. A familiar-size stroop effect: real-world size is an automatic property
of object representation. Journal of Experimental Psychology: Human Perception and
Performance, 38(3):561-569, 2012.

S. Koralewski, G. Kazhoyan, and M. Beetz. Self-specialization of general robot plans based on
experience. IEEE Robotics and Automation Letters, 4(4):3766-3773, 2019. doi: 10.1109/
LRA.2019.2928771.

L. Kotseruba and J. K. Tsotsos. 40 years of cognitive architectures: core cognitive abilities and
practical applications. Artificial Intelligence Review, 2018. doi: 10.1007/s10462-018-9646-y.

J. Laaksonen and E. Oja. Classification with learning k-nearest neighbors. In Proceedings of
international conference on neural networks (ICNN'96), volume 3, pages 1480-1483. IEEE,
1996.

J. Laird. Recovery from incorrect knowledge in soar. In Seventh AAAI National Conference on
Artificial Intelligence, AAAT'88, pages 618-623. AAAI Press, 1988. URL http://dl.acm.
org/citation.cfm?id=2887065. 2888075,

J. E. Laird and 5. Mohan. A case study of knowledge integration across multiple memories
in soar. Biologically Inspired Cognitive Architectures, 8:93-99, 2014. ISSN 2212-683X.
doi: http://dx.doi.org/10.1016/}.bica.2014.03.006. URL http: //www.sciencedirect.com/
science/article/pii/52212683X14088164.

A. Lally, S. Bachi, M. A. Barborak, D. W. Buchanan, J. Chu-Carroll, D. A. Ferrucci®*, M. R.
Glass, A. Kalyanpur, E. T. Mueller, J. W. Murdock, S. Patwardhan, J. M. Prager, and C. A.
Welty. Watsonpaths: Scenario-based question answering and inference over unstructured
information. IBM Research Report RC25489 (WAT 1409-048), IBM Research Division,
Yorktown Heights, NY 10598, September 2014.

C. Lebiere, E Jentsch, and 5. Ososky. Cognitive models of decision making processes for

human-robot interaction. In International Conference on Virtual, Augmented and Mixed
Reality, pages 285-294. Springer, 2013.

21


http://doi.acm.org/10.1145/267658.267738
http://dl.acm.org/citation.cfm?id=2887965.2888075
http://dl.acm.org/citation.cfm?id=2887965.2888075
http://www.sciencedirect.com/science/article/pii/S2212683X14000164
http://www.sciencedirect.com/science/article/pii/S2212683X14000164

Bibliography

Y. LeCun, L. Bottou, G. B. Orr, and K. R. Miiller. Efficient backprop. In G. B. Orr and K.-R.
Miiller, editors, Neural Networks: Tricks of the Trade, pages 9-50. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1998. ISBN 978-3-540-49430-0. doi: 10.1007/3-540-49430-8_2. URL
http: //dx.doi.org/10.1007/3-548-49438-8_2.

S. Lemaignan, R. Ros, L. Mésenlechner, R. Alami, and M. Beetz. Oro, a knowledge management
platform for cognitive architectures in robotics. In JEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3548-3553, 2010. doi: 10.1109/IROS.2010.
3649547,

I. Levy, U. Hasson, G. Avidan, T. Hendler, and R. Malach. Center—periphery organization
of human object areas. Nature Neuroscience, 4(5):533-539, 2001. ISSN 1546-1726. doi:
10.1038/87490.

R. Lewis, C. Menardi, A. Yoxall, and J. Langley. Finger friction: Grip and opening
packaging. Wear, 263(7):1124-1132, 2007. ISSN 0043-1648. doi: https://doi.org/10.
1016/j.wear.2006.12.024. URL https://www.sciencedirect.com/science/article/
pii/S0043164807003080. 16th International Conference on Wear of Materials.

W. C. Lewis, M. Moll, and L. E. Kavraki. How much do unstated problem constraints limit
deep robotic reinforcement leaming? 2019. doi: 10.25611/AZ5Z-XT37. URL http:
//hdl.handle.net/1911/1074@3.

P. Lima, D. Nardi, G. Kraetzschmar, R. Bischoff, and M. Matteucci. Rockin and the european
robotics league: Building on robocup best practices to promote robot competitions in europe.
In RoboCup 2016: Robot World Cup XX, pages 181-192, November 2017. ISBN 978-3-319-
68791-9. doi: 10.1007/978-3-319-68792-6_15.

M. Lloyd-Kelly, E Gobet, and P. C. Lane. Piece of mind: Long-term memory structure in act-r
and chrest. In CogSci, 2015.

Q.T. C. Ltd. Sanbot (robot). https://www.wikiwand.com/en/Sanbot_(robot), 2019.

N. Lucci, G. FE Preziosa, and A. M. Zanchettin. Learning human actions semantics in virtual
reality for a better human-robot collaboration. In 2022 31st IEEE International Conference
on Robot and Human Interactive Communication (RO-MAN), pages 785-791, 2022. doi:
10.1109/RO-MAN53752.2022.9900824.

J. A. Lum, G. Conti-Ramsden, D. Page, and M. T. Ullman. Working, declarative and procedural
memory in specific language impairment. Cortex, 48(9):1138-1154, 2012. ISSN 0010-9452.
doi: https://doi.org/10.1016/].cortex.2011.06.001. URL http://www.sciencedirect.com/
science/article/pii/5@8189452118@1785.

E. C. Luo, J.-W. Zhan, W.-H. Cheng, and N.-W. Chang. Network-based multimodal human-
robot interactions in ubiquitous computing environment. In JEEE International Conference
on Robotics and Biomimetics, pages 131-136, 2008.

212


http://dx.doi.org/10.1007/3-540-49430-8_2
https://www.sciencedirect.com/science/article/pii/S0043164807003080
https://www.sciencedirect.com/science/article/pii/S0043164807003080
http://hdl.handle.net/1911/107403
http://hdl.handle.net/1911/107403
https://www.wikiwand.com/en/Sanbot_(robot)
http://www.sciencedirect.com/science/article/pii/S0010945211001705
http://www.sciencedirect.com/science/article/pii/S0010945211001705

Bibliography

W. Lutz, W. Sanderson, and 5. Scherbov. The coming acceleration of global population ageing.
Narure, 451:716, 2008. doi: 10.1038/nature06316.

C. Magn, B. Long, R. Chiou, and T. Konkle. Behavioral and neural associations between object
size and curvature. Journal of Vision, 19(10):30c, 2019. doi: 10.1167/19.10.30c.

B.Z. Mahon. Missed connections: A connectivity constrained account of the representation
and organization of object concepts. The conceptual mind: New directions in the study of
concepts, 719, 2015.

B. Z. Mahon and A. Caramazza. What drives the organization of object knowledge in the brain?
Trends in cognitive sciences, 15(3):97-103, 2011.

J. B. Marshall. Metacat: A self-watching cognitive architecture for analogy-making. In
Proceedings of the Annual Meeting of the Cognitive Science Society, volume 24, 2002,

A. Martin. Circuits in mind: The neural foundations for object concepts. 2009.

E. Martinez-Martin and A. P. del Pobil. Personal robot assistants for elderly care: An overview.
In A. Costa, V. Julian, and P. Novais, editors, Personal Assistants: Emerging Computational
Technologies, pages 77-91. Springer International Publishing, Cham, 2018. ISBN 978-
3-319-62530-0. doi: 10.1007/978-3-319-62530-0_5. URL https://doi.org/10.1007/
978-3-319-62538-0_5.

M. Matamoros and M. Luz. Robocup@home scoring history. https://github. com/
RoboCupAtHome/AtHomeCommunityWiki/wiki/Scores, 2018.

M. Matamoros, C. Rascon, 5. Wachsmuth, A. W. Moriarty, J. Kummert, J. Hart, 5. Pfeiffer,
M. van der Brugh, and M. St-Pierre. Robocup@home 2019: Rules and regulations (draft).
http://www.robocupathome. org/rules/2819_rulebook. pdf, 2019.

D. L. McGuinness and F. van Harmelen. Ow] web ontology language-reference. W3C Rec-
ommendation [ Online], Available at: http:/fiwww. w3. org/TR/2004/REC-owl, pages 1-53,
2004.

A. Mehra and M. Nissen. Case study: Intelligent software supply chain agents using ade. AAAT
Technical Report WS-98-10, 1998,

G. Metta, P. Fitzpatrick, and L. Natale. Yarp: yet another robot platform. International Journal
of Advanced Robotic Systems, 3(1):8, 2006.

S. Meyer zu Borgsen, T. Korthals, F. Lier, and 5. Wachsmuth. Tobi — team of bielefeld:
Enhancing robot behaviors and the role of multi-robotics in RoboCup@Home. In 5. Behnke,
R. Sheh, 5. Sarel, and D. D. Lee, editors, RoboCup 2016: Robot World Cup XX, pages
577-588, Cham, 2017. Springer International Publishing. ISBN 978-3-319-68792-6.

G. A. Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):
30-41, 1995.

213


https://doi.org/10.1007/978-3-319-62530-0_5
https://doi.org/10.1007/978-3-319-62530-0_5
https://github.com/RoboCupAtHome/AtHomeCommunityWiki/wiki/Scores
https://github.com/RoboCupAtHome/AtHomeCommunityWiki/wiki/Scores
http://www.robocupathome.org/rules/2019_rulebook.pdf

Bibliography

M. Minsky. A framework for representing knowledge. AT Memos, 1974.

J. W. Murdock and A. K. Goel. Meta-case-based reasoning: self-improvement through self-

understanding. Journal of Experimental & Theoretical Artificial Intelligence, 2001):1-36,
2008.

K. P. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012,

A. Newell. The knowledge level. Artificial Intelligence, 18(1):87-127, 1982. ISSN 0004-3702.
doi: http://dx.doi.org/10.1016/0004-3702(82)90012-1. URL http://www.sciencedirect.
com/science/article/pii/00@4376282988121.

A. Newell, P 5. Rosenbloom, and J. E. Laird. Foundations of cognitive science. In M. 1. Posner,
editor, Symbolic Architectures for Cognition, pages 93-131. MIT Press, Cambridge, MA,
USA, 1989. ISBN 0-262-16112-5. URL http://dl.acm.org/citation.cfm?id=182953.
192956.

G. W. Ng, Y.-5. Tan, X. H. Xiao, and R. Z. Chan. Dso cognitive architecture in mobile
surveillance. In Workshop on Sensor Data Fusion: Trends, Solutions, Applications (SDF ),
pages 111-115. IEEE, 2012.

N. 1. Nilsson. Shakey the robot. Technical Report 323, Artificial Intelligence Center, Computer
Science and Technology Division, 1984.

N. J. Nilsson. Introduction to Machine Learning. Stanford University, 1996.

E. Novianto and M.-A. Williams. Operant conditioning in asmo cognitive architecture. Biologi-
cally Inspired Cognitive Architecture, 2014.

A. Nuxoll and ]. E. Laird. A cognitive model of episodic memory integrated with a general
cognitive architecture. In International Conference on Cognitive Modeling, pages 220-225,
2004.

A. M. Nuxoll and J. E. Laird. Extending cognitive architecture with episodic memory. In
22nd National Conference on Artificial Intelligence, volume 2 of AAAI'07, pages 1560-1565.
AMAT Press, 2007. ISBN 978-1-57735-323-2. URL http://dl.acm.org/citation.cfm?
id=1619797.1619805.

A. M. Nuxoll and J. E. Laird. Enhancing intelligent agents with episodic memory. Cog-
nitive Systems Research, 17:34-48, 2012. ISSN 1389-0417. doi: http://dx.doi.org/10.

1016/j.cogsys.2011.10.002. URL http://www.sciencedirect.com/science/article/
pii/51389@41711080428.

N. Nwakuba, O. Chukwuezie, F Uzoigwe, and P. Chukwu. Friction coefficients of local food

grains on different structural surfaces. Jowrnal of Engineering Research and Reports, 08
2019. doi: 10.9734/jerr/2019/v61316951.

214


http://www.sciencedirect.com/science/article/pii/0004370282900121
http://www.sciencedirect.com/science/article/pii/0004370282900121
http://dl.acm.org/citation.cfm?id=102953.102956
http://dl.acm.org/citation.cfm?id=102953.102956
http://dl.acm.org/citation.cfm?id=1619797.1619895
http://dl.acm.org/citation.cfm?id=1619797.1619895
http://www.sciencedirect.com/science/article/pii/S1389041711000428
http://www.sciencedirect.com/science/article/pii/S1389041711000428

Bibliography

D. Nyga and M. Beetz. Cloud-based probabilistic knowledge services for instruction interpre-
tation. In A. Bicchi and W. Burgard, editors, Robotics Research, volume 2, pages 649-664.
Springer International Publishing, Cham, 2018. ISBN 978-3-319-60916-4. doi: 10.1007/
078-3-319-60916-4_37. URL https://doi.org/10.1087/978-3-319-60016-4_37.

D. Nyga, M. Picklum, S. Koralewski, and M. Beetz. Instruction completion through instance-
based leamning and semantic analogical reasoning. In 2017 IEEE International Conference
on Robotics and Automation (ICRA), pages 4270-4277, 2017. doi: 10.1109/ICRA.2017.
7989491.

G. H. Ogasawara. A distributed, decision-theoretic control system for a mobile robot. ACM
SIGART Bulletin, 2(4):140-145, 1991.

M. Ojala and G. C. Garriga. Permutation tests for studying classifier performance. Journal of

machine learning research, 11(6), 2010.

H. Okada, J. T. Chuan Tan, M. Chacin, H. Tamukoh, L. locchi, M. Mizukawa, M. Rajesh Elara,
M. Sano, R. Mochizuki, S. Owada, T. Nagai, T. Nakayama, T. Ohashi, T. Matsui, T. Inamura,
Y. Hagiwara, Y. Inoue, and Y. Ishida. Partner robot challenge real space: Rules & regulations.
Technical Report Rev-2.6, World Robot Challenge, October 2018.

5. Y. Okita, V. Ng-Thow-Hing, and R. Sarvadevabhatla. Learning together: Asimo developing
an interactive learning partnership with children. In The 18th IEEE International Symposium
on Robot and Human Interactive Communication (RO-MAN), pages 1125-1130, September
2009. doi: 10.1109/ROMAN.2009.5326135.

G. B. Orr and K.-R. Miiller. Neural networks: tricks of the trade. Springer, 2003.

D. N. Osherson and E. E. Smith. On the adequacy of prototype theory as a theory of concepts.
Cognition, 9(1):35-58, 1981.

J. Pages, L. Marchionni, and L. Ferro. Tiago: the modular robot that adapts to different research
needs. International Workshop on Robot Modularity, IROS, 2016.

A. K. Pandey. Socially intelligent robots, the next generation of consumer robots and the
challenges. In G. Stojanov and A. Kulakov, editors, ICT Innovations 2016, pages 41-46,
Cham, 2018. Springer International Publishing. ISBN 978-3-319-68855-8.

G. Pardo-Castellote and S. Schneider. The network data delivery service: A real-time data
connectivity system. In IEEE International Conference on Robotics and Automation, pages
2870-2876. IEEE, 1994.

K. Patterson, P. J. Nestor, and T. T. Rogers. Where do you know what you know? the

representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8:
076, 2007. doi: 10.1038/nm2277.

215


https://doi.org/10.1007/978-3-319-60916-4_37

Bibliography

D. Paulius and Y. Sun. A survey of knowledge representation in service robotics. Robotics and
Autonomous Systems, 118:13-30, August 2019. ISSN 0921-8890. doi: 10.1016/j.robot.2019.
03.005. URL http://dx.doi.org/10.1016/j.robot.2019.03. 005.

B. Pause, A. Zlomuzica, K. Kinugawa, J. Mariani, R. Pietrowsky, and E. Dere. Perspectives on
episodic-like and episodic memory. Frontiers in Behavioral Neuroscience, 7, 2013. ISSN
1662-5153. doi: 10.3389/fnbeh.2013.00033.

D. Pecher and R. A. Zwaan. Grounding cognition: The role of perception and action in memory,
language, and thinking. Cambridge University Press, 2005.

B. Peeters. Semantic primes and universal grammar: Empirical evidence from the Romance
languages, volume 81. John Benjamins Publishing, 2006.

B. Pelgrims, E. Olivier, and M. Andres. Dissociation between manipulation and conceptual
knowledge of object use in the supramarginalis gyrus. Human brain mapping, 32(11):
1802-1810, 2011.

G. Pezzulo, G. Calvi, and C. Castelfranchi. Dipra: Distributed practical reasoning architecture.
In IJCAI, pages 1458-1463, 2007.

E. Phillips, K. E. Schaefer, D. R. Billings, F. Jentsch, and P A. Hancock. Human-animal teams
as an analog for future human-robot teams: Influencing design and fostering trust. J. Hum.-
Robot Interact., 5(1):100-125, Mar. 2016. ISSN 2163-0364. doi: 10.5898/JHRLS5.1.Phillips.
URL https://doi.org/10.5898/JHRI.5.1.Phillips.

J. L. Phillips and D. C. Noeelle. A biologically inspired working memory framework for robots.
In IEEE International Workshop on Robot and Human Interactive Communication (ROMAN ),
pages 599-604, August 2005. doi: 10.1109/ROMAN.2005.1513845.

L. A. Pineda, 1. V. Meza, H. Avilés, C. Gershenson, C. Rascon, M. Alvarado, and L. Salinas.
Ioca: An interaction-oriented cognitive architecture. In Journal Research in Computing
Science, Special Issue on Artificial Intelligence, pages 273-284, 2010. ISBN 1870-4069.

L. A. Pineda, L. Salinas, I. V. Meza, C. Rascon, and G. Fuentes. Sitlog: A programming

language for service robot tasks. International Journal of Advanced Robaotic Systems, 10
(358):1-12, 2013. ISSN 1729-8806. doi: 10.5772/56906.

L. A. Pineda, A. Rodriguez, G. Fuentes, C. Rascon, and 1. V. Meza. Concept and functional
structure of a service robot. International Journal of Advanced Robotic Systems, 12(6):1-15,
2015. doi: 10.5772/60026.

G. Pobric, E. Jefferies, and M. A. Lambon Ralph. Amodal semantic representations depend

on both anterior temporal lobes: evidence from repetitive transcranial magnetic stimulation.
Neuropsychologia, 48(5):1336-1342, 2010.

216


http://dx.doi.org/10.1016/j.robot.2019.03.005
https://doi.org/10.5898/JHRI.5.1.Phillips

Bibliography

L. Postman. Toward a general theory of cognition. Social psychology at the crossroads, pages
242272, 1951.

J.-Y. Puigbo, A. Pumarola, and R. A. Téllez. Controlling a general purpose service robot by
means of a cognitive architecture. In AIC@AT*IA, 2013.

M. Puskaric, B. von Helversen, and J. Rieskamp. How social and non-social information
influence classification decisions: A computational modelling approach. The Quarterly
Journal of Experimental Psychology, TO(8):1516-1534, 2017.

D. V. Pynadath, P. 5. Rosenbloom, and S. C. Marsella. Reinforcement leaming for adaptive
theory of mind in the sigma cognitive architecture. In International Conference on Artificial
General Intelligence, pages 143-154. Springer, 2014

C. Qixin, Z. Zhen, and G. Jiajun. A distributed control and simulation system for dual arm
mobile robot. In International Symposium on Computational Intelligence in Robotics and
Automation, pages 450455, June 2007. doi: 10.1109/CIRA.2007.382851.

M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y. Ng. Ros:
an open-source robot operating system. In JCRA Workshop on Open Source Software, 2009.

L. R. Quinlan. C4.5: programs for machine learning. Elsevier, 1993,

U. Ramamurthy and B. J. Baars. Lida: A working model of cognition. In International
Conference on Cognitive Modeling, 2006.

C. Ramirez and B. Valdes. A general knowledge representation model of concepts. In C. Ramirez,
editor, Advances in Knowledge Representation, pages 43-76. InTech, 2012. ISBN 978-953-
51-0597-8.

K. Ramirez Amaro. Inferring Human Activities from Observation via Semantic Reasoning: A
novel method for transferring skills to robots. PhD thesis, Fakultiit fiir Elektrotechnik und
Informationstechnik, Technischen Universitiit Miinchen, 2014.

K. Ramirez-Amaro, T. Inamura, E. Dean-Leon, M. Beetz, and G. Cheng. Bootstrapping
humanoid robot skills by extracting semantic representations of human-like activities from
virtual reality. In 2074 IEEE-RAS International Conference on Humanoid Robots, pages
438443, November 2014. doi: 10.1109/HUMANOIDS.2014.7041398.

A. Remazeilles, C. Leroux, and G. Chalubert. Sam: A robotic butler for handicapped people. In

The 17th IEEE International Symposium on Robot and Human Interactive Communication
(RO-MAN), pages 315-321, August 2008. doi: 10.1109/ROMAN.2008.4600685.

J. Richter-Klug, P. Mania, G. Kazhoyan, M. Beetz, and U. Frese. Improving object pose
estimation by fusion with a multimodal prior — utilizing uncertainty-based cnn pipelines for
robotics. IEEE Robotics and Automation Letters, 7(2):2282-2288, 2022, doi: 10.1109/LRA.
2022.3140450.

217



Bibliography

M. Riesenhuber. Appearance isn’t everything: news on object representation in cortex. Neuron,

55(3):341-344, 2007.

M. Riesenhuber. How the mind sees the world. Nature Human Behaviowr, 4(11):1100-1101,
2020. doi: 10.1038/541562-020-00973-x.

S. I. Rigatti. Random forest. Journal of Insurance Medicine, 47(1):31-39, 2017.

E. E. Ritter, ]. L. Bittner, 5. E. Kase, R. Evertsz, M. Pedrotti, and P. Busetta. Cojack: A high-level
cognitive architecture with demonstrations of moderators, variability, and implications for

situation awareness. Biologically Inspired Cognitive Architectures, 1:2-13, 2012.

M. Rohrbach, 5. Amin, M. Andriluka, and B. Schiele. A database for fine grained activity
detection of cooking activities. In 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1194-1201, June 2012. doi: 10.1109/CVPE.2012.6247801.

A. Romero-Garcés, L. V. Calderita, J. Martinez-Gomez, J. P Bandera, R. Marfil, L. J. Manso,
P Bustos, and A. Bandera. The cognitive architecture of a robotic salesman. environment, 15
(6):16, 2015.

D. A. Rosenbaum, K. M. Chapman, M. Weigelt, D. J. Weiss, and R. van der Wel. Cognition,
action, and object manipulation. Psychological bulletin, 138(5):924-946, 2012. doi: doi:
10.1037/a0027839.

J. Ruesch, M. Lopes, A. Bernardino, J. Hornstein, J. Santos-Victor, and R. Pfeifer. Multimodal
saliency-based bottom-up attention a framework for the humanoid robot icub. In IEEE
International Conference on Robotics and Automation, pages 962-967. IEEE, 2008.

S. Russell and P. Norvig. Artificial intelligence: a modern approach. Pearson Education Limited,
2003.

M. S. Ryoo and J. K. Aggarwal. Semantic representation and recognition of continued and
recursive human activities. International Journal of Computer Vision, 82(1):1-24, Apr 2009.
ISSN 1573-1405. doi: 10.1007/s11263-008-0181-1. URL https://doi.org/10.1087/
s11263-088-8181-1.

Y. Sakagami, K. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura. The
intelligent asimo: system overview and integration. In /EEE/RSJT International Conference
on Intelligent Robots and Systems, volume 3, pages 2478-2483, September 2002. doi:
10.110%IRDS.2002.1041641.

K. §. Saladin. Anatomy & physiology: the unity of form and function. McGraw-Hill Higher
Education, 2004.

R. Salgado, E Bellas, P. Caamaiio, B. Santos-Diez, and R. J. Duro. A procedural long term
memory for cognitive robotics. In IEEE Conference on Evolving and Adaptive Intelligent
Systems, pages 57-62, May 2012. doi: 10.1109/EAIS.2012.6232805.

218


https://doi.org/10.1007/s11263-008-0181-1
https://doi.org/10.1007/s11263-008-0181-1

Bibliography

L. Salinas Pinacho. From knowledge of humans performing everyday activities to the service
robots. Extended abstract on the "Recent Trends in Knowledge Compilation (Dagstuhl
Seminar 17381)" 9, Dagstuhl, Germany, 2018. URL http://drops.dagstuhl.de/opus/
volltexte/2818/8589.

L. Salinas Pinacho and M. Beetz. Object grasping and arrangements extracted from virtual
reality for a household robot. Poster on the "workshop on concepts in action: Representation,
learning, and application”, 2018. URL https://conceptresearch.github.io/CARLA/
files/carla_2@18/5alinas. pdf.

L. Salinas Pinacho, A. Wich, F. Yazdani, and M. Beetz. Acquiring knowledge of object
arrangements from human examples for household robots. In E Trollmann and A.-Y. Turhan,
editors, KT 2018: Advances in Artificial Intelligence, pages 131-138, Cham, 2018. Springer
International Publishing. ISBN 978-3-030-00111-7.

A. V. Samsonovich, K. A. de Jong, and A. Kitsantas. The mental state formalism of gmu-bica.
International Journal of Machine Consciousness, 1(1):111-130, 2009.

J. Savage, M. Negrete, M. Matamoros, J. Cruz, R. Lagunas, J. Marquez, J. Marentes, and
F. Villasenor. The role of robotics competitions for the development of service robots.
Workshop on Autonomous Mobile Service Robots, LICAIL 2016.

M. Scheutz, T. Williams, E. Krause, B. Oosterveld, V. Sarathy, and T. Frasca. An overview
of the distributed integrated cognition affect and reflection diarc architecture. In M. L

Aldinhas Ferreira, J. Silva Sequeira, and R. Ventura, editors, Cognitive Architectures, pages
165-193. Springer International Publishing, Cham, 2019. ISBN 978-3-319-975504. doi: 10.
1007/978-3-319-97550-4_11. URL https://doi.org/108.1807/978-3-319-97550-4_11.

M. Seeger. Gaussian processes for machine learmning. International journal of neural systems,

14(02):69-106, 2004.

T. Segaran, C. Evans, and J. Taylor. Programming the Semantic Web: Build Flexible Applications
with Graph Data. DReil]}r Media, Inc., 2009,

V. Seib, E. Polster, and D. Paulus. Evaluation of approaches combining 2d and 3d data for
object recognition developed for the mobile robot lisa. In Proceedings Volume 10253, 2016
International Conference on Robotics and Machine Vision, volume 10253, pages 102531-
10255, 2017. doi: 10.1117/12.2266256. URL https://doi.org/18.1117/12.2266256.

M. Seo, S. Han, K. Sim, 5. H. Bang, C. Gonzalez, L. Sentis, and Y. Zhu. Deep imitation learning
for humanoid loco-manipulation through human teleoperation, 2023.

W. Shuai and X.-p. Chen. Kejia: towards an autonomous service robot with tolerance of
unexpected environmental changes. Frontiers of Information Technology & Electronic
Engineering, 2003):307-317, March 2019. ISSN 2095-9230. doi: 10.1631/FITEE.1900096.
URL https://doi.org/1@8.1631/FITEE. 1000006.

219


http://drops.dagstuhl.de/opus/volltexte/2018/8589
http://drops.dagstuhl.de/opus/volltexte/2018/8589
https://conceptresearch.github.io/CARLA/files/carla_2018/Salinas.pdf
https://conceptresearch.github.io/CARLA/files/carla_2018/Salinas.pdf
https://doi.org/10.1007/978-3-319-97550-4_11
https://doi.org/10.1117/12.2266256
https://doi.org/10.1631/FITEE.1900096

Bibliography

B. Siciliano and O. Khatib. Handbook of Robotics. Springer-Verlag, Berlin, Heidelberg, 2007.
ISBN 354023957X.

E A. Siddiky, M. S. Alam, and T. Ahsan. High performance reliable obstacle detection and
height measurement by stereo camera for intelligent home service robot. In 10th international

conference on computer and information technology, pages 1-6, December 2007. doi:
10.110%ICCITECHN.2007.4579364.

L. Sigal, A. O. Balan, and M. J. Black. Humaneva: Synchronized video and motion capture
dataset and baseline algorithm for evaluation of articulated human motion. International
Jjournal af computer vision, 87(1-2):4, 2010.

M. Sigalas, M. Maniadakis, and P. Trahanias. Time-aware long-term episodic memory for
recurring hri. In ACMAEEE International Conference on Human-Robaot Interaction, HRI
"17, pages 287-288, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4885-0. doi:
10.1145/3029798.3038307. URL http://doi.acm.org/10.1145/3029798. 3838307.

A. Sloman. Cogaff architecture schema. Presented at Gatsby Computational Neuroscience Unit,
2002.

K. Song, 5. Jiang, and 5. Wu. Safe guidance for a walking-assistant robot using gait estimation
and obstacle avoidance. [EEE/ASME Transactions on Mechatronics, 22(5):2070-2078,
October 2017. ISSN 1083-4435. doi: 10.1109/TMECH.2017.2742545.

K. Srihasam, J. L. Vincent, and M. 5. Livingstone. Novel domain formation reveals proto-
architecture in inferotemporal cortex. Nature neuroscience, 17(12):1776-1783, 2014.

S. 8. Snmivasa, D. Ferguson, C. I. Helfrich, D. Berenson, A. Collet, R. Diankov, G. Gallagher,
G. Hollinger, J. Kuffner, and M. V. Weghe. Herb: a home exploring robotic butler. Awtonomous
Robots, 28(1):5, November 2009. ISSN 1573-7527. doi: 10.1007/510514-009-9160-9. URL
https://doi.org/10.1887/s18514-0089-9166-0.

C. Stahl, D. Anastasiou, and T. Latour. Social telepresence robots: The role of gesture for
collaboration over a distance. In Proceedings of the 11th PErvasive Technologies Related
to Assistive Environments Conference, PETRA "18, pages 409414, New York, NY, USA,
2018. ACM. ISBN 078-1-4503-6300-7. doi: 10.1145/3197768.3203180. URL http:
//doi.acm.org/18.1145/3197768. 3263184.

J. A, Starzyk and J. Graham. Mlecog: Motivated learning embodied cognitive architecture.
IEEE Systems Journal, 11(3):1272-1283, 2015.

J. Stiickler, D. Holz, and 5. Behnke. Demonstrating everyday manipulation skills in
RoboCup@Home. IEEE Robotics & Automation Magazine, 19(2):34-42, June 2012

E. Stulp, A. Fedrizzi, L. Mosenlechner, and M. Beetz. Learning and reasoning with action-related

places for robust mobile manipulation. Artificial Intelligence Research, 43(1):1-42, January
2012. ISSN 1076-9757. URL http://dl.acm.org/citation. cfm?id=2387915. 2387916.

220


http://doi.acm.org/10.1145/3029798.3038307
https://doi.org/10.1007/s10514-009-9160-9
http://doi.acm.org/10.1145/3197768.3203180
http://doi.acm.org/10.1145/3197768.3203180
http://dl.acm.org/citation.cfm?id=2387915.2387916

Bibliography

S. Subramanian and R. Viswanathan. Bulk density and friction coefficients of selected minor
millet grains and flours. Journal of Food Engineering, 81(1):118-126, 2007. ISSN 0260-8774.
doi: https://doi.org/10.1016/j.jfoodeng.2006.09.026. URL https://www.sciencedirect.
com/science/article/pii/S@260877406006479.

K. Sun. Desiderata for cognitive architectures. Philosophical Psychology, 17(3):341-
373, 2004. doi: 10.1080/0951508042000286721. URL http://dx.doi.org/10.1088/
8951508042000286721.

K. Sun. Anatomy of the Mind: Exploring Psychological Mechanisms and Processes with The:
Exploring Psychological Mechanisms and Processes with the Clarion Cognitive A rchitecture.
Oxford University Press USA, 2016.

T. Taipalus and K. Kosuge. Development of service robot for fetching objects in home envi-

ronment. In Proceedings of IEEE International Symposium on Computational Intelligence
in Robotics and Automation, CIRA, pages 451-456, July 2005. ISBN 0-7803-9355-4. doi:
10.1109/CIRA.2005.1554318.

K. Takaya, T. Asai, V. Kroumov, and E Smarandache. Simulation environment for mobile
robots testing using ros and gazebo. In 2016 20th International Conference on System Theory,
Control and Computing (ICSTCC), pages 96-101. IEEE, 2016.

A. T. G. Tapeh and M. Z. Naser. Artificial intelligence, machine learning, and deep learning
in structural engineering: A scientometrics review of trends and best practices. Archives
of Computational Methods in Engineering, 30(1):115-159, 2023. ISSN 1886-1784. doi:
10.1007/s11831-022-09793-w.

J. Telis-Romero, V. Telis, and E Yamashita. Friction factors and rheological properties of orange
juice. Journal of Food Engineering, 40(1):101-106, 1999. ISSN 0260-8774. doi: https://doi.

org/10.1016/S0260-8774(99)00045-X. URL https://www.sciencedirect. com/science/
article/pii/SB26087749080045X.

M. Tenorth and M. Beetz. Knowrob: A knowledge processing infrastructure for cognition-
enabled robots. The International Journal of Robotics Research, 32(5):566-590, 2013. doi:
10.1177/0278364913481635.

M. Tenorth and M. Beetz. Representations for robot knowledge in the knowrob framework.
Artificial Intelligence, 247(Supplement C):151-169, 2017. ISSN 0004-3702. doi: https:
{/doi.org/10.1016/}.artint.2015.05.010. URL http://www.sciencedirect.com/science/
article/pii/S@0e4370215000843. Special Issue on Al and Robotics.

M. Tenorth, J. Bandouch, and M. Beetz. The tum kitchen data set of everyday manipulation
activities for motion tracking and action recognition. In IEEE [2th International Conference
on Computer Vision Workshops (ICCV), pages 1089-1096, September 2009. doi: 10.1109/
ICCVW.2009.5457583.


https://www.sciencedirect.com/science/article/pii/S0260877406006479
https://www.sciencedirect.com/science/article/pii/S0260877406006479
http://dx.doi.org/10.1080/0951508042000286721
http://dx.doi.org/10.1080/0951508042000286721
https://www.sciencedirect.com/science/article/pii/S026087749900045X
https://www.sciencedirect.com/science/article/pii/S026087749900045X
http://www.sciencedirect.com/science/article/pii/S0004370215000843
http://www.sciencedirect.com/science/article/pii/S0004370215000843

Bibliography

M. Tenorth, D. Jain, and M. Beetz. Knowledge processing for cognitive robots. KT - Kiinstliche
Intelligenz, 24(3):233-240, 2010a. ISSN 1610-1987. doi: 10.1007/s13218-010-0044-0. URL
http: //dx.doi.org/10.1007/513218-810-0044-0.

M. Tenorth, L. Kunze, D. Jain, and M. Beetz. Knowrob-map - knowledge-linked semantic
object maps. In Humanoids, 2010b.

M. Tenorth, A. C. Perzylo, R. Lafrenz, and M. Beetz. Representation and exchange of knowledge
about actions, objects, and environments in the roboearth framework. [EEE Transactions
on Automation Science and Engineering, 10(3):643-651, July 2013. ISSN 1545-5955. doi:
10.1109%/TASE.2013.2244883.

M. Tenorth, G. Bartels, and M. Beetz. Knowledge-based specification of robot motions.
In Twenty-first European Conference on Artificial Intelligence, ECAI'14, pages 873-
878, Amsterdam, The Netherlands, The Netherlands, 2014. I0S Press. ISBN 978-1-
61400-418-3. doi: 10.3233/978-1-61409-419-0-873. URL https://doi.org/10.3233/
078-1-61400-419-6-873.

M. M. Tenorth. Knowledge Processing for Autonomous Robots. PhD thesis, Fakultiit fiir
Informatik, Techmschen Universitiit Miinchen, 2011.

J.-P. Thibaut and L. Toussaint. Developing motor planning over ages. Journal of Ex-
perimental Child Psychology, 105(1):116-129, 2010. ISSN 0022-0965. doi: https:
{Idoi.org/10.1016/).jecp.2009.10.003. URL http://www.sciencedirect. com/science/
article/pii/S@@220965009081817.

E. Tulving. How many memory systems are there? American psychologist, 40(4):385, 1985.

E. Tulving. Study of memory - processes and systems. In J. Foster and M. Jelicic, editors,
Memory: Systems, Process, or Function?, pages 11-30. Oxford University Press, 1998.

E. Tulving. Concepts of memory. In E. Tulving and E Craik, editors, The Oxford Handbook of
Memory, pages 33-43. Oxford University Press, 2000.

E. Tulving. Episodic memory and common sense: how far apart? Philosophical Transactions
of the Roval Society of London Series B: Biological Sciences, 356(1413):1505-1515, 2001.

E. Tulving. Are there 256 kinds of memory? In J. Nairne, editor, The Foundations of
Remembering: Essays in Honor of Henry L. Roediger, III, volume 3, pages 39-52. Psychology
Press, 2007.

E. Tulving. 32 episodic memory. page 152. Cambridge University Press, 2016.

E. Tulving and M. Lepage. Where in the brain is awareness of one’s past? In D. Schacter and
E. Scarry, editors, Memory, Brain, and Belief, pages 208-228. Harvard University Press,
2000.

E. Tulving and K. Szpunar. Episodic memory, 2009.

222


http://dx.doi.org/10.1007/s13218-010-0044-0
https://doi.org/10.3233/978-1-61499-419-0-873
https://doi.org/10.3233/978-1-61499-419-0-873
http://www.sciencedirect.com/science/article/pii/S0022096509001817
http://www.sciencedirect.com/science/article/pii/S0022096509001817

Bibliography

E. Tyugu and E. K. Tyugu. Algorithms and architectures of artificial intelligence, volume 159.
I0S Press, 2007.

R. R. Vallacher and D. M. Wegner. What do people think they're doing? action identification
and human behavior. Psycological Review, 94(1):3-15, 1987.

M. M. van Pinxteren, R. W. Wetzels, J. Riger, M. Pluymaekers, and M. Wetzels. Trust in
humanoid robots: implications for services marketing. Journal of Services Marketing, 2019.
doi: 10.1108/JSM-01-2018-0045.

J. C. Vasquez Tieck, H. Donat, J. Kaiser, L. Peric, S. Ulbrich, A. Roennau, M. Zéllner, and
R. Dillmann. Towards grasping with spiking neural networks for anthropomorphic robot
hands. In A. Lintas, 5. Rovetta, P F. Verschure, and A. E. Villa, editors, Artificial Neural
Networks and Machine Learning — ICANN, pages 43-51, Cham, 2017. Springer International
Publishing. ISBN 978-3-319-68600-4.

D. Vernon. Artificial cognitive systems: A primer. MIT Press, 2014.

D. Vernon, C. von Hofsten, and L. Fadiga. Desiderata for developmental cognitive architectures.
Biologically Inspired Cognitive Architectures, 18:116-127, 2016. ISSN 2212-683X. doi: http:
f/dx.doi.org/10.1016/.bica.2016.10.004. URL http://www. sciencedirect.com/science/
article/pii/52212683X16300822.

R. Vidal, J. Bruna, R. Giryes, and S. Soatto. Mathematics of deep learning. ArXiv e-prints,
December 2017.

G. Vigliocco, D. P. Vinson, M. E Damian, and W. Levelt. Semantic distance effects on object
and action naming. Cognition, 85(3):B61-B69, 2002. ISSN 0010-0277. doi: https://doi
org/10.1016/50010-0277(02)00107-5. URL http://www.sciencedirect. com/science/
article/pii/S@@18827782001875. read.

S. Vijayakumar, A. D’souza, T. Shibata, J. Conradt, and S. Schaal. Statistical learning for
humanoid robots. Awronomous Robots, 12(1):55-69, 2002, ISSN 1573-7527. doi: 10.1023/A:
1013258808932, URL http://dx.doi.org/10.1023/A: 1813258808032

D. P. Vinson and G. Vigliocco. A semantic analysis of grammatical class impairments: semantic
representations of object nouns, action nouns and action verbs. Journal of Neurolinguistics, 15
(3):317-351, 2002. ISSN 0911-6044. doi: https://doi.org/10.1016/50911-6044(01)00037-9.
URL http://www.sciencedirect. com/science/article/pii/S0911604401008370.

B. Walther-Franks, J. Smeddinck, P. Szmidt, A. Haidu, M. Beetz, and R. Malaka. Robots,
pancakes, and computer games: Designing serious games for robot imitation learning. In
33rd Annual ACM Conference on Human Factors in Computing Systems, CHI "15, pages
3623-3632, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3145-6. doi: 10.1145/
2702123.2702552. URL http://doi.acm.org/10.1145/2702123.2782552.

P. Wang. From nars to a thinking machine. In Advance of Artificial General Intelligence, 2006.

223


http://www.sciencedirect.com/science/article/pii/S2212683X16300822
http://www.sciencedirect.com/science/article/pii/S2212683X16300822
http://www.sciencedirect.com/science/article/pii/S0010027702001075
http://www.sciencedirect.com/science/article/pii/S0010027702001075
http://dx.doi.org/10.1023/A:1013258808932
http://www.sciencedirect.com/science/article/pii/S0911604401000379
http://doi.acm.org/10.1145/2702123.2702552

Bibliography

Y. Wang. Cognitive leaming methodologies for brain-inspired cognitive robotics. International
Journal of Cognitive Informatics and Natural Intelligence (IJCINI), 9(2):37-54, April 2015.
ISSN 1557-3958. doi: 10.4018/1JCINL2015040103. URL http: //dx.doi.org/10.4018/
IJCINI.2@15848183.

A. Wierzbicka. The search for universal semantic primitives. Thirty Years of Linguistic Evolution.
Amsterdam/Philadelphia: John Benjamins, pages 215-42, 1992.

A. Wierzbicka. Semantic primes: Fifty years later. Russian Journal of Linguistics, 25(2):
317-342, 2021.

G. E. Wimmer, Y. Liu, N. Vehar, T. E. J. Behrens, and R. J. Dolan. Episodic memory retrieval
success is associated with rapid replay of episode content. Nature Newroscience, 23(8):
1025-1033, 2020. ISSN 1546-1726. doi: 10.1038/541593-020-0649-z

J. Winkler, M. Tenorth, A. K. Bozcuoglu, and M. Beetz. CRAMm — memories for robots
performing everyday manipulation activities. Advances in Cognitive Systems, 3:47-66, 2014.

J. Winkler, A. K. Bozcuoglu, M. Pomarlan, and M. Beetz. Task parametrization through multi-
modal analysis of robot experiences (extended abstract). In Internarional Conference on
Autonomous Agents, AAMAS "17, pages 1754-1756, 2017.

M. Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich. Fetch and freight: Standard
platforms for service robot applications. In Workshop on autonomous mobile service robots,

2016.

T. Wisspeintner, T. van der Zant, L. Iocchi, and 5. Schiffer. RoboCup@Home: Scientific
competition and benchmarking for domestic service robots. Interaction Studies, 10(3):
393428, 2009,

T. Yamamoto, K. Terada, A. Ochiai, E Saito, Y. Asahara, and K. Murase. Development of
human support robot as the research platform of a domestic mobile manipulator. ROBOMECH
Journal, 6(1):4, April 2019. ISSN 2197-4225. doi: 10.1186/540648-019-0132-3. URL
https://doi.org/10.1186/s48645-819-0132-3.

C. Yan, T. B. Chnistophel, C. Allefeld, and J.-D. Haynes. Categorical working memory codes
in human visual cortex. Newrolmage, 274:120149, 2023. ISSN 1053-8119. doi: https:
{/doi.org/10.1016/j.neuroimage.2023.120149. URL https://www.sciencedirect. com/
science/article/pii/518538119230@3082.

Y. Yang, Y. Aloimonos, C. Fermuller, and E. Erdal Aksoy. Learning the semantics of manipula-
tion action. arXiv e-prints, art. arXiv:1512.01525, December 201 5a.

Y. Yang, Y. Li, C. Fermiiller, and Y. Aloimonos. Robot learning manipulation action plans by
"watching" unconstrained videos from the world wide web. In 2%th Conference on Artificial
Intelligence (AAAT) and 27th Innovative Applications of Artificial Intelligence Conference
(IAAI), volume 5, pages 3686-3692. Al Access Foundation, 6 2015b.

224


http://dx.doi.org/10.4018/IJCINI.2015040103
http://dx.doi.org/10.4018/IJCINI.2015040103
https://doi.org/10.1186/s40648-019-0132-3
https://www.sciencedirect.com/science/article/pii/S1053811923003002
https://www.sciencedirect.com/science/article/pii/S1053811923003002

Bibliography

5. S. Yau, F. Karim, Y. Wang, B. Wang, and S. K. 5. Gupta. Reconfigurable context-sensitive

middleware for pervasive computing. /EEE Pervasive Computing, 1(3):33-40, July 2002.
ISSN 1558-2590. doi: 10.1109/MPEV.2002.1037720.

J. M. Zacks and K. M. Swallow. Event segmentation. Current Directions in Psychological
Science, 16(2):80-84, 2007. doi: 10.1111/5.1467-8721.2007.00480.x. URL https://doi.
org/18.1111/57.1467-8721. 2087 .08488. x.

J. M. Zacks, S. Kumar, K. A. Abrams, and R. Mehta. Using movement and intentions to
understand human activity. Cognition, 112(2):201-216, 2009. ISSN 0010-0277. doi:
https://doi.org/10.1016/).cognition.2009.03.007. URL http: //www. sciencedirect. com/
science/article/pii/50218827789208785.

N. Zhang, T. Qi, and Y. Zhao. Real-time learning and recognition of assembly activities
based on virtual reality demonstration. Sensors, 21(18), 2021. ISSN 1424-8220. dot:
10.3390/s21186201. URL https://www.mdpi.com/1424-8220/21/18/6201.

X. Zhao, A. M. Naguib, and S. Lee. Octree segmentation based calling gesture recognition
for elderly care robot. In Proceedings of the 8th International Conference on Ubiguitous
Information Management and Communication, ICUIMC "14, pages 1-8, New York, NY,
USA, 2014. ACM. ISBN 978-1-4503-2644-5. doi: 10.1145/2557977.2558030. URL
http://doi.acm.org/1@8.1145/2557977 . 25580830.

Z. Zhen, C. Qmin, C. Lo, and Z. Lei. A corba-based simulation and control framework for
mobile robots. Robotica, 27(3):459-468, 2000, doi: 10.1017/5026357470800489X.

Q. Zhu, V. Perera, M. Wiichter, T. Asfour, and M. Veloso. Autonomous narration of humanoid
robot kitchen task experience. In JEEE/RAS International Conference on Humanoid Robots
(Humanoids), pages 0-0, 2017.

M. Ziaeefard and R. Bergevin. Semantic human activity recognition: A literature review.
Pattern Recognition, 48(8):2329-2345, 2015. ISSN 0031-3203. doi: https://doi.org/10.
1016/).patcog.2015.03.006. URL http://www.sciencedirect.com/science/article/
pii/5@031320315000953.

C. Zins. Conceptual approaches for defining data, information, and knowledge. Journal
of the American Society for Information Science and Technology, 58(4):479-493, 2007.
doi: 10.1002/as1.20508. URL https://onlinelibrary.wiley.com/doi/abs/1@.1002/
asi.2e5es8.


https://doi.org/10.1111/j.1467-8721.2007.00480.x
https://doi.org/10.1111/j.1467-8721.2007.00480.x
http://www.sciencedirect.com/science/article/pii/S0010027709000705
http://www.sciencedirect.com/science/article/pii/S0010027709000705
https://www.mdpi.com/1424-8220/21/18/6201
http://doi.acm.org/10.1145/2557977.2558030
http://www.sciencedirect.com/science/article/pii/S0031320315000953
http://www.sciencedirect.com/science/article/pii/S0031320315000953
https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.20508
https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.20508

	Introduction
	Motivation
	Problem description
	Manipulation action knowledge acquisition
	Knowledge-processing memory modules
	Knowledge storage
	Testing scenario

	Contributions
	Reader's guide

	Foundations
	An introduction to Personal Service Robots
	Body design
	Personal Service Robot definition

	Robotic communication software
	Robotic learning
	Clustering
	Decision tree
	Reinforcement Learning
	Artificial Neural Networks

	Robot's action execution control
	Robotic architectures
	Cognitive architectures
	The use of memory and learning in cognitive architectures

	Receiving instructions in natural language and parsing them
	Summary of this chapter

	Overview of the knowledge processing memory modules
	Existing systems
	KnowRob
	Episode or NEEM
	NaivPhys4RP before RoboSherlock
	MoveIt!

	Knowledge processing memory-based models
	Working Memory to interconnect memories
	Episodic Memory to get previous experiences
	Procedural Memory in action representation
	Semantic Memory representing objects and actions as concepts

	Summary of this chapter

	Knowledge handling by Personal Service Robots
	Concept of knowledge
	Knowledge representation
	Knowledge retrieval and reasoning

	Knowledge system for a Personal Service Robot
	Action representation by a Personal Service Robot
	Semantic Knowledge Base
	Procedural Knowledge Base
	Episodic Knowledge Base

	Summary of this chapter

	Human manipulation action recognition from virtual reality data
	Manipulation actions
	Types of actions
	Actions in real or virtual environments
	Action segmentation, classification and recognition
	Learning from Demonstrations
	Datasets

	Human Action Recognition from Virtual Reality data
	Sub-action segmentation with if-then and if-then-else rules
	The sub-actions classifier by a decision tree
	The sub-actions classifier by a Recurrent Neural Network
	Action and sub-action prediction

	Summary of this chapter

	Knowledge processing memory models for Personal Service Robots
	Concept of memory
	Types of memory
	The use of memory concepts and interconnection models

	The use of memory concepts by Personal Service Robots
	The Working Memory model
	The Episodic Memory model
	The Procedural Memory model
	The Semantic Memory model

	Testing the memory modules
	Table setting experiment
	Bring a drink to the table experiment
	Serve and bring soup test
	Serve a drink test
	Pour and mix ingredients test

	Summary of this chapter

	Conclusions
	Human Action Recognition
	Knowledge processing modules
	Working memory
	Episodic memory and knowledge base
	Procedural memory and knowledge base
	Semantic memory and knowledge base

	Summary

	Competitions for Personal Service Robots
	Personal Service Robots commercially available
	Functionalities

	Robotic prototypes from research institutions
	Functionalities


	Action and sub-action plans for solving specific tasks
	Pick and place a bowl and a cup task
	Bring a drink from the fridge to the table task
	Serving soup task
	Serving juice task
	Mixing ingredients for batter task

	List of Publications
	Own published papers
	Awards

	Glossary
	Bibliography

